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The density property for JB*-triples
by

SEAN DINEEN, MICHAEL MACKEY
and PAULINE MELLON (Dublin)

Abstract. We obtain conditions on a JB™-algebra X so that the canonical embedding
of X into its associated quasi-invertible manifold has dense range. We prove that if a
JB*-triple has this density property then the quasi-invertible manifold is homogeneous
for biholomorphic mappings. Explicit formulae for the bikolomorphic mappings are also
given.

1. Imtroduction. There exist, up to biholomorphic equivalence, pre-
cisely two one-dimensional simply connected symmetric complex manifolds,
and these can be realised as the open unit disc

A={zeC:|d <1}
and the Riemann sphere € := C U {oc}. We have the standard inclusions
(1) A-C—CT

and C is dense in €. Moreover, each biholomorphic map of A extends
to a biholomorphic map of C. In the finite-dimensional situation each n-
dimensional bounded symmetric domain D, determines, and is determined
by, its unigue compact dual D.. The domain Dy, can be realised as the open
unit hall of a norm on C®, and D, which is an n-dimensional compact sym-
metric manifold, can be realised as the quasi-invertible manifold associated
with Dy, (see [8]) and we have the canonical inclusions
(2) Dy — C" — D
with C* dense in D.. Once again, biholomorphic maps of Dy, extend to
biholomorphic maps of D..

In the Banach space setting, Kaup [6] has characterised bounded sym-
metric domains as those complex manifolds which can be realised as the

open unit ball of a JB*-triple. With every JB*-triple X one can associate
a quasi-invertible complex manifold Mx modelled on X and we again have
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the canonical inclusions
By X — My
where By is the open unit ball of X.

DEeFINITION 1.1. The JB*-triple X has the density property if X is dense
in MX -

In this paper we investigate the density property for JB*-triples. By using
J*-triples, Kaup [5] has shown that each bounded symmetric domain hag
associated with it a unique simply connected symruetric Banach manifold
of compact type. The relationship between this compact type manifold and
the above quasi-invertible manifold is still under investigation [1] and the
density condition may well feature in the final solution.

We now recall some background information on JB*-triples.

DEFINITION 1.2. A JB*-triple is a pair (X, {-, -, ‘}) consisting of a Banach
space X and a continuous real trilinear mapping {-, -, }: X3 — X which is
complex linear and symmetric in the outer variables, complex antilinear in
the middle variable and which satisfies the following axioms:

(i) d(zHu,v,w} = {(z)u,v,w} — {w,8(m)v, w} + {u,v,8(z)w} for
zu, v, w e X,

(i) 6(z) is Hermitian for all & € X,

(ili) o(8(z)) > O for all z € X,

() [6()] = l|z||? for all z € X,

where §(z) € L£(X) is defined by 8(z)(y) = {z,2,9} and o denotes the
operator spectrum. We recall that a linear operator T € £(X) is Hermitian
if €T is an isometry for all A € R. Condition (i) in this definition is known
as the Jordan triple identity. The above “differential” version of the Jordan
triple identity may be linearised to give the equivalent condition

(il) {a‘ﬁ b, {u? v,w}} = {{aa b, u}:vs w}——{u, {br a@, 1’}) w}+{u, Vy {a‘a b, w}}

Condition (iv) is equivalent to He,z,a}|| = ||z|*. An element ¢ ¢ X
satisfying {e,e, e} = e is called a tripotent. If e (e is the identity operator
on X then e is said to be a unitary tripotent.

ExAMPLE 1.3. (i) If H and K are complex Hilbert spaces then L(H, K)
endowed with the triple product
(3) _ {4,B,C} := 3(AB*C + CB"A)
is a JB3*-triple.

(ii) A subtriple of a JB*-triple X is a Banach subspace which is closed

with respect to the triple product, and every closed subtriple is also a JB*-
triple, Using this observation and (8) we see that X (H), the compact opera-
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tors on a Hilbert space, is a JB*-triple and every C*-algebra is a JB*-triple.
A subtriple of L(H, K) is called a J*-algebra or a special JB*-triple.

(iii) If £2 is a compact Hausdorff space, then C({2), the continuous
C-valued functions on {2 endowed with the supremum norm, is a JB*-triple
with triple product {f,g,h} = fgh.

Associated with the triple product {.,-,'} we can define a number of
natural real linear mappings:

z 0y € L{X) where x Oy(2) = {z,y,2};

Qu € 'CIR(X) where Qz(y) = {z,y, z}.

Note that d(z) = 20 and that 2 [y is complex linear while @, is complex
antilinear. The operators [J, § and @ are continuous (indeed real-analytic)

functions of their arguments. The Bergman operator, B{z,y), which plays
an important role in JB*-triples, is defined using the above operators.

DerFiNtTION 1.4, If (X, {-,-,-}} is a JB*-triple, we define B(z,y) for

z,y€X as
B(z,y) =Ix — 220y + Q:0Qy
where Iy is the identity mapping on X.

Clearly, B(z,y) € £L(X) and B : X x X — L(X) is a real-analytic
function of z and y.

ExampLE 1.5. (i) If X = L(H, K} then B(x,y)(2) = {Ix —zy*)z(Ig ~y*z)
for z,y,z € L{H,K).

(i) If X = C(K) then B(f,g}{h) = (1 — f§)2h for f,g,h € C(K).

We say that the pair (@,y) € X x X is quasi-invertible if B(z,y) is an
invertible operator in £(X). If (z,y) is quasi-invertible, let

2 = Blz,y) "z~ Q= (¥))
and call z¥ the quasi-inverse of x with respect t¢ y. This concept of guasi-
invertibility, ag we shall see in Section 4, is related to the classical notion of
quasi-inverse in a Jordan algebra.

On X x X we define the equivalence relation ~ by {z,%) ~ (z1,41)
if, and only if, (x,y — y1) i8 quasi-invertible and z; = my*yl: We denote
the equivalence class containing (2,y) by (z : y). For each y in X, we let
Uy ={(z:9): v € X} and define ¢, : Uy, — X by ¢,(z : y) = x. Let
My = X x X/~ be the set of all equivalence classes.

Prorosrrion 1.6 (6, 8, 9]. If X is a JB*-iriple then

(i) ¢y (UyNU,,) = {z € X : (x,y~w) is quasi-invertible} is open in X;
(it) By, 0 b5 ¢ by (UyNUy,) — by (UyN\Uy, ) s the holomorphic mapping

Py, © ¢;1(‘T) = g¥
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and its derivative d(dy, o ¢, ') (z) = B,y — )™t
all z € ¢, (Uy 0Ty, );

(iil) the collection of charts (Uy, ¢y )ycx gives the structure of a connected
complex Banach manifold to Mx;

(iv) the canonical mapping 7 : X x X — Mx defined by w(z,y) = (z : y)
is holomorphic in z, antiholomorphic in y and jointly real-analytic in x
and y.

’ fm“ all Wi € X and

We refer to [8] for the algebraic properties of the quasi-inverse, some
of which we cite for later convenience. The expression (JPnn) refers to an
identity in [8].

(JPA1} If (z,y) is quasi-invertible then (z,y + 2) is quasi-invertible if,
and only if, (z¥, 2) is quasi-invertible and then z¥*% = (x¥)%.

(JPA2) If (z,y) is quasi-invertible then (z + z,y) is quasi-invertible if,
and only if, (2,4") is quasi-invertible and then (z + 2)¥ = 2V +
Bz, y) "),

(JPS) (B(u,v)z,y) is quasi-invertible if, and only if, (=, B(v,u)y) is
quasi-invertible and then (B(u,v)z)¥ = B(u,v)zB®)v,

(JPT)

For ¢t € C, (tz,y} is quasi-invertible if, and only if, (z,%y) is
quasi-invertible and then (¢tz)¥ = (). In particular, (—z)¥
—(z7Y),

If X is a JB*-triple and z € X then X, denotes the JB*-subtriple of
X generated by z. There is a unique locally compact subset K of [0, cc)
such that K U {0} is compact, Co(K) is isometrically isomorphic to X, and
z — idg (see [6]). The set K is called the #riple spectrum of the element z.
The embedding ¥ : X; — X induces a holomorphic embedding [1]

Yo Mx, = Mx, (y:2)— (t(y) : ¥a(2)).

The canonical embedding of X in Mx is given by ¢35 12 € X — (z:0) €
Myx and we identify X and ¢5'(X).

The open unit ball Bx of the JB*-triple X is the bounded symmetric
domain associated with X and we now have a situation similar to (1) and
(2) above, namely, the embeddings

Bx—-)XwM_x

Recalhng Deﬁmtmn 1.1, we say that a JB*-triple X has the density property
if Uy = ¢5 1 (X) is dense in Mx.

2. The density property. We first obtain a simple characterization of
the density property. This shows that a JB*-triple has the density property
if, and only if, there exists sufficiently many quasi-invertible pairs, and proves
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to be a useful practical tool in identifying spaces with or without the density

property.
ProOPOSITION 2.1. If X is a JB*-triple then the following are equivalent:

(i) X has the density property;
(ii) for all 2,y in X and € > 0, there ewists 2 € X, ||2|| < &, such that
(z + 2z,y) is quasi-invertible;
(iii) for all m,y in X and € > 0, there ezists 2 € X, ||z|| < €, such that
(z,y + z) is quasi-invertible;
(iv) there exists a dense subset Z of X x X consisting of quasi-invertible
pairs.

Proof. Suppose (i) holds. Let (z : y) € Mx and £ > 0. Then (i) implies
that there exists w € X such that (w,0) ~ (z/,%) and ||z — 2'|| < e. Let
z =2’ —z. Then ||z} < £ and (w,0) ~ (z + z,). Hence (z + z,y) is
quasi-invertible, so (i) implies (ii).

By [8, JP35], (z,v) is quasi-invertible if, and only if, (y,z) is quasi-
invertible. Hence (ii)«(iii).

Clearly, (iil)=>{iv). Suppose (iv} holds. Fix (z : y) € Mx. By (iv) there is
a sequence of quasi-invertible pairs {zn, ¥n) with (z,, ) ~ (2, 9) n X x X
By Proposition 1.6{(iv) above, (z¥* : 0) = (2, : yn) — (2 13), so X is dense
in My and (iv) implies (i). a

3. The density property for C{X) spaces. We discuss the den-
sity property for the commutative JB*-triple C(K'), where K is a compact
Hausdorff space. By Example 1.5(ii), B(f,g) is invertible if, and only if,
fa)g(z) # 1 for all z € K, where f,g € C(K). By Proposition 2.1, C(K)
has the density property if, and only if, for all f,g € C(K) and all € > 0 we
can find h € C(K), ||h|} < ¢, such that f(z)(g(z) + h(x)) % 1 for all z in K.

In the followmg theorem we identily f € C{K) = C(K,C) with. f €
C(K,B*) by means of f — (Rf,Sf) and we use the norm |z + iy| =
sup(Jal, lyl) on C.

" THROREM 3.1. For K o compact Hausdorff space, C(K) has the density
property if , and only if, dim K < 1.

Proof. We use the following facts about the covering dimension of a
compact topological gpace K

(i) if L is a closed subset of K then dim L < dim K ([10, p. 196]);

(ii) dim K > n if, and only if, for any a, b € R there exists f € C(K, [a,8]")
such that for all g € C(X, [a, b]”) there exists z; € K such that f(z,) = g(zg)
(see [4]).

Let dimK > 2. Consider the pair (f,1) € C(K) x C(K) where f €
C{K,[-2,2]?) has the property described in (ii) above. Suppose we can find
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h € C(K), ||A|| < 1/4, such that (f -+ h,1) is quasi-invertible. This would
imply

(¥) (f+h)(z)#1 foral z

Since ||k < 1/4, we have 3/4 < R(1 + h(z)) < 5/4 and —1/4 < (1 +
h(z)) < ljdforallz e K.Sol+he C(K (- 2 ,2]2). Our choice of f implies
that there exists zg € K such that f(xzo) = 1 + h(zo). This contradicts (1)
and hence C(K') does not have the density property.

Now suppose that C{K) does not have the density property. Then there
exists a pair (f,g) in C(K) x C(K) and £ > 0 such that for all A € C(K),
l|A]| < €, there exists yp in K satisfying
(4) (f + ) (yn)g(yn) = 1.

We may assume that ¢ < (4(1 + ||g||})™" (otherwise replace & with & =
(5{1 -+ |lg]))~! in the following argument). Then for all k, ||| < ¢, and yx
as above,

an)oTn)| < 4] o) < s <3
and
(5 el 2 1~ [hun)glon] > 3.

Let I = {z € K : |f(z)g(z)| > 3/4}. Then L is a compact subset of
K and we define k € C(L) by k(z) = 1/4(z) ~ f(z) for all z € L. Let
k = ky + iky where k; are continuous real-valued functions. We define k&,
i=1,2, as follows:

. £ if ki (SC) 2 £,
ki(z) = < ki(z) if —e < ki(z) <e,
- ifki(z) € —e.

Clearly, each k; is continuous and k& = ky + ks € C(L,[~¢,€)?).

Let w € C(L,[~¢,&]?). Since compact sets are normal, there exists @ €
C(K,[—¢,2]?) such that |z = w. It follows from (4) and (5) that for each
h € C(K), | h]| < ¢, there exists y, € L such that h{yn} = k(yn) and hence
there exists y, € L such that w(yy) = ©(z,) = k(yw). As w(yw) € [—&,6)%,
E(yw) = k(yw) and hence w(yy) = k(yw). An application of (i) implies that
dim I > 2 and therefore dim K > 2. m

ExXAMPLE 3.2. (i) A scattered compact topological space, e.g. the ordinals
{2 with the order topology, is 0-dimensional.

(ii) If X is a totally disconnected topological space, in particular, if X
is discrete, then X is O-dimensional. Since the Stone-Cech compactification
preserves dimension, it follows that 85X is a §-dimensional compact space.
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Hence C(8.X) has the density property. In particular, C{BN) = ¢* has the
density property.

(iii) If A is a commutative von Neumann algebra then 4 2 C(K) where
K is an extremely disconnected compact Hausdorff space. Since extremely
disconnected topological spaces are totally disconnected and hence O-dimen-
sional, A has the density property. In particular, if K is any compact Haus-
dorff space then the second dual C{K)" has the density property. Using
Theorem 3.1 we now see that C([0,1]%) does not have the density property
but its second dual C([0,1]*)" does. This shows that the density property is
not inherited by subspaces.

(iv) An n-dimensional differentiable manifold is n-dimensional as a topo-
logical space [10].

LEMMA 3.3. Let X = Co(12) have the density property. If I € X is a
closed (algebra) ideal in X then I has the density property.

Proof. Let f,g € I and let £ > 0. By the density property of Z there
exists h € Z, ||h]| < &, such that 0 & 1 — f{g+ k){(£2). Upon replacing ¢ if
necessary, we may assume that & < min{]|gl], (2(|g/|}~}. Define a function j
as follows: j(z) = 1if |f{z)| > € and j(z) = |f(z)i/e if |f(z)| <e.

Since I is a closed ideal in Cp({2), there exists a (closed) subset X of 2
such that / = {k € Z : k|g = 0} and as j vanishes with f, j is also in
I. Let b’ = jh € I. Then ||b'|| < [|5]] - |I2]| < {|h]| < &. Suppose now that
0=1- f(g+ »")(z) for some z € £2. Then either

f@) ze=1-Flg+h)(@)=1-flg+h)(z)#0
which gives a contradiction, or
[f(@)] <e=[flg+N)=)| <elg+ R <1

and hence 1 — f(g -+ A'}{x) 7 0, again giving a contradiction. We conclude
that for all f,g € T and £ > 0 there exists A’ € I with ||| < & such that
0Z 1~ f(g- h)($2), that is, I has the density property. m

COROLLARY 3.4, Let X be o JB*-triple, and let ¢ € X. Then X, has
the density property.

Proof. We know that X, = Cp(12) for some locally compact subset 2 of
R such that 2 U {0} is compact. Since £2 U {0} is zero- or one-dimensional,
C(12U{0}) has the density property. But Cg({2) is a closed ideal of C{£2U{0})
and so has the density property by Corollary 3.3. m

We note that if 12 is a locally compact Hansdorff space with dim 2 <1
then, since the Stone—Cech compactification preserves dimension, dim 32
< 1 and thus C(342) has the density property. It then follows from Lemma 3.3
that Cy(f2) has the density property.
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4. The JB*-algebra case. The previous section was devoted to the
commutative case (at least from the point of view of operator theory, while
one might consider it the associative case from the algebraic perspective). In
this section we discuss the density property in the non-commutative setting
using J B*-algebras.

DEFINITION 4.1. A (complex) Jordan algebra is a vector space over C
with a bilinear composition law o : A x 4 — A satisfying

(6) TOY=You,
(M (2Poyloz=2x0(yox)

DEFINITION 4.2. A Banach space (X, || - ||) which is a complex Jordan
algebra equipped with an involution, #, is a JB*-algebra if

(8) llz oyl < flzll - lull,
(9) || = il
(10) |z o e = [l

A JB*-algebra with identity, e, is called a unital JB*-algebra. By [3,
3.3.9 and 3.8.3] a unit can be added to a JB*-algebra and the norm extended
to give a unital .JB*-algebra. An important example of a unital JB*-algebra
is the space of cperators on a complex Hilbert space endowed with the
product

(11) Ao B = }(AB+ BA).

A special JB*-algebra, or JC*-algebra, is one which can be realised as
an algebra of operators on a Hilbert space, with product defined by (11).
From the Gelfand-Naimark theorem any C*-algebra is a JC*-algebra. A
closed subspace of L{H}, where H is a Hilbert space, which is closed under
taking adjoints and squares is a JC*-algebra with product given by (11).

For any JB*-triple X and any y € X we may define a binary product on
X by

oy z:={z,y, 2}

This product gives X the structure of a Jordan algebra, which we denote
by X¥. Moreover, if y is a unitary tripotent then XV is a JB*-algebra.
Conversely, given a JB*-algebra X, we define the triple product
(12) {2, 9,2} = (2y™)2 — (22)y* + (y*2)z
and with this product (X,{.,-,-}) is a JB*-triple. (If the JB*-algebra is
generated from a JB*-triple with unitary tripotent, then (12) regains the
original triple product.)

Not every JB*-triple arises in this way and those that do may be charac-
terised geometrically. A JB*-triple is J*-isomorphic (i.e. linearly isomorphic
by a mapping which preserves the triple product) to a unital JB*-algebra
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if, and only if, its unit ball contains a unitary tripotent (see {13, 20.35)). For
special JB*-triples this reduces to the triple containing a unitary operator.

Inverses are defined in a unital JB*-algebra so that in the special JB*-
algebra case the inverse coincides with the inverse arising from the original
product. The standard definition is given in part (i) of the following propo-
sition.

PROPOSITION 4.3. Let Z be a unital Jordan olgebra with involution. If
any of the following equivalent conditions are satisfied by the elemenis z and
y in Z then we say that x is invertible with inverse y:

() 2y = 1 and 2%y = x;
(ii) zy = 1 and y?z = y;
(il) @, is invertible and y* = Q7 (x);

(iv) Quly™) = and Qu(y™*) = 1 where Q.(y) = {z,y,5}.

The inverse of z is unique and is written as zt. Also, (z71)"* = 2 and
(z71)* = (z*)~!, and the Jordan subalgebra generated by an element = is
power agsociative, i.e. (z")™ = z™t™ for any integers n and m [14, p. 304,
Thm. 5].

ExaMPLE 4.4. Let X = C(K) where K is a compact Hausdorff space.
In Example 1.3 we noted that C(K) is a JB*-triple with triple product
{f,9,h} = fgh and involution g* = g. If g & C{K) then Q,(f) = ¢*f and
hence @, is invertible if and only if g{z) # 0 for all z € K. In such a case,
1, := Q7 g) = (7)7%0 = 1/ is the identity in C(K)?. An element f in
C(K) is invertible in C(K)? with inverse f if, and only if, f o, f = 1, i.e.
fof = 1/g and hence f= 1/ g

If X is a JB*-triple, y € X and @y is not invertible then we can adjoin
an identity 1, to the Jordan algebra X¥ to obtain a unital Jordan algebra,
Xj;. We say that z is quesi-invertible in XV with quasi-inverse z f 1, — =z
is invertible in X, with inverse 1, + 2. That is,

(y =)oy (4 +2) =1, and (Ly—a)oy (L +2)=1y —=.
In particular, we sec that % — z 4z oy 2 = 0.

If L is a Jocally compact Hausdorff space, X = Co(L) and g € X, then f
is quasi-invertible in Cp(L)? if, and only if, fi(z) # 1 for all z € L and the
quasi-inverse f9 of f satisfies f — f9 -+ f7f9 = 0. Hence

f
4 — )
/ 1—fg

Further analysis shows that in an arbitrary JB*-triple X, an element @

is quasi-invertible in XV if and only if B(z,y) € L(X) is invertible and then
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z¥ = B(z,y) " (z ~ Q,y). Thus, in the terminology of Section 1, the pair
{z,y) € X x X is quasi-invertible if and only if z is quasi-invertible in X7V,

PROPOSITION 4.5. Let Z be a JB*-algebra with identity 1. If Z has the
density property then the invertible elements are dense in Z.

Proof. By (12) we have 2* = {1, 2,1},
B(z,1)(2) = 2 - 2zz + {w, 2", 2} = 2 — 222 + 2(zz)2 — 2%
and
Qi—z(z")={1-z,2*1 -1z}
=2e—zz){(l—2)~ (1 —2)?z=2—2z2+ 2(z2)T — 22
for all z,z € Z. Hence (x,1) is a quasi-invertible pair if and only if Q1 is

invertible. From the equivalence {i)<>(ii) in Proposition 2.1 this shows that
if Z has the density property then the invertibles are dense in Z. w

Next, we prove the converse.

PROPOSITION 4.6. Let Z be a JB*-algebra with identity 1 and suppose
the invertible elements of Z are dense in Z. Then Z has the density property.

Proof. Let z,y be arbitrary elements of Z. Let € > 0 and choose ' € Z
such that [lz — 2’| < & and o’ is invertible. Then Q, is invertible. Again by
density of the invertibles we can choose an invertible element z in Z with
2= (&' = Quy)l| < £/1QZ". Let ¥’ = QzX(x' — 2). Then o' — Quey/ =
z' — (@' — z) is invertible and

ly—v'll = lly— Q' &' - 2)l| = 1Q:1HQuy — 2’ + 2)||
<M - llz ~ (2" — Quu)l] <&

Now consider B{z',y/). By (JP23), B(z',y')Qu = Quw—q,.y and since
2’ and ' — @y’ are invertible, so tao are the operators Qpr and Qpq_,y-
Hence B(z',y') is invertible and since ¢ is arbitrary we have shown that
there is a dense subset of quasi-invertible pairs in Z % Z. This finishes the
proof by Proposition 2.1. =

Combining Propositions 4.5 and 4.6 we obtain the following.

THEOREM 4.7. A JB*-algebra Z with identity has the density property
if, and only if, the invertibles are dense in Z.

Rieffel [12] in studying K-theory for C*-algebras introduced topological
stable rank, tsr, and proved the following: A Banach algebra A with identity
and continuous involution has tst(A)} = 1 if, and only if, the invertibles are
dense in A. Hence, for the case of C*-algebras with identity we can restate
Proposition 4.6 as follows.
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THEOREM 4.8. A C"-algebra A with identity has the density property if,
and only if , tst(A) = 1.

This means of course that, by the results in [12], Theorem 4.8 contains
Theorem 3.1 as a special case. We included the proof of 3.1 because of
its directness. The results in [12] lead to a number of examples, which we
list further on, and also motivates the study of topological stable rank in
JB*-triples.

We now seek to remove the hypothesis of an identity from some of the
previous results.

LemMa 4.9. If Z is a JB*-algebra then the following are equivalent:

(a) the quasi-inveriible elements are dense in Z;
(b) the quasi-invertible elements are dense in Zy;
{c) the invertible elements are dense in Zy.

Proof. Since translation by the identity is a continuous operation, (b)
and (c) are equivalent. Suppose (a) holds. Given z + ol € Zx and & > 0,
choose a complex number v # —1 such that |a — v/(1 +«)| < € and choose
g’ € Z quasi-invertible such that ||z’ — (1 + y)z| < 2|1 + 7|. Since 2’ is
quasi-invertible in Z, it follows that 1 -z, 1+y—(z'++) and 1—(z'/(1++)
+9/(1+ 1)) are all invertible in Zx. Hence 2’/(1+) +v/(1 + ) is quasi-
invertible and

ko

!
v 14 1+

Tt -

' v
+ a——— < 26,
1+ ' ] I+ "rl
which implies (b).
Now suppose (b) holds. Given z € Z and £ > 0 we can find =/ € Z and
a € € such that z’ -+ «v is quasi-invertible, ||z — 2|} < ¢ and

|o| < mi ( c 1)
nf+———,- .
* fall+<'2
Hence |ee(||2)| +£)| < £ and (14 )7t < 2.
Since &’ +- v iy quasi-invertible, we see that

wl‘
1-(m’~|~cu)m1+cu-:c’==(1+o:)(1— 1_|_a)

is invertible and hence x'/(1 + a) € Z is quasi-invertible. The estimate

m.’
1 + o ‘
completes the proof. m

THEOREM 4.10. If Z is a JB*-algebra such that the quasi-invertibles are
dense in Z then Z has the densily property.

o
1+«

<e+2

1
m—m’+w’<1————-——1+a)” <e+ (||z] +¢€)
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Proof. By Lemma 4.9 and Theorem 4.7, Zy has the density property, so
letting =,y € Z and £ > 0, there exists #' € Z and « € C, flz — 2'|| < ¢, and
|| < & such that z’ + o1 is quasi-invertible in Zj. Extend Z%, if necessary,
to obtain a JB*-algebra (Z})s with identity 1,. Thus 1, — (' + o) is
invertible in (Z} ).

Since the invertible elements form an open set, we may suppose ¢ is suf-
ficiently small for L,—al to be invertible with inverse 37 (a1)™ in (Z% )4

It now follows from 1, — al ~ &' = (1 ~ a1)(1, ~ (1, — &1)" 2"} that
(Ly—cl)~ 2’ is quasi-invertible in (2% )4 and (1,—al)"le' = 322 (al1)g,
It is easily verified that (@l)" = a®(y*)*! in (Z5)% for m = 1, and
(1)® = 1,. Hence

o0
(1, —al)™Ha') = Z oy )" in Z.
n=0
Also, we see that

1~ (1~ ) = | 3 (a1)"
n=1

< e | Y-t
n==0

n -1 &
§e§|a| <e(l-a)™t< 1= < 2
(assuming £ < 1/2) and so [|(1y—e1) o' —z| < 2|2’ ||+& < &(2||a]+2e+1).
Letting 2” = (1, — al)™*2’, we find that z" is quasi-invertible in (Z3)4
and its quasi-inverse is w4+ 81 (w € Z, § € C). Then
(1y —al) ™ e +w+ 81— (2") o (w+ F1) =0
gives
' +w—{z", y,w} ~ {z",y,81} + B1 =0
or
\:?” +w—{2",y,w} — ﬁm”y*)-{—ﬁl =0,
—
Hence § = 0 and the quasi-inverse of z is in Z. We have thus shown
that " is quasi-invertible in Z¥. Hence (z",y) is a quasi-invertible pair and

lz—2"|| < &(2|=||+2e+1). Since £ is arbitrarily small, an application of 2.1
completes the proof. w

EXAMPLE 4.11. (a) The following spaces have the density property:

(1) K(H), the compact operators on a Hilbert space,
(ii) any AF (approximately finite) C*-algebra,

(ili) co({An}), where each A, is a C*-algebra with the density property
for each n,

(iv) A® K(H) where A is a C*-algebra with the density property.
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{b) The following spaces do not have the density property:

(i) £L(H), the bounded linear operators on an infinite-dimensional
Hilbert space,

(ii) C*(8), the C*-algebra with identity generated by the unilateral
shift 5: H — H, Se; = egy1, where (&;)22, is a hasis for the
Hilbert space H,

(iii) any unital C™-subalgebra of L(H) which contains a Fredholm
operator of non-zero index,

(iv) any unital C*-algebra containing two isometries with orthogonal
ranges.

All of these examples are given in [12] and foliow from Theorems 4.7
and 4.8. Some of them also follow from earlier results. For example,
Rickart [11, p. 279] shows that a non-invertible linear operator in L(H)
with closed range lies in the interior of the singular elements of L{H) (this
gives example (b){1) and (i)}, while it is well known that the Fredholm oper-
ators of a given index form an open set of operators and this implies (b)(iii).
Moreover, by [12, Proposition 3.1] the invertible, left invertible, and right
invertible elements in a C*-algebra A coincide if tsr(A) = 1, and hence any
(*-algebra in which these do not ceincide {e.g. (b}{(i), (i} and (iii)) fails to
have the density property.

To see directly that X(H) has the density property we return to Ex-
ample 1.5(i) and use spectral theory. If z,y € K(H) then zy* € K(H) and
hence o{xy*) is countable, so there exists A close to 1 such that A € o(zy*).
This implies that A — zy® = A(l — (z/A)y*) and hence (1 — (z/X\)y*) are
invertible operators. By 1.5(i) and Proposition 2.1 this implies that }C(H)
has the density property. More generally, one can show, using the same
proof, the following result.

ProrosiTioN 4.12. If Z is a C*-algebra and o(z) has empty interior
for all @ € Z then Z has the densily property.

5. Complete holomorphic vector fields on My. We now study
the holornorphic structure of the quasi-invertible manifold, Mx, of a JB*-
triple X. In particular, we are interested in the consequences of the density
property for the geometry of the manifold. A fundamental result will be
that My is a homogeneous manifold whenever X has the density property.
The proof of this fact is based on the ability to extend translations on X to
biholomorphic maps of Mx. This leads to an examination of a conjecture
by Dorfmeister [2] asserting that translations on X extend to biholomorphic
maps on the manifold Mx if, and only if, a certain algebraic condition on
X is satisfied. We prove this conjecture in one direction.
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We begin by following the arguments of Loos [8] for the finite-dimensional
case, where three different types of bilolomorphic map are defined. For each
a € X, define a map #, : Mx — Mx by

talz:y)=(2:y+a)
It is easy to see that t, is well defined on My and is biholomorphic with
inverse {_, (see [8, 8.4(a)]).

The second type of biholomorphic map is an extension of a JB*-triple
automorphism. The set of automorphisms of the JB*-triple X is denoted
by Aut(X). The structure group of X (see [7]) is the set of all f € GL(X)
for which there exists f € GL(X) satisfying f{z,y,2} = {fz, fy, f«} and
Flz,y, 2} = {f=, fy, fz}. It is easy to check that f is uniquely determined
by f and that the map f — f is antiholomorphic, of period two, and has
Aut(X) as its fixed point set. Moreover, the structure group forms a complex
Lie group (being an algebraic subgroup of the complex Lie group GL(X) x
GL(X) where X is the complex conjugate Banach space of X), as opposed
to Aut(X), which is a real Lie group. We denote the structure group of X
by Aut(X,X). Compare [8, Section 3]. Any element f € Aut(X, X) extends

to a biholomorphic map on the manifold Mx via {x : y) A (fa: fy).

The third type of biholomorphic maps on My that we consider are
possible extensions of translations on X, namely, extensions of the map
(:0) = {z+a:0) on X. The naive attempt at an extension, (z : y) —
(z+a:y), is not well defined on Mx and the finite-dimensional approach of
Loos [8, 8.4(c)], which depends on the fact that holomorphic vector fields
on a compact manifold are complete, no longer applies. The following con-
jecture, made by Dorfmeister [2], introduces a property on the JB*-triple
X which, by openness of the set of invertible operators, is easily seen to be
implied by the density property.

DeFINITION 5.1. A JB*-riple X satisfies condition (D) if for all z,y, 2
€ X there exists ¢ € X such that (z,c) and {2,y — ¢) are quasi-invertible.

CONJECTURE 5.2. The map (x : 0) = (z+u: 0) con be extended to a
biholomorphic map of Mx for all w € X if, and only if, the JB*-triple X
satisfies condition (D).

We prove this conjecture in one direction.

THEOREM 5.3. If X is o JB*-triple which satisfies condition (D) then
Jor all z,y and a in X, there evists ¢ € X such that
(13) ta(z 1 ) := (Bla, ¢)(a® + 2¥7¢) : c)

18 well defined on Mx. Moreover, to(z : y) does not depend on the choice of
¢, to 15 a well defined biholomorphic mapping on Mx with inverse ¢, and
tfz:0)=(z+a:0) foral z e X.
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ReEMARK. The formula in (13) was obtained by the following procedure.
The constant vector field £, on X given by £,(z : 0) = af generates the
one-parameter group of translations (z : 0) = (z+ta:0),t €R, and
moreover, each £, extends to a holomorphic vector field on My by the
formula £,(% : y) = B(z,y)ai on the chart U, (compare [8, 8.4(c)]). To
obtain (13) it suffices to show that this vector field is complete on My and
to take the exponential.

If z¥ exists, it is easily verified that a(t) = ((x¥ +ta)~¥ : y) is an integral
curve of &, subject to the initial condition a(0) = (z : y). To show that o
can be defined on all of R it is necessary to find a new expression for ()
and we consider

(14) (x¥ +ta)™¥:y) = ((a¥ +12)"%:2) (forany z¢ X)
((@¥ + ta) ™) ; gtoy

= (B(ta, ¢)[(ta)® +z¥~) : ).

The final expression on the right hand side gives (13) when ¢ = 1 and, under
the hypothesis of condition (D), such an element ¢ can be found.

Proof of 5.3. Given (z,y) and a € X, we can find, using condition (D),
¢ € X such that (o,c) and (z,y — ¢) are quasi-invertible pairs. If (z : y) =
(w1 : 1) then z¥~¥ exists and equals z;. By (JPAL), 21 7% = (g¥ )¢ =
2¥™¢ exists and therefore t,(z : y) = t.(z1 : ¥1). Hence t, will be well defined
if the formula in {13) is independent of the choice of ¢. In other words, if
d € X is another element such that o and z¥~¢ exist, we must check that
(Bla, ¢)[a® + z¥~°])¢"~4" exists and equals B(a, d){a? + z¥~9).

Notice first that, by (JPAL) and (JPT), (—a®)° exists and equals ~a,
ct=2%) exists and equals ¢ — Q.a and, using the fact that (—d)(~*")° = —d°
exists, we find by (JPA2) that (¢ — d)(~%") exists and
15) (o= =) == 4 Ble, 0 ((-a) )

= ¢ = Qeo+ Ble, a)(—d*) = B(c,a)(c* — d°).

Since o = (a¢) (=4 = —((—a®)*~¥) by (JPT), and z¥~% = (zV=¢)°¢,
it follows, again by (JPAZ2), that (a®+ x¥~¢)(c~9™" exists and
Cl.d+:sy'd —_ (:cy»«c)c-wd — (_ac)c-—d = B(-—ﬂ.c,c . d)-'l((a.c -i—n:y_c)(c_d)"uc,
Using the fact that

B(—a% ¢ —d) = B(—a% ¢)B((~a®)*,~d) by (JP33)
= B{a,c) " B(—(a%)°, ~d) = B{a,c) " B(—a,—d)
= Bla,c)"*B(a,d)
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we get

(16)  Ba,d)(a’ +2¥~%) = B(s,d)B(a,d) " B(a,c){(a + 2¥~¢){c=D™")
= Bla,)((a® + z0=¢)e=d™),

Now (15) and (16) give

(17) Bla, d)(a® + z¥™%) = B(a, ¢)((a® + g¥~¢)Blea)e"~d)y

Finally, by (JPS), we see that (B{a,c)(a® + 2¥~¢))*" ~%" exists and (17)

becomes
Bla,d)(a® +2¥"%) = (B(a,c)(a® + V™))" %",
which is precisely what we required.

If (z,y — c) is quasi-invertible then (2, y — ¢) is quasi-invertible for all o
near z. Hence, Proposition 1.6(ii) implies that ¢, is holomorphic. If y = 0
then we may take ¢ = 0 in (13) and we see that {,(x : 0) = (e + = : 0). This
also shows that t_,o0t,(z : 0) = (x : 0) and since t_, ot, is holemorphic, the
identity principle for holomorphic mappings shows that ¢, is biholomorphic
with inverse t_,. m

CoOrROLLARY 5.4. Let X be o JB*-triple satisfying condition {D). Then,
forall a € X, the vector field &, is complete on the manifold My .

Proof. Clearly, the mapping s € R — £, defines a one-parameter
subgroup of biholomorphic mappings on My which generates the vector
field £,, 50 &, is complete on M. m

COROLLARY 5.5. Let X be o JB*-triple with the density property. Then,
forall a € X, the vector field £, is complete on the manifold My .

COROLLARY 5.6. Let X be a JB*-triple satisfying condition (D). Then
My is a complez homogeneous manifold.

Proof. For (z:a) € Mx, we have (z:a) =t,£,(0:0). m

Another consequence of condition (D) (and hence of density) is that,
similar to the finite-dimensional case mentioned in the introduction, hiholo-
morphic maps of the open unit ball, By, extend to give hiholomorphic maps
on Myx.

COROLLARY 5.7. Let X be o JB*-triple satisfying condition (D). Fvery
biholomorphic automorphism of the open unit ball Bx of X has an extension
to o biholomorphic map on Mx.

Proof. Every automorphism g € Aut{By) has a decomposition g = kp
where k is a JB*-triple automorphism of X (i.e. a surjective linear isometry
of X) restricted to the unit ball, and p takes the form p = p, (¢ = p{0))
where

pc(z) =c+Ble, ) (I 4+ z0¢)?
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See [7] for de‘ra.lls Clearly, k extends to My as we saw earlier. Note that
(I-}-ch) z=27% 50 po(z) =t. 0 B(e,c) Y2 01_,(z ) and knowing that 2,

and _. both extend to biholomorphic maps on My, we must sitply check
that the linear map B(c, c)'/? extends biholomorphically to M. However,

as a corollary to [7, Theorem 3.5, B(c, ¢)/2 is in the structure group of X
and hence extends t0 Myx. m

We conclude by showing that the converse to Corollary 5.5 is false, and
it follows that either the density property is strictly stronger than condition
(D), or Conjecture 5.2 Is false. Our counterexample occurs in the JB*-triple

¢(A), which by 2.1 does not have the density property although the constant
vector fields on C{4) do extend to the quasi-invertible manifold. To see this,
we make use of a sinple lemma.

LeMMA 5.8. Given. f, g € C(A) such that, for any z € A, flz) and g(z)
are not both zero, there exists h € C(A) such that 0 & f + gh(A).

COROLLARY 5.9. Let X = C(4). For all a € X the map (z : 0) —
(z-+a:0) extends to a biholomorphic map on Mx and hence the vector
field &, is complete on My .

Proof. We know that if the vector field £, is complete on Mx then the
antomorphism t, takes the symbolic form (see (14))
to(z:y) = ((2¥ +0a)™ 1 y) = ((z¥ +a) 70 1 b).
The above lemma show% that for any ¢,y and ¢ in X, we can choose b € X

such that (z¥ + a)~" exists in the following sense. In X, 5¥ =a/(l - 27)
exists if 0 € 1 — z%(A). Symbolically,

oY 4 g = ol —oy)
1—xy
and
(my + G‘,)wh o L - (1 T Ty) 1 X+ a’(]- __my)g
1 —zy 1 —zy
a6l — ay)

TI1C oG +b(z + a(l — z7))
u...,f,__/ S
‘ g
Letting f = 1 — &% and g = & - a(l — 27) we see that f and g can-
not take the value 0 simultancously, so by the previous lemma, there ex-
Ists a continuous function h with 0 & f -+ gh{A). Letting b = A, we have
0¢1—2a7 4 b{z + a(l — 27)) and thus
z - a(l ~ z7)

1 - zF + b(z + a(l — z7))

exists, Next define ¢, using this fact:
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N z+a(l — z7) ) )

talz 3} = (1 —~ &Y + b(z + a(l - 27)) b)

It can be checked as in Theorem 5.3 that ¢, is independent of the b chosen
and of the representation of the equivalence class (z : y). Finally, ¢, is a
biholomorphic map on the manifold My and for v € R sufficiently small,
trya coincides with the flow of &, at time vy through the point (z : y). By
uniqueness of this flow we see that &, is a complete holomorphic vector field
and exp(£,) =t,. m
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H*® functional calculus in real interpolation spaces
by
GIOVANNI DORE (Bologna)

Absiract. Let A be a linear closed densely defined operator in a complex Banach
space X. If A is of type w (i.e. the spectrum of A is contained in a sector of angle 2w,
symmetric around the real positive axis, and [[A(M — A} 7| is bounded outside every
larger sector) and has a bounded inverse, then A4 has a bounded H™ functional calenius
in the real interpolation spaces between X and the domain of the operator itself.

1, Introduction. The concept of H*® functional calculus has been de-
veloped by various authors; we recall the papers [1]-[3], [5]-[8]. In the present
paper we follow the definitions of [3] and [7].

An H* functional caleulus can be defined for closed, linear, one-to-one
operators with dense domain and dense range, having resolvent set that
contains R~ and with resolvent that decreases in a maximal way on R~
(ie. [|[AMAT — A)~Y] is bounded). If for every f € H*™ the operator f(A)
is bounded, with norm not exceeding a constant times the supremum of f,
then we say that A has a bounded H* functional caleulus. In general it is
not easy to prove that an operator has a bounded H® functional calculus
and there are several examples of operators that do not enjoy this property
(see [8]).

In this paper we prove that every linear, closed, densely defined oper-
ator A in a complex Banach space X, with resolvent satisfying the above-
mentioned hypotheses and such that 0 € g(A), has a bounded H* functional
calculus in the real interpolation spaces between X and the domain of the
operator itself.

2. Preliminary definitions and results. We now recall some defini-
tions and results from [7] and [3], to which we refer for the details.

For @ ¢ [0, n[ we put
Sg ={ze C\{0}: |argz| £ 6} U {0}
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