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N z+a(l — z7) ) )

talz 3} = (1 —~ &Y + b(z + a(l - 27)) b)

It can be checked as in Theorem 5.3 that ¢, is independent of the b chosen
and of the representation of the equivalence class (z : y). Finally, ¢, is a
biholomorphic map on the manifold My and for v € R sufficiently small,
trya coincides with the flow of &, at time vy through the point (z : y). By
uniqueness of this flow we see that &, is a complete holomorphic vector field
and exp(£,) =t,. m
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H*® functional calculus in real interpolation spaces
by
GIOVANNI DORE (Bologna)

Absiract. Let A be a linear closed densely defined operator in a complex Banach
space X. If A is of type w (i.e. the spectrum of A is contained in a sector of angle 2w,
symmetric around the real positive axis, and [[A(M — A} 7| is bounded outside every
larger sector) and has a bounded inverse, then A4 has a bounded H™ functional calenius
in the real interpolation spaces between X and the domain of the operator itself.

1, Introduction. The concept of H*® functional calculus has been de-
veloped by various authors; we recall the papers [1]-[3], [5]-[8]. In the present
paper we follow the definitions of [3] and [7].

An H* functional caleulus can be defined for closed, linear, one-to-one
operators with dense domain and dense range, having resolvent set that
contains R~ and with resolvent that decreases in a maximal way on R~
(ie. [|[AMAT — A)~Y] is bounded). If for every f € H*™ the operator f(A)
is bounded, with norm not exceeding a constant times the supremum of f,
then we say that A has a bounded H* functional caleulus. In general it is
not easy to prove that an operator has a bounded H® functional calculus
and there are several examples of operators that do not enjoy this property
(see [8]).

In this paper we prove that every linear, closed, densely defined oper-
ator A in a complex Banach space X, with resolvent satisfying the above-
mentioned hypotheses and such that 0 € g(A), has a bounded H* functional
calculus in the real interpolation spaces between X and the domain of the
operator itself.

2. Preliminary definitions and results. We now recall some defini-
tions and results from [7] and [3], to which we refer for the details.

For @ ¢ [0, n[ we put
Sg ={ze C\{0}: |argz| £ 6} U {0}
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and for 8 € )0, 7] we put
Sp ={zeC\ {0} : largz| < 6}.

Let X be a complex Banach space, 4 a linear closed operator in X, We
say that A is of fype w (with w € [0, 7[) if o(A) G 5, and for each § € Jw, 7|
there exists My € RT such that |{(2] — A)™'|| < My/|z| for 2 € C\ Sp.

If 4 € ]0,7] we denote by H DQ(Sg) the space of hounded holomorphic
functions defined on Sﬂ with values in C; it is a Banach algebra if endowed
with the norm || f|lee = SUD ¢ 59 |f(2)|. Moreover, we put

W(Sy)={f € H®(5,) : Is € R fy=* € H*(S9)}
where 1 is the rational function 1{z) = z/(1 + z)2.
Suppose now that A is an operator of type w, one-to-one, with dense
domain and dense range, that we denote by D(A4) and R(A) respectively.

If f € ¥(S9) (with u > w) then it is possible to define the bounded linear
operator f(A) through the integral

fla)= ZLm LAV — 4)~dA

Ty
where @ € Jw, p[ and Iy is the path in the complex plane composed by the
two half-lines {ge* : p € R+ U {0}}, oriented with decreasing imaginary
part. It is easy to show that the definition is independent of 4.
It f € H>°(S]) then fy € #(S5D), so that one can define f(A4) by

D(f(A)) = {z: (f)(A)z € D((I + 4)? A7)},
F(A) = (I + AP AT (f9)(4)

(note that D((I+ A)?A~") = D(A) N R(A)). Then f(A) is a closed densely
defined operator and this definition is consistent with the earlier one in case
few(sh).

We say that A has a bounded H *(8p) functional caleulus if for every
f € H*(S}) the operator f(A) is bounded and there exists ¢ (independent
of f) such that [|f{A4)] < C[|f/[c.

The following theorem can be proved (see [3], Corollary 2.2).

THEOREM 2.1. If there ewists C € RY such that for every f & EP(SE)
we have ||f(A)] < C||flloa then for every f e H>(80) we have ||f(A4)] <
C||flocs so that A has o bounded H>(80) functional caleulus.

From now on we suppose that 0 € g(A).
D(A) is a Banach space if endowed with the norm lzlpeay = llalx +

|Az||x- Since we suppose that A has a bounded inverse this norm is equiv-
alent to || Az||x.
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For o € ]0, 1] and p € [1, co] we denote by D(A; @, p) the real interpola-
tion space (X, D(A))a,p. We refer to [9], 1.3.2, for the definition of real inter-
polation spaces. We recall that, since D(A) C X, we have D(4) C D (4; t, ).

Let LZ(R*) be the space of LP functions on RY, with values in R,
with respect to the measure di/t (with obvious modifications if D= o0).
If A is of type w with dense domain and 0 2 ¢(A) then it can be proved
([9], Theorem 1.14.2) that the norm of ¢ in the space D(4; a, p) is equivalent
to [t = t* AL + A) Pl Lo sy,

We denote by A, the part of the operator 4 in D(4; a,p), ie. the
operator such that

D(Aap) ={z € D(A): Ax € D(4;0,p)},  Anpz = Ac.

THEOREM 2.2. If A is an operator of type w and 0 ¢ o(A), then for
o €]0,1] and p € [1,00], Aap is an operator of type w in D(A;,p) and
0 € o(Aq,p). Moreover, if A is densely defined and p < oo then Anp is
densely defined.

Proof. It is easy to prove that if A € p(A4) then the restriction of
(A — A)~' to D(A;a,p) is the inverse operator of Al — Ay p, 8o that
A € o(Aap), therefore ¢(Aap) is not empty, hence A, , is closed, and
0(Aa,p) € S, \ {0}; in particnlar, 0 € g(As ).

Moreover, for &z € D(A) and A € g(A) we have (AT — A)"lx € D(A) and

AT =AY allpeay = AN ~ A)allx + (M - 4) sl x
= [|(M — A)7 Aallx + | (M~ 4)e]x
S NOL = A oo Azl x + llefix)
=M = A) Moo lizliow

so that the restriction of (A — A)~! to D(A) belongs to L(D(A)) and its
norm in this space is less than or equal to its norm in £(X). By interpolation
the same is true in L(D(A; o, p)). Since 4 is of type w we can conclude that
for § € Jw, 7 we have [|(2 ~ Aap) Hemsan) S Mo/f|z| for z € C\ S,
therefore A, , 18 of type w.

Suppose p < oo and P{A) deuse in X, We have to prove that D{Aa )
Is dense in D(A; v, p); to this end we prove that D{A?) C D{As,p) and that
D(A?) is deuse in D(A; o, p).

If 2 € D(A%), then Az € D(4) & D(4;,p), hence z € D(Ay,p), there-
fore D(A%) € D(Aa,). :

Since D(A) s dense in X, if ¢ € D(A) then there exists a sequence
(Yn)nern in D(A) converging to Az, therefore the sequence (A~ 'y )nen con-

= DA . .
verges to z in D(A); this proves that D(A?) “ D(A). Since %)(EQA)$S
P4,

continuously erabedded in D{A; e, p) it follows that D(4) C D(A4?)
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. DA ep)
but since p < co we have D(A4) = D(4;c,p) (see [9], Theorem 1.6.2)
so D(AZ) ") = D(4;0,p).

3. H* functional calculus

THEOREM 3.1. Let A be an operator of type w with dense domain and
such that 0 € p(A4). Let p€lw,nf,a €0, and pe[l,00]. If f & F(50)
and z € D(A;a,p), then f(A)z € D(A;a,p) and there exists C,, € ]R’L
(independent of f and x) such that

17(A)z [ peasem) S Call fliso %] 2 450.m)-

Proof. First of all we consider the case p = oo. Choose 8 & Jw, u[. For
t € RT, from the resolvent identity we get
1

(tI*"A)_lf(A) =5 S FONAT ~ A)"l(tl_;__,q)—l X\
Ly
! 1
= om S tf—(|_))\{/\1 A)7A+ o %(ﬂ—m) L

[}

] o ae

the last equality follows from the fact that f ig holomorphic on Sﬂ.
If £ € D(4; a,00) then we have

e A(T + A)™ £ (A)e|

_ e o S
= 2mi S t~|—)\A(AI 4) :z:d)\H
L ||f|1w " 1
< = _ Wy _
1 ta“f”m -8 —1
+ o ﬂé‘ = |A(ge™ I — A)"'x| do
1 t® 1 .
<o | o d sup || Aloe™] — A)~tw
r ) 2T gem) 221 e S e Alee T — )7k
—1—- t* 1 o —if -1
2r H§+ 0% |t -~ pe| de||flle gs;;a le® Alee™"T — A) x|
= _1— S _1— - = 40 || floe sUP HQQG"“WA(Q ——e"w/-l)_lmﬂ
’ 2m B+ o ll + O..ez9| < peERt
o J St do [ fl sup lo%e® Ao — € 4) x|
2m Rt o2 {1 + ge~if| = pER+ '
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The operators A, —e*A and —e~%4 have the same domain and for ev-
ery £ € D(A4) we have ||Az| = !\fe’GAm|| = l—e® Az|| so that the
spaces D(A), D(—€“A) and D(~e™* A) coincide and have equal norms,
therefore D(4;,00) = D(-e’4;a,00) = D(~e~4; 0 ,00) (with equal
norms). From this fact it follows tha’c there exists a constant C' such that
for z € D(A; @, 00) we have

sup o Al -
oER

sup lo%e " A(g -
gER*

e’ A)al| < Ol piasaees
—WA) 93” < C”“’HD A;er,00)

and we can conclude that

Sup AT + ) H(A)a] < Cal llen (s

In this way we have proved that for z € D(A4; a, 00) we have f{A)z €
D(4; ¢, 00) and there exists Cy € RT such that

“f A)wH’D(A;a.m) < Cﬂ”f“oo“m”‘D(A;a,oo)-

If p < oo choose g € |0, and ay € Jo, 1[; then, by the reiteration
theorem for real interpolation (9}, Theorem 1.10.2), we have

D(A; o, p) = (D(A; a0, 00), D(A; 01, 00)) (a—ag) /{aa —ara) 0

with equivalence of the norms. Since we have proved that f{4) is a bounded
operator in D(4; ag, o0) and in D{A;ay, 00}, with norm not greater than
Cay || flloo and Cy, || Flloc respectively, we can conclude, by interpolation, that
f(4) is a bounded operator in D(A; @, p) whose norm is less than or equal
to a constant (depending only on @) times || f] s

THEOREM 3.2, Let A be an operator of type w with dense domain and
such that 0 € p(A). Let u € Jw, x|, @ € ]0,1[ and p € [1,00[. The operator

Ap has a bounded H™(S]) functional calculus.

Proof. By Theorem 2.2, A, p i8 an operator of type w with dense domain
and 0 belongs to its resolvent set. From the fact that (A — Agp) " is the
restriction of (A — 4)~* to D(4;a,p) it follows that if f € ¥(S]) then
flAap) is the restriction of f(4) to D{(4;e,p), so that by Theorem 3.1
we have || f{Aap)|niotdiap) S Callflicc and the conclusion follows from
Theorem 2.1.

It must be noted that, under the hypotheses of this theorem, Theo-
rem 7,1b of [6] yields the existence of a Banach space Y, continuously em-
bedded in X, such that A has a bounded H®(S3) functional calculus in ¥
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moreover, for all & > 0, D(A®) is continuously embedded in Y, hence the
same is true for D(A4; @, p).

As a consequence of the existence of a bounded H™ functional calcubus
we obtain the following theorem concerning the imaginary powers of an
operator.

THEOREM 3.3. Let A be an operator of type w with dense domain and
such thai 0 € p(A). Let & €]0,1] and p € [1,00[. For every s € R the
operator A% is bounded in D(A;c,p) and for every u > w there exists
C e R" such that | A% || < Cerlel.

Proof. For s € R and p > w the function z +— 2% is in H*°(59) and

SUP, g0 |2?] = e**l 50 that the theorem is an immediate consequence of
M
Thecrem 3.2.

We observe that in [4], Theorem 2.1, it is proved that from the estimate
of the norm of the imaginary powers of an operator obtained in Theorem 3.3
it follows that the operator is of type . Therefore the estimate of the norm
of the imaginary powers obtained here cannot be improved.
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