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An application of the Nash—-Moser theorem to
ordinary differential equations in Fréchet spaces

by
M. POPPENBERG (Dortmund)

Abstract. A general existence and uniqueness result of Picard—Lindeldf type is proved
for ordinary differential equations in Fréchet spaces as an application of a generalized
Nash-Moser implicit function theorem. Many examples show that the assumptions of the
main result are natural. Applications are given for the Fréchet spaces €™ (K), SRV},
BNy, Dy, (RM)Y, for Kbthe sequence spaces, and for the general class of subbinomic
Fréchet algebras.

0. Introduction. The purpose of this paper is to prove a general ex-
istence and uniqueness result for ordinary differential equations in Fréchet
spaces as an application of the implicit function theorem of Nash-Moser
type [21], 4.2.

The well kmnown theorem of Picard-Lindel6f yields the unique solvabil-
ity of initial value problems for ordinary differential equations in Banach
spaces; a proof based on the implicit function theorem is given in [24]. The
situaticn in Fréchet spaces is quite different. A comprehensive survey of the
present theory of ordinary differential equations in locally convex spaces is
contained in [12]. There are known a lot of negative results showing that
a straightforward generalization of the theorem of Picard-Lindelof (or of
Peano’s theorem) to Fréchet spaces fails, and positive results are only ob-
tained under rather restrictive assumptions (see e.g. [3]-[6], [11] and the
literature cited in {12]).

In the main theorem 4.1 of this paper the following is proved. Let E
be a Fréchet space equipped with a fixed fundamental system of norms
| o€ |1 <-...suchthat E and C([—1,1], E) have the smoothing property
(8q), (introduced in [19], ¢f. 1.1) and E satisfies condition (DN) of Vogt ([26],
cf. 1.1), and let f: U — E be a C*-map defined in an open set U CRx E
such that |8%f(v)(2)ln < cnfu;2]n forall |af < 2, n > 0, € U and some
constants ¢, > 0; these estimates are formulated in terms of the weighted
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102 M. Poppenberg

multiseminorms | ], (introduced in [21], ¢f. 1.3). Then for (¢p,y) € U and
small enough ¢ > 0 the initial value problem

Z(t) = ft,2(t), xlto) =y,
has a unique solution z € C*{[tg ~ 0, g +al, E) which is C™-depending on y
(and also on additional parameters) if fis O™, 2 < m € .
The assumptions of 4.1 are satisfied for large classes of nonlinear maps on
many Fréchet algebras. Section 5 contains examples for the space C*°(K)

where K = K is a compact set in RY, the space S(RM) of rapidly de-
creasing functions, the space B(RY) of all C*-functions having bounded
partial derivatives, and some convolution algebras (A*(a), ) of Kothe se-
guence spaces. Moreover, the result applies to polynomial maps in what
we call subbinomic Fréchet algebras; a further example is Dy, (RY) (cf.
5.5).

The proof of the main result, Theorem 4.1, is based on a variant of
a Nash-Moser type implicit function theorem in Fréchet spaces. Exam-
ples 3.1, 3.2 show that—even in the easiest case of linear equations with
constant coefficients—any generalization of Picard-Lindeléf’s theorem to
Fréchet spaces fails if a loss of derivatives is involved. Therefore, the as-
sumptions of Theorem 4.1 do not contain a loss of derivatives. However,
very general and precisely described constants are allowed instead in the
assumptions of Theorem 4.1 which give many examples not accessible by
standard methods.

For instance, Examples 5.4, 5.5 in K&the sequence spaces and in subbi-
nomic Fréchet algebras including applications to convolution algebras or the
nonlocal examples in 5.1, 5.2 where the right hand side f is given by means
of an integral operator cannot be obtained by e.g. simply solving ordinary
differential equations depending on a parameter or by applying standard
Banach space results. Note that if the Fréchet space F is the infinite inter-
section of Banach spaces E,, and the Banach space result is applied in each
E, yielding a solution in some interval I,, then these intervals I, may in
general shrink to one point and the existence of a solution in the Fréchet
space is by no means clear,

The Nash-Moser technique introduced in the proof of Theorem 4.1 is
based on a suitable transformation in the time variable and on an applica-
tion of the implicit function theorem [21], 4.2. This general method is by
no means restricted to the case of ordinary differential equations only. For
instance, in the forthcoming papers [22], [10] applications containing a loss
of derivatives are given for nonlinear parabolic evolution equations [22] and
nonlinear Schridinger equations [10]. Note that such applications require
additional properties of the corresponding linear semigroups. The main the-
orem proved in this paper can be considered as the “optimally general”
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(in the sense of 3.1, 3.2) result which can be achieved without requiring
additional properties of the corresponding linear semigroups.

The proof of Theorem 4.1 uses the implicit function theorem [21], 4.2,
which requires properties (Sj), and (DN) as assumptions on the spaces
imvolved. In Section 2 we give sufficient conditions for both E and
C™(I-1,1], E) to have property (Sg),. For instance, it is enough that B
is tamely nuclear and has (Qpgz), or that E is a graded Fréchet-Hilbert
space which has ({1g), or that E is locally /; and has (Qpg) (see Section 1
for the notation).

In Section 3 the case of linear differential equations is considered. The
results of this section are essential for the proof of Theorem 4.1. Most im-
portant and of independent interest is the generalization 3.6 of Gronwall's
lemma to Fréchet spaces which gives precise estimates for the norms of the
golutions of linear differential equations in Fréchet spaces in terms of the
right hand side, the initial value and the equation. Lemma 3.6 applies in
situations with a loss of derivatives as well (cf. [22], Lemma 5.6).

The assumptions on the mappings in Theorem 4.1 are motivated as fol-
lows. The elementary example 3.2 shows that there is a continuous linear
diagonal operator A on the space s of rapidly decreasing sequences so that
for some z € s the initial value problem /() = Az(t), 2(0) = z, does not
admit any C*-solution near 0 while, on the other hand, A satisfies the strong
continuity estimates |dz|s < Ci |zl for all £,e > 0. We thus cannot ex-
pect a general existence theorem (under assumptions based on estimates)
without supposing normwise tame estimates of the form [Az|, < eqlz|, in
the case of linear equations z'(t) = Az(t) with constant coefficients.

The example 2’ (t) = f{t,z(t)), f(t,z) = x*, in the space C*[0, 1] shows
that in general it does not seem reasonable to suppose local Lipschitz con-
ditions of the form {f(¢,z) ~ f(t,y)|n £ Lnlz — yln since—in contrast to
Banach spaces—the constants [, cannot generally be chosen independently
of &,y for all n and all z,y in a neighbourhood of some point. This obstacle
is overcome by the use of the weighted multiseminorms [ ], which facilitate
a precise description of the occurring constants when estimating the norms
of nonlinear maps f(#, z) and their derivatives.

When formulating the assumptions of Theorem 4.1 we proceed similarly
to the case of the classical Nash—Moser theorem (cf. [5], [7], [13], [14]): The
natural estimates obtained for smooth nonlinear maps of the form f(u) =
F(,u(-)), F e €, and their derivatives on C°°(K) for a compact K =

K C RY constitute the assumptions of the general result; these estimates
are normwise tame in the particular case of linear equations with constant
coefficients and can easily be stated using the expressions [ ], (cf. [21], 1.6).
Example 5.1 mainly serves to show that the assumptions of Theorem 4.1
are natural.
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1. Preliminaries. In this section we state some notations and formulate
the implicit function theorem which is proved in [21].

A Fréchet space E equipped with a fixed sequence | | <| [1 <] [2<...
of seminorms defining the topology is called a graded Fréchet space (cf. [5]).
Graded subspaces and graded quotient spaces are equipped with the induced
seminorms, and the product E x F is graded by |(z,y)|x = max{|z|k, [y(x},
z € E,y&F. Alinear map A : F - F between graded Fréchet spaces is
called tame (cf. [5]) if there exist a fixed integer b > 0 and constants ¢, > 0
so that |Az|, < ep|z|wts for all n and all z € E; if a choice b = 0 is possible
then A is called normawise tame. E is called a tnme direct summand of F if
there exist tame linear maps T': E — Fand §: F — E so that SoT = idg;
if in addition T'0 § =idp then we say that B and F are tamely isomorphic
{written F & F tamely), and T is called a tame isomorphism. A short exact
sequence 0 — F 5 G -5 E — 0 of graded Fréchet spaces with tame linear
maps is called tamely exact if the induced linear isomorphisms ¢ : F — iF
and g: G/iF — E are tame isomorphisms.

In [19] a smoothing property (Sg,), is introduced generalizing the classical
concept of smoothing operators (cf. [5], [7], [13]-[15], [28]).

DerFINITION 1.1. Let E be a graded Fréchet space.

(i) E has property (S5), (smoothing operators) if there exist b,p > 0
and cp, > 0 such that for each # > 1 there is a (not necessarily linear) map
Se : E — E such that

|Soz|n € cn™PF 2|, forallb<k<n+p, z€E,
iz — Sex|n, < ckgb™ TP F|z|, forallk>n+p, z ek

(ii) E has property (Qpz) (cf. [17)) if there exist p > 0 and constants
¢n > 0 such that for Uy, = {z € E: |z}, <1} and all n = pand r > 0 we
have

(2pz) _ Un C Cn(ﬁ Ti“pUn_i) + ( ﬁ Cn+k7'_k—pUn-|-k).
i=p k

=-p

E has property (Qg) {also called (Q) in standard form, cf. [30]) resp. property
(S2ps) (cf. [18]) if there are constants ¢, > 0 such that for all n > 1 and
7 > 0 we have

. 1
(QS) Un C Cn (TUn—l + ;Un+1) »

(0os)  Uac cn(((rUmn A ((}Uw) " U))
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(iil) B has the smoothing property (Sq,), (cf. [19]) if there exists a tamely
exact sequence 0 — F — G — Ex H — 0 of graded Fréchet spaces
such that F has property (Qpz) and G has property (S).

(iv) E has property (DN} (cf. [26]) if there exists b > 0 such that for
every r there are a constant ¢, > 0 and k such that |z|2 < e, |z|y|@|pss for
alz e B.

REMARKS 1.2. (i) Properties (S}, (Qpz) and (Sg), are preserved by
tame isomorphisms, and (DN) by topological isomorphisms. If both E, F
have property {Sg), (or (S),, (Qnz), respectively) then so does their product
ExF.

(i) Property (S), implies (Sn),, and (Sq), implies ((pz).

(iii) For example, if K = K is a compact set in RY which satisfies a
generalized cone condition in the sense of Tidten [25] or which is subanalytic
in the sense of Bierstone [1] then the space C°(K) has both properties (Sg),
and (DN) (cf. [19], 5.3, 5.4 for (Sq), and [1], [25] for (DN)). Here C*°(K)
denotes the space of all C*-functions in X such that all partial derivatives
8= f/0x® extend continuously to K, equipped with its usual norm system

o

%1 )

S, fe v ().

|f|x = sup sup
|| <k mE K

(iv) For any tamely nuclear graded Fréchet space E, properties {Sp),
and (Qpgz) are equivalent (cf. [19], 4.1). The space F is called tamely nuclear
(cf. [16], 3.2) if there is a fixed b > 0 such that the canonical maps Egip —
Ey, are nuclear for all & where E} denotes the Banach space obtained hy
completion of (E/ker | |k, | |x). The spaces C°°(K) in (iii) are tamely nuclear
(cf. [20], 4.12).

(v) For any graded Fréchet-Hilbert space, property (£2g) implies (Sq),
(cf. 2.5(ii)). Here Fréchet—Hilbert means that the seminorms are defined by
semiscalar products.

(vi) The graded Fréchet space E is called locally [; if By = 1;1(Jy) for all
k and suitable sets Jy. If F is locally I; then property ($ps) implies (Sp),
(cf. 2.5(iil)).

The assumptions of the implicit function theorem proved in [21], 4.2, are
formulated in terms of the following expressions [ ]m k-

DEeFINITION 1.3 ([21], 1.1). Let p,q > 0 be integers with p+¢ > 1, and
Ei,..., By, Fy,..., F, be graded Fréchet spaces. For m,k > 0,21 € Bq,...
co iy € By, € Fu,.0.,yg € Fy put

[mls vy Tpi Y1, .. ~='9‘q]m=k

= sup{1l - |k, |mtiy - - [Thplmivir * Wilmss - - [Yalmatse }
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where the “sup” is over all 4y,...,%0, J1, - .
withO<r<kandir+...+4%-+51+...
are omitted). For ¢ = 0 we write [21,...,Zp|m,k (where the |y|-terms are
omitted), and for p = 0 we write [;71,...,Yglmk. For m = 0 we write
[..Je =1 .ok in all cases.

In addition, for the vectors x = (z1,...,z;) and y = (y1,...
Section 4 we shall use the abbreviation [z} y]mk = [z1, ..
and [z;y]n = [z; 9o,k

Wig2z0and 1 <ky,... k- <p
+3q £ k (for r = 0 the |z|-terms

794)7 in
')wp; Y1y 1yq]m,k

Observe that the expression [z1,..., %541, . -1 Yqlm,k 18 @ seminorm in
each component y; separately while it is “completely nonlinear” in the x;-
components. The expressions [ |nx are increasing in m and in k. For the
purely nonlinear expressions we have [21,...,Zplm,0 =1 and [zy,. ..
> 1 for all m, k.

The following theorem on implicit functions is proved in [21]. For the
notion of differentiability in Fréchet spaces we refer to [5] or [21].

) xp]m,k

THEOREM 1.4 ([21], 4.2). Let E, F, G be graded Fréchet spaces such
that E,F ¢ (8,), end E,F,G € (DN). Let U C E and V C F be open
sets and x9 € U, yo € V. Let f: U xV — G be a C*-map, f = f(z,v),
and f{zg,yo) = 0. Assume that for any w € U x V the partial derivative
fy(w) : F'— G is bijective and for some fized d > 0 and suitable ¢, > 0 the
Sollowing estimates hold for all n > O:

(1) |F(w)eln € en[wizlan, wEU XV, z2€ ExF,
(2) o) 2ln S enlw; 2lam,  welUxV, z€G,
(3) |Fw){z, 2}n < culwi @, 8lan, weEUXV, z€ BxF.

Then there exist open neighbourhoods Uy C U of g, Vo CV of yo and a
C%-map b : Uy — Vp such that {(z,y) € U x Vo : f(z,y) = 0} = {(z, h(z)) :
z € Up}. In addition, if f is C™ then so is h, forn € NU {co}, n > 2.

2. The smoothing property for the spaces O™([0,1], E). Let F be
a graded Fréchet space, let J = [0,1], and let C"(J, E) denote the space of
all n times continuously differentiable functions f : J — E, n = 0,1,...;
for n =0 we write C(J, E) = C%(J, E). Then C*(J, E) is a graded Fréchet
space with

= slpoup 7O (@)in,

i=0 ze

f € C(J, B).

The goal of this section is to give sufficient conditions on E for both E and
C™(J, E) to have the smoothing property (Sq);- Since the map

- @:C"(J,E) > C(J,B) x B, &(f) = (f™, £(0),..., F*~1(0)),
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is a normwise tame isomorphism it iz enough to consider the case n = 0
(ef. 1.2(1)).

LemMa 2.1. If the graded Fréchet space E has property (Qg) (or ((ps)
or (dnz)) then so does C{J, E).

Proof. We show the assertion for ({2g); the same proof gives the result
for (lps) or (pz). We assume that Up, C ¢n(rUn—1 + r~U,4) for all
nzlandall 0 <r < 1where U, = {2 € E : |z|, < 1}. Let f € C(J, E)
with [fln £ 1and 0 < r < 1 be fixed. We choose an integer p such that
|f(z) = fly)]a £ 7 forall z,y € J with |z —y| < 1/(p+ 1), and define a
continuous partition of unity (¢; )52, 2 in C(J) as follows. For j = 0,...,p+1
and z € J we put

L 2+ 1
Vi g seSsyy

pslz) = 25— 1 j+1
0 fz< >

orx > ——r,
2(p+1) Tp+l

and extend ¢; continuously by straight line segments. Then ¢; € C(J), 0 <
¢; <1, Zp+1 () =1 for x € J, and for any « € J there Is a unique max-
imal j = j( ) such that ¢;(z) +¢;41(z) =1. Weput z; =45+ 1/(4(p+ 1))
for j = 0,...,p and @p+; = 1. Notice that |z;4; — ;] < 1/{(p+ 1) and
= T \ < 1/(p+ 1). We choose a decomposmon f(:nj) = a;+bjin I
such that |ajln—1 < cnr and |bjlpps < ear™, 5 =0,...,p+ 1. We put

ZP 20 ¢sby € C(J, E). We now obtain the assertion since for £ € J and
j= j(:c) we have

(@) lnsr < |95(@)bslnt1 + 1(L = $5)(2)bj41lnr1 < enr ™
1f(z) = h(@)ln-2 < [F(2) = F25)ln-1 £ €41 B (@541) — F25))n
+{éi(@)ajln-1 + (1 — 8;(z))2j41ln1
< (en + 2)r.

For graded Fréchet spaces B, F the e-product FeE == L(E.,F) is a
graded Fréchet space with [uly = supyeye [wl(e')|x, u € FeB, where Uy, =
{z e B:|zp <1} and B, denotes the dual space of E equipped with the
topology of uniform convergence on compact subsets of F {cf. [8]). We have

C(J,E) = C(J)eE normwise tamely by means of the mapping C(J,E) —
C(J)eE, f — uy, ug(e') = ¢ o f (cf. [8], 16.6). Notice that C(J) ®. E =
C(J)eE where C{J)®. E denotes the closure in C(J)eE of the finite tensors
z?:l fi®e,e;e b, fi € C(J)

LEMMA 2.2. Let 0 = F 5 G S E—0 bea tamely exact sequence of
graded Fréchet spaces. Then the maps I(f) =140 f and Q(g) == go g define
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o tamely exact sequence
0= CWULF) L oUe) 2o, B —o.

Proof We only have to prove the tame surjectivity of @ because the
other assertions are obvious. For that it suffices to show that the map id &.q :
C(J) ® G — C(J) @ E is tamely surjective. This immediately follows
from [2], Proposition 4.4.

For § > 0 and a Banach space B let s5(B) denote the graded Fréchet
space

o0
s5(B) = {m = (21)32, © Bt olh = 3 oyl < oo for all k.
F=1

In particular, we write s(B) = s1(B) and s5 = 55(K} where K =R or C.

PrOPOSITION 2.3. Let B be a graded Fréchet space. If there is a tamely
exact sequence

0— 85(B) — s5(B) +Ex H—0

for some graded Fréchet space H and 6 > 0 then both E and C(J, E) have
property (Sq).-

Proof. This holds for & by definition since ss{B) has both properties
(Qpz) and (S),. Lemma 2.2 gives a tamely exact sequernce

0— C(J,s5(B)} — C(J,85(B)) — C(J,E) x C(J,H) — 0.

The result foliows since C(J,s5(B)) = C(J) ®. s5(B) = s5(C(J) ®. B)

tamely.

THEOREM 2.4, Let F be o graded Fréchet space.

(i) If E is tamely nuclear with property (Qpz) then there exist § > 0
and a tamely ezact sequence 0 — s5 — 55 — E — 0.

(ii) If B is a graded Fréchet-Hilbert space with property (S1g) then there
exist a Hilbert space H and o tamely exact sequence 0 — s(H) — s(H) —
Exs{(H)—0.

(il) If E s locally I; with property (Qps) then there exist a Banach space
B and o tamely exact sequence 0 — s(B) — s(B) — E x s(B) —+ 0.

Proof. (i) is proved in {17], 7.1, and (ii) is shown in [19}, 4.7, as an
application of the tame splitting theorem [23]. For the proof of (iii) we
assume By, = I;(J;) and put

B={z=(a)iz. € [] Be: ol = Y loxis, < oo}
k=1 k=1

icm
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Notice that the Banach space B is isomorphic to [;{J) where J =
Uw(Jk x{k}}. The proof of [19], 4.6, gives a tamely exact sequence 0 — E —
BN — BY — 0 (cf. [29], 3.1). By means of [18], 3.3, the pairs (s(B), s(B))
and (s{B), F) are tame splitting pairs since s(B) = AY(M,a) for M = Nx J
and a(n,j) = n in the notation of [18] (a pair (F,G) of graded Fréchet
spaces is called a teme splitting pair if all tamely exact sequences of the
form0 -G o> HLF -0 tamely split, i.e. ¢ admits a tame linear right
inverse). Therefore, the assertion follows from [19], 4.4 {cf. [27], 3.3).

COROLLARY 2.5. Let E be a graded Fréchet space such that either (i) or
(ii) or (iil) holds.
(i) E is tamely nuclear and has property (Qpz).
(ii) E is a graded Fréchet-Hilbert space and has property (Qsg).
(iii) E is locally I1 and has property (Qps).

Then the spaces E and C™(J, E),n € Ny, have property (Sg,),.

3. Linear equations. Some results on linear ordinary differential equa-
tions in Fréchet spaces are now stated which are important for the applica-
tion of the implicit function theorem in the next section. For 0 € ap < o
< .../ oc we consider the power series space

o0
AL (a) = {m = ()2, CK:|zle = Y |z;]e" < oo for all k:}
=1
of infinite type. Recall that AL, (c) is nuclear if and only if sup;(logj)/a;
< .
As a motivation for the assumptions of our main theorem we prove the
following

THEOREM 3.1. Let B = Al () be nuclear and (dj)32, C R. Assume
that the diagonal operator A: E — E, A(z;); = (d;jx;);, is continuous and

linear. For z € E consider

(*) y'(t) = Ay(t),
Then the following are eguivalent:

y(0) = =.

(i) Problem (*) has for each 2 € E a unigue global solution y €
CYR, E).
(ii) For any 2z € E there are € > 0 and y € C*((—¢,¢), B) which solves
(%) in (—e, ).
(iii} There is C > 0 so that |d;| < Cay for all large j.

Proof. We note that 4 is continuous if and only if there is & so that
sup, |d;|e %% < co.
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We consider the initial value problems yi(t) = djy;(t), y;(0) = 25, with
the unique solutions y;(t) = e%*z;. For an open interval I = (—¢,¢), (¥)
has a (unique) solution in I if and only if (ed?z;); € E for all ¢ € I. Thus
(iii)=(i) and (i)=>-(ii) are clear.

For the proof of (ii)=>(iii) we may suppose that for any z € E there is
g > 0 such that (e®l%lz;); € E. We assume that (iii) is not true and choose
an increasing sequence ¢(j) such that |dg(;)]/cs) /" oo and a decreasing
sequence £; > 0 such that g; — 0 and g5ldy(y)|/agy) / co. We define
(Zi)r by Ty = e~silde| and 2, = 0 otherwise. Then (k) € B since
E = Al (o) is nuclear. However, for any £ > 0 we have e®/4sw! 25| — 00,
which is a contradiction.

It is easy to see that the equivalence (i}« (iii) holds without supposing
nuclearity.

EXAMPLE 3.2. Let B = s := Al (log j) and A(z;) = (d;z;); where
d; = (log j)*. Then A is even “very tame”, i.e. for any t > 0 and ¢ > 0
there is ¢ = Cy, > 0 so that |Az|, € C|zfs+. for all z € E. On the other
hand, for z; = j~ '€/ we have z = (2,;); € E, and the initial value problem
(%) does not admit any solution y € C*((—¢,¢), E),e > 0.

The previous results indicate that a general existence theorem is—even
in the case of linear equations—hardly to be expected without supposing
nermwise tame estimates. Also uniqueness may fail when only tame esti-
mates are assumed.

Exampre 3.3. Let E = C®[0,1] and A : E — E, A(f) = f'. Then
the initial value problem /() = Ay(t), ¥(0) = fo, fo € E, has a solution
y(t)(z) = fo(t + ) for any extension fy € C°°(R). However, the extension
and thus the solution are by no means unique. Observe that in general the
formal expansion e*4 f = 5% f(%} /k! does not converge.

Next we consider positive results. For a graded Fréchet space E, the
space

LNT(E) = {A: E — E linear :
[Aln = sup{|Az|, : |2}, < 1} < oo for all n}
of all normwise tame linear endomorphisms of E (= L(E) if ¥ is a Banach
space) is a graded Fréchet space for the grading ||Allx = sup®_q |4|,. For

the algebra (LNT(E), o) with unit element I we have |BA|, < |B|.|4|, and
1BAlln < || BllnllAll.

The theorem of Picard-Lindeldf is well known for (linear) differential
equations in Banach spaces. Due to the existence of global solutions, the gen-
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eralization to linear equations in Fréchet spaces with coeflicients in LNT(E)
is obvious:

PROPOSITION 3.4. Let B be a graded Fréchet space, I C B an open
interval, tg € I, and let A: I — LNT(E) and b : I — E be continuous
maps. Then the initial value problem

y'(t) = A y(t) +b(t),  ylto) =,
has for any yo & E o unique solution y € C1{I, ).

The next step is to derive a priori estimates for the norms of the solu-
tions of linear differential equations in Fréchet spaces. For that a suitable
generalization of the clagsical Gronwall lemma will be proved. The following
lemma is well known.

LEMMA 3.5 (Gronwall). Let d > 0, a,b > 0, and let u € C(J,R) where
J=1[0,dl. If u(t) < a ~|—b§3 w(s)ds for all t € J then u(t) < ae® for all
teJ.

LeMMa 3.6. Let J = [0,d], d > 0, and assume that ux & C(J,R),
k=0,1,..., satisfy, for some real numbers 0 < Ay < Agt1, 0 < By and
constants L < Dy < Dy, the estimates

kot
ug(t) < Ay - Dy ZSBk—i’U'i(S) ds forallted, k=0,1,...
=00
where B;B; € Diy;Biy; for all i,j = 0. Then there exist constants C > 0
where Cy, only depends on k,d, Bg, Dy, such that

k
uk(t) < C Z(l—l—Bkﬁi)Ai forallte J, k=0,1,...
=0
Proof. For k = 0 we have up(t) € Ao + BoDg S; uo(s) ds; hence 3.5
gives the estimate ug(t) < Co(l + Bo)Ap for Cp = eBoPod If the assertion
is proved for k — 1 then we get

k--1 H t
up(t) < Ag + dDy Z B;c_,;Oz-{ Z 1+ Bi_j}Aj} + Bo Dy S uy (5) ds
0

i=0 ' 5=0
k-1 L
< Ap+ O}; Z Br_iA; + Ba Dy S uk(s) ds.
=0 , 0

Now we apply Gronwall’s lemma once again to obtain the result.
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PROPOSITION 3.7. Let E be a graded Fréchet space, and let A : J —
LNT(E) and b:J — E be continuous where J = [0,d], d > 0. Assume that
k
|A{t)z]x < Dy Z By—i|z;,
i=0
b(t)r <bp foralitel ok, k=0,1,...,

where 0 S bic S bk+1,1 S Dk S Dk-l-l and B,;Bj ﬁ D,;_|.jB,;+_7' for all z,j
Then for yo € E the unique solution y € C'(J, B) of the problem y/(t) =
ARy (t) +b(t), y(0) = yo, satisfies the inequalities
k
ly()x < Ch Z (1 + Br—s}(bi + |yol:)
=0

for all k with constants Cy = C(k, d, Ba, D).

Proof. Considering the corresponding integral equation, for ¢t € J we
obtain
kot

Yk < lyols + bk + D Y § Besly(s)]: ds.
=0 0
We put Ax = |yolx + dbr and ug(t) = Jy(t)|x; then 3.6 gives the result.

4, The main result. If E, I are graded Fréchet spaces and U ¢ E is
open then a continuous f : (7 € E) — F is called a C™-map for an integer
m > 0 if all directional derivatives f™ : U x E® — F, (u;e1,...,65) —
FM(u){er,...,en}, 0 € n € m, exist and are continuous (cf. [5], 1.3); in
this case £ (u){ex,...,en} is completely symmetric and separately linear
iney,...,eq (cf [5],1.3.6.2). We say f is G if f is C™ for all m.

Let E, P be graded Fréchet spaces, let U C R x E x P be an open set,
and let f : U — E be a C™-map, f = f(t,#,p). We can then consider the
partial derivative —ggy%%ﬁf for 0 <di+7+k < masamap 00585 -
UxR x B! x P* — E (or as amap U x B/ x P* — E, cf. [5], 1.3.4).
Using multiindices we can write 9%f = 877852853 f for a = (@1,03,03)
with |o| = o1 4+ oy + a3 < m; then 8%9°F = 8°a°f if o] + |8] € m

{cf [5], 1.3.5). For a > O and y € E, p € P we consider the initial value
problem
(P) {m"(t) = f(tvx(t):p)a
z(tg) = y.
‘We now formulate and prove the main result of this paper; for the cor-
responding theorem in Banach spaces see [24], ‘

THEOREM 4.1. Let E, P be graded Fréchet spaces satisfying (DN) and
(8q)y such that O([-1,1}, E) has property (Sg),. Let U C R x E x P be

te [to_a,t0+a],
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open and {(to,z0,po) € U. Let [ : U — E be a C?-map, f = f(t,x,p), such
that for any n 2 0 there is ¢, > 0 such that for all @ = (o, 0z, 03) € N}
with || <2 and all w e U, z € R* x B x P ye have

() 0% (1) (2}l < enlu; 2.

(i) Then there are a > 0 and open neighbourhoods U(zg) of zo and
U(po) of po such that for any (y,p) € Ulzg) x Ulpy) problem (P) has a
unigue solution x € C*([ty — a,tp + a], E).

(i) If f is in addition C™, 2 < m < oo, then ¢ € C™ 1 ([ty — a,
to+al, E), and the solution map can be chosen C™ as o map U (zo)x U (pg) —
Ol({tg —a,ty - a],E).

(iii) If 21,22 are C'-solutions of (P) fort in any interval J then z, = 23
in J.

(iv) The solution map (t,y,p) — z(t;y,p) is C! on (tg — a,tg +a) x
U(zo) x U(po). Moreover, there is a mazimal open neighbourhood Uy of
(to, Zo,po) in U where this solution map ewxists and is CL.

REMARK. For u = (t,z,p) and z = ({1,.. ., %0y, %1, -+, Zagy D1y -+ + s Pag )
the term [u; 2], in (*) is defined (cf. 1.3) by [u; 2]n = [, T, 2581, - -+ s Eay» T1s -« -
vey g Py 7p043}'n'

Proof (of 4.1). By means of the transformation £ = tg + as, 2(s) =
z{to+as) —y, s € J = [-1,1], the initial value problem (P) is equivalent to
the problem

(P1) { j(%s));o‘ff(to + as,2(s) +, ),

The map & : (W < CY{J,E) xR x E x P) — C{J, E) x B defined by

is a C%-map defined in the open subset W C C*(J, E) x R x E x P where

$EJ,

s e J

W ={(z,a,4,p) : (fo+ as,2(s) +y,p) €U for all s € J}.

We have (0,0,z9,p0) € W, $(0,0,z0,p0) = (0,0), and {P1) holds if and
only if #(z,a,y,p) = (0,0). For the partial derivative &, we get

P.(z,a,y,p)(w) = (w'(8) — afz(to + as, z(s) + y, p)w(s), w(0)},

for any (z,a,y,9) € W and w € C*(J,E). For v € C(J, E), ugp € E we
want to solve the equation @,(z,a,y,p){(w) = (u,ug) in order to apply the
implicit function theorem 1.4, The assumptions in 1.4 on the spaces are
satisfied since E, P and C*(J, E) all have (DN) and (Sg,), (cf. 1.2(i)). We
have to consider the linear initial value problem

s e J
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where A(s) := a fo(to + as, z(s) + y,p) € LNT(E) by (). Problem (LP)
has a unique solution w € C'(J, E) by 3.4 since A € C(J,LNT(E)). Hence
$.(z,a,y,p) : C(J,E) — O(J, B} x E is bijective for all (2,a,y,p) € W.

We have to verify the estimates (1}, (2), (3) in 1.4; here (2) can be
considered as & priori estimates for the solutions of (LP). When proving these
estimates we may assume—shrinking U if necessary—that |(z,a,y,p)lo < C
for some fixed C' > 0 and all (z,a,y,p) € W.

To show (1) we observe that &' (u){w,b,x,q} = F(wWw + S, (u)b +
b, (u)e + p(u)g forall w € Wand w € CH(J,E),beR, z € F, g€ P.
From (*) we obtain the estimates |@,(u)wl, < en[u;w], for all n. The other
partial derivatives are given by

@ﬂ(z!av y)p)b = (—bf(to +as, Z(S) + yap) - a'bsft(tﬂ + as, Z(S) + y:p)n 0)1
Py(z, 0,9, p)z = (—afolto + s, 2(s) + v, p)z,0),
Pp(2:0,y,0)q = (—afp(to + as,2(s) + v,0)q,0)-

Hence () implies |@,(u)bln < cnlu; blp, [Py (w)z|n < cnlu; 2], and |Sp(u)g|n

< enlu; gly. This gives |& (w)vl, < enfu; vy for w € W and v € CU(J, E) x
R x E x P and hence (1).

To show (3) we have to estimate |$"(u){v,v}|, for v € W and v €
CYJ,E) x Rx E x P. Now ¢'(u){v,v} can be calculated as a sum (of 16
summands resp. 10 different summands) involving the second partial deriva-
tives Doz, Paa, Py, Bpp and Dog, Py, Pup, Pay, Pap, Pyp- It is hence enough
to prove the desired estimates for these second partial derivatives. For
instance,

@zz(z,a, y’p){w}w}’ = (‘“G’fm:c(tﬂ + as, Z(S) + yap){w(‘g):w(s)}70): se
Now () gives |, (w){w, w}|n < cuu;w,w], foru e W, w € CH{J, E). Ana-

logous estimates for the other second partial derivatives yield |$"(u){v,v}|»
< enlus v, vl forue W, v € CH{J,E) x R x E x P, proving (3).

It remains to prove (2). Fix u € C(J, E) and up £ B and assume that
w € C'(J, E) is a solution of (LP). We have to estimate w|, in terms of
u,ug and {z, a,y,p) where |(z,0,y,p)|o < C. From ()} we obtain

S:g |A(5)$!n < Cn[(za Q, yap); w]'n. < Cn Sgg[z’ a, y;p]n—'i}m!'ia re k.

8 f==

We can apply 3.7 with B; = [z, a,y,p|; noting that [u];[u]; < [u];4; to get
sup |w(s)|n < cn SUD[2, 6, ¥, Pln—i(sup [uls)]i + [uol:)
s€J i=0 seJ

< Cn[(za a, 'yap)5 (U, UU)}TL‘
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For the first derivative of w, from the differential equation we obtain

sup [w'(s}in < sup(JA(s)w(s)|n + |u(s)]x)
seJ seJ

< Cn sup(sl'ap[z, a, yap}n—-ilw(‘g)li =+ |’L!.(S)‘n)
seJ i=0

_<.. Cn[(Z, a, Y, p); (U,Uo)ln-
This shows |w|, = |$2(2,0,4,0) 7 (%, w0)ln < enl(2,a,3,p); (4, u0)]n and
this yields {2).

‘We are therefore allowed to apply the implicit function theorem 1.4 to the
function ¢ and obtain open neighbourhoods Up of {0, zq, po) in Rx Ex P and
Vo of 0 in CY{J, B) with Vo x Up C W and a C2%-map ¥, : Uy — V, such that
the equation &(z,a,,p) = {0,0) is uniquely solved in Vj by z = ¥ (a,y, p)
for (a,y,p) € Uy. We hence find ¢ > 0 and open neighbourhoods U(zg) of
xo and U(pg) of pg such that @y : (0,8) x U(zg) x U(pg) — Vp is 2 C%-map
and z = ¥ {a,y,p) is a solution of (P1) which is unique in V5. Applying the
above transformation z(s) = z(tg -+ as) — y we can choose a fixed @ > 0 and
a C%map ¥ : U{xg) x U(po) — C{[to — a,to +a], E) such that z = ¥(y, p)
is a solution of (P). This proves the existence part of (i). If f is C™ then
the differential equation implies that z is C™+!; hence 1.4 implies (ii).

To show uniqueness we choose Vj as above and assume first that 1, 2o
are any (l-solutions of (P) for y = zg, p = po and some a¢ > 0. The
transformed functions z;{s) = z;(tp + as) — zo are solutions of {P1). Since
a v z;(to + as) — zo € C*(J, E) is a continuous map which is 0 for a = 0
we can find a small a > 0 so that 21,29 € Vp, hence z1 = z2. This shows
that #1 = ms in a small neighbourhood of 5. This local unigueness also
implies global uniqueness since for 1 > fq with z1 (1) # %2(¢1) and 3 =
mf{t1 > tg : z1(t1) # @2(t1)} we have x1(ts) = ma{tz) by continuity and
hence 1 = 3 near ty by local uniqueness, which is a contradiction.

Since the evaluation map C*{(J,B) x J — E is 7, a straightforward
continuation argument gives {iv), and the theorem is proved.

ReMARK, For C®-maps f satisfying (x) for all e, the above theorem
can also be proved using the space C*°([—1,1], E) in place of C*{[-1, 1], E).
Then 0°°({[-1,1], ') must be supposed to have the smoothing property
(8),, and the proof of the estimates (1), (2), (3) in 1.4 is technically more
difficult. In this case, one obtains a solution map which is C'*® considered as
amap U(zg) x Ulpg) — C*([to — a,to + o), E).

5. Examples. The following example shows that the assumptions of 4.1
are natural.

EXAMPLE 5.1. Let E = P = C*°(K) where the compact set K = K
C RY either has a Lipschitz boundary or is subanalytic. Then C°°(K) has
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properties (DN) and (Sg), and is tamely nuclear (cf. 1.2); hence C(J, E)
has (S ) by 2.5(i).

Let J = [tg — a,ty + a], let A C J x K x K x K be relatively open, and
let F e C®(A,K), F=F(t,u,z,p). Then the set

U={(z,p) e ExP:(t,u,z(u),plu)) € Aforallt € J, uec K}
is open. We assume that (zq,pg) € U and consider the map
FiIXU=E,  f(top)(u) = F(tua(u), pu)).

Then f is a C*°-map; if, in addition, A is relatively compact then f satisfies
the estimates () in 4.1 {even for all a). This is proved in [21], 1.5, 1.6,
considering ,p as mappings 2(¢, u) = z(u), p(t,u) = p(u), (t,u) € I x K
(cf. {7]). Therefore, for suitable small & > 0 and for (y,p) near (z,pp) the
initial value problem (P) has a unique solution z € C'*°(J, F) which is C®-
depending on (y,p). Moreover, 4.1(i)—(iv) apply to this problem. Writing
z(t,u) = =(t)(u) and omitting p this also implies for y € E the unique
solvability of the Cauchy problem

(CP) %(t: u) = F{t,u,x(t,u)),
«(to, u) = y(u).

More generally, for A C J x K% x K® and F € C°(A4,K) we can consider
the map

t € [to — a,to + al,

f(t,2,0)(w) = | Fit,u,w,2(u), 5(w), p(u)) dw.
K
Then f : J x Ex P — E is C* and satisfies (x) for all ¢«. Hence 4.1 implies
the unigue solvability of all initial value problems (P) for f.

Example 5.1 can also be considered for C°°-maps on the space B =
C*°(X) for a compact C°°-manifold X . In fact, in [20], 4.14, it is shown that
C™(X) & sy tamely, N = dim(X); the estimates () follow from [7] for
C™-maps as in 5.1.

The assumptions of 4.1 are satisfied for smooth maps in a lot of other
Fréchet algebras. )

ExaMpPLE 5.2. We consider the graded Fréchet space of rapidly decreas-
ing functions

S =S(RY)

={x € CP(RY) : |z]x = sup sup (1+|u])*|8%z(x)| < oo for all k},
la| <k ueRN :

which is tamely isomorphic to s/ ([20], 5.5). We have |2 - ¥k < ci; 2, Yk,

2,y €S . Let K =R, J = [ty — a,%g + a], and let F € 0°(J xRN xR),

F = F(t,u,y), be a function such that for any compact I ¢ R all partial
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derivatives 0°F (o € NY %) are bounded on J x RY x I. We assume that
(8/81)(8/0u)P F(t,u,0) =0forallt € J,u € RV, B & N and i = 0,1,2
(e.g. we can put F(t,2,1y) = ¢t u)ip(y) where ¢ € B(J x RY) and ¢ €
¢ (R) with 1(0) = 0). We define

f:Ix8—S8, flt,z)(u)=Fltu,z), teJ, ze8, ueRY,

Weput V ={z € S : |z|p € Cy} where Cp > 0 is a constant. For ¢ € J and
r & & we have f(t,z) € S since |F(t,u,y)| < c|y| for |y| £ Cp and hence

sup [F{t,u,2(w))|(1+ [ul)* < ¢ sup a(u)i(1+ [u)* <clalx, z €V,
ueRM uERMN

and the chain rule for higher derivatives (cf. [21], 1.4) implies the estimates
|F(t,2) |k < cilz]k for ¢ € J, ¢ € V. The same argument gives & f(t,z) =
OLF(t, -, x(-)) € 8 fori = 0,1, 2. The proof of [21], 1.5, shows that f : Jx8 —
S is a C%-map and 9583 f(t, 2){y1, ..., y; Hu) = SiOIF(t,u, m(u))yr(u) - . . .-
yi(u)forall 0 <i+j <2, teJ,z € 8,4, ...,y; €S. This formula implies
for 0 £ i+ j < 2 the inequalities

18502 F(t, 2y, - i He < e [ziw,- 0 U5k
Thus 4.1 yields for any y € § a unique solution z € C!([ty — a, tg + a],S) of

(IP) {m’(t) = f(t: .’I;(t)),

.’E(tg) =Y,

for some suitable small & > 0, and 4.1(i)—(iv) apply. Writing «(, u) = z(t) (v)
we also obtain a unique solution z € C*(J, 8) of the Cauchy problem (CP}.
It is not difficult to see that also other conditions on F' are sufficient.
For instance, it is enough that for F € C®(J x RY x R), F = F(t,u,y), the
functions (14 |u|)¥|8%F (t,u,y)| are bounded on J x RY x I for any compact
ITCRandall a g Név +2 k> 0. More generally, we can consider nonlocal
examples as well. We take F' € 0°(JxRY xRN xRxR), F = F(¢,u,w,y, 2),
and suppose that for any compact I C R and & € NY 3,k > 0 we have

eV, y,...,y €S,

t e ltg — a,tp + al,

sup sup sup (1 + |uj)¥ ‘ |85 o (s 1w, Y, 2) | dw < 0.
teJ y,2€l ueRN B

Then the nonlocal map f:J X & — & defined by
Flte)w) = | Flt,u,w,2(u), 2(w)) dw
RN
is a C°-map which satisfies () for all o; hence Theorem 4.1 applies to f.
The preceding example can easily be generalized to the spaces K{Mp}

in the sense of Gel'fand and Shilov (cf. [20], 5); more general maps F could
be considered as well.
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ExAMPLE 5.3. We consider the graded Fréchet space

B=BRY)={ze C®RY):|z|r = sup sup |8%z(u)| < co for all k},
|a| <k ucRN

which is tamely isomorphic to s1/y(lec) (cf. [20], 5.4(i)). Let K = R
J = [to—a,to+a], and let F € C°(JxRY xR), F = F(t,u,y), be such that
all partial derivatives *F are bounded on J x RY x T for any compact in-
terval I C IR Then f : J x B — B defined by f(t,z){u) = F(t,u, 2(u)),
teJ, z € B ueRY, isaC%®map. If Cj > 0is a constant and
V={zcB:|zlp < Co} then sup,cpv |F{t,2)(u)] < O for all ¢ € V.
The chain rule gives the estimates |f{t,2)|x < exlz]g for all z € V and &
with suitable cx > 0. The Leibniz rule implies |zy|x < ck[;z,y)x for =,y € B,
and as in 5.2 we obtain

|533if(5;97){yly ')yj}|k' S Ck[m;yla - 'wyj]ka x € V! Yiy-n- > Y4 €B.

Hence Theorem 4.1 can be applied and for any y € B the initial value
problem (IP) has a unique solution z € C*([ty — a,ty + a],B) for some
& > 0. The same holds for the Cauchy problem (CP). Nonlocal examples as
in 5.2 can be considered as well,

ExAMPLE 5.4. Let 0 < a0 < aj541, § € Z, be a Kbthe matrix with
supy, ajx > 0 for all §, and consider the K&the sequence space

A=2a) = {w = (2j)er : |z|k = Z lzs]a;,, < oo for all k}.
jE2
We assume that X € (DN) (cf. [26], 2.3) and aly > it aj k-1 311 for some
constants cx > 0. Then A € (Qps) (cf. [17], 3.7) and hence A € (S;,), and

C{[-1,1],A) € (8;), by 2.5(iii). We assume that for some constants ¢ > 0
we have

k

Titik S C Z i, 105,k
1=0

foralli,j€Z, k=10,1,...

Then (A{a), *) is a convolution algebra for z+y = (2 jez Tn-jVi)nen = Y*o
since

|z * gl = Zl > Enegy

nEL  itj=n
< &l @, vl

k
Gnk < Ck Z (Z |$i|ﬂi,z) (Z |yj‘aj,kml)
1==0 i )

k3

For instance, a power series space with ajr=e"l <y <ar <... /oo,
satisfies all these conditions if e%+i < e™ + ¢ for alli, 5 > 0 (cf. [9], 2.4.5)
since *Ietal < (g%l + ei1)h < T8 (M eiilemn(k=D; this holds e.g. for
a; =log(l + j) and A = s. :
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We put J = [to—a, to+a] and choose an integer i > 1 and ¢1,...,¢m €
C®(J). We define f:J x A= Aby flt,2) =37 ¢a(t)a™, t€ J, z €A,
where z' ;= z and z"*! := z * 2" (clearly, more general mappings f could
also be considered). Then f is a €°°-map and

Bi0Lf (4 a){yn, -l = D0 ¢ (B)en o™ T wyi k. xy

n=y

for some constants ¢, ;. This implies

0305 F () {yn, - i i < erlmsyn, o wsle
for suitable c; > 0 and |z|o < Cp. Hence, for any y € A, (IP) has a unique
local solution & € C°°(J, ) for a > 0 small enough, and 4.1(i)—(iv) apply.

The preceding example can immediately be generalized to more abstract
situations. Let E be a graded Fréchet space which is an algebra for a product
- Ex E — E. We call (B,{| |e)x,) & subbinomic Fréchet algebra if
there are constants ¢ > 0 such that |z - yly < cxfjz,9]; for all z,y € E
and all k; and we call (E,{| |x)r,-) a submultiplicative Fréchet algebra if
lz-ylk < ex|z|k|ylr for all 2,y € E and all k. Notice that a power series space
AL () of infinite type equipped with the convolution product is subbinomic
if e*iti < e 4 % and is submultiplicative if a;y; < o + .

In view of the preceding examples we obtain the following general rule
of thumb: Theorem 4.1 applies to subbinomic Fréchet algebras but not to
submultiplicative ones.

ExaMpPLE 5.5. Let F be a commutative subbinomic Fréchet algebra such
that B and C([—1, 1], B) satisfy (S, ), and E has (DN). Let J=[ts—a, to+al,
B1yeiis Pm € C(J). Then f: J x F — E defined by

ft,z) = iqén(t)a:“, teJ zekE,

is a C°°~map which satisfles () in 4.1 for |z]p < Cy. Hence 4.1 gives a unique
local solution z & C°°(J, E) of (IP) for any y € F and a > 0 small enough,
and 4.1(i)-(iv) apply.
As a further concrete example, we can consider the space
Dy, (RY) = {f € CPRY):|flx = sup, | 16°F(z)| do < oo for all k},
Q| [RN

which is a commutative subbinomic Fréchet algebra for the convolution
product defined by (g+h)(z) = {5~ g(z—y)h(y) dy and which satisfies the as-
sumptions of 4.1 by 2.3 since D, (RY) & sy/n(l1) tamely (cf. [20], 5.4(ii)).
Hence Theorem 4.1 can be applied e.g. to mappings f : J x Dy, (RY) —
D, (RY) defined as above.
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On the other hand, the Fréchet algebra H(C) of entire functions is sub-
multiplicative for |z|, = sup{|z{u)| : |u| < k}; however, the initial value
problem 2/(t) = z(t)2, z(0) = y, in H(C) does not admit any C*-solution
near 0 e.g. for y(u) = u (consider (¢t} {u) = 1/{—t+1/u) for 0 <t < 1/uand
u — 00). Notice that the map f : H(C) — H(C), f(z) = 22, only satisfies
| (®)|x < |z|2 < [x]2x, which is not good enough to apply Theorem 4.1.
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