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Pointwise multiplication operators
on weighted Banach spaces of analytic functions

by

J. BONET (Valencia), P. DOMANSKI (Poznaf) and
M. LINDSTROM (Abo) ‘

Abstract. For a wide class of weights we find the approximative point spectrum and
the essential spectrum of the pointwise multiplication operator My, My(f) = @f, on
the weighted Banach spaces of analytic functions on the disc with the sup-norm. Thus
we characterize when My s Fredholm or is an into isomorphism. We also study cyclic
phenomena for the adjoint map M.

1. Introduction. We consider the pointwise multiplication operators
M,, M (f) := @f, where ¢ : D — C always denotes a bounded non-constant
analytic function on the unit disc . These operators are considered on the
following Banach spaces of analytic functions:

(L) HP = HZD) = {f € HD): | fls = supu(z)|f(2)] < oo},
(12) H=H®) = {f c HD): Jim o(2)If(z) =0}

endowed with the norm ||-||,, where v is an arbitrary weight, i.e., a continuous
function v : I — R,. such that HS° contains a non-zero function. We will be
mostly interested in rodial weights (ie., v(2) = v(|2|)) tending to zero at the
boundary. In order to include, for instance, typical weights v(z) = {lm 2|
on the half plane transferred onto the disc via a conformal isomorphism we
have to consider a more general class of weights.

Ouwr purpose is to calculate the spectrum o (M, ), the essential spectrum
oe(M,) and the approximative point spectrum gap(M,) of My, Le., the sets
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of those ) € C such that M, — A-id (= M,—) is not an onto isomorphism,
a Fredholm operator, an into isomorphism, resp. Of course, My, is Fredholm
or an into isomorphism if and only if 0 & oo(M,) or 0 & oap(M,), resp.,
5o the corresponding calculations are the same as characterizing ¥Fredholm
operators and into isomorphisms among all the multipliers M. As we will
see the first two tasks are easy (Lemma 2.3, Proposition 2.4) while the third
one is much more interesting (see Section 3). We prove that oap(M,) =
w(A,) where A, is a closed subset of the maximal ideal space M (H®) of
the algebra H and A, depends only on the weight v (Theorem 3.5). We
then identify A, for weights like v(z) = (1 — |2])¥, 0 < & < 0o, on the disc
or v(z) = |Imz|® on the half plane. It turns out that A, equals the set of
ideals in M{H®) with a trivial Gleason part (Theorem 3.6). In particular,
this implies that for such weights M, : H:® — H° is an into isomorphism
if and only if ¢ = hby...b,, where h is invertible in H*® and b,...,b,
are interpolating Blaschke products. Let us emphasize that ¢.p(M,,), unlike
o and o., depends heavily on the weight v. In Section 4 we show that
for radial weights v tending to zero at the boundary the map adjoint to
M, : H) — H? has hypercyclic vectors if and only if ¢(D) intersects the
unit circle.

Multiplication operators have attracted some attention. See for instance
[A], [MS] and [V]. In particular, multiplication operators were used in [S2]
to get interpolation results. On the other hand, the spaces HS® of analytic
functions with controlled growth were studied extensively, for instance, in
[BBT], [BS], [RS], [L1], [L2], [S], [S2], [BDLT], [BDL], [DL] or [SW].

The norm topology of H° is stronger than the compact open topol-
ogy co. The latter makes the unit ball compact. It is known that the so-called

associated weight
(z) = (sup{lf ()« [/l < 1D,

is better tied with the space HZ° than v itself [BBT]. Of course, HS® = HE°
isometrically. We say that v is an essential weight if v ~ ¥, Le., there is
a constant C' such that U(z) < Cu(z) for any z € I. If a radial weight v
vanishes on the boundary then (HQ)" = H and the unit ball of H? is
co-dense in the unit ball of H3°. See [BS]. On the other hand, if a radial
weight v does not vanish on the boundary then H® = H* and HY = {0}.
The following elementary observation is of relevance in the article: if Hg®
(resp. HD) contains a non-zero function, then for any fized z € D there is
fin H® (resp. HY) not vanishing at z. Hence the eveluation functional 8,
8:(f) = f(z), is non-zero on HX® and HY, respectively. In fact, if 21,...,2n
are different points in I}, then the evaluation functionals at these points
are linearly independent. This can be proved using the following ideas: the
product of an element of HS® (resp. HY) and an element of H* belongs to
HZ® (resp. HY). On the other hand, if a function f € H® (resp. H?) has an
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isolated zero of order m at zq, then the function f(z)/{z — z)™ also belongs
to HS® (resp. HY) and does not vanish at .

We also need several facts on H* which are explained in detail in the
book of Garnett [G]. We recall some definitions. A sequence (zn) iIn D is
called an interpolating sequence if for every bounded sequence (8,) of com-
plex numbers there is an f € H* for which f(z,) = 8, for all n. A Blaschke
product whose zero sequence is an interpolating sequence is called an in-
terpolating Blaschke product. We denote by A(D) the disc algebra and by
M(H®) the mazimal ideal space of H°°. The pseudohyperbolic distance be-
tween two points m and n in M{H®°) is defined by

o(m,n) = sup{|F(n)| : £ € H®, F(m) =0, |fllo < 1},

where [ denotes the Gelfand transform of f. For the sake of simplicity, we
denote the Gelfand transform of f again by f further on. For (,z € I,
o(¢, z) = |p=(C}, where @,({) = (z—¢)/{1 —2(). The Gleason part of
m € M(H®) is defined by P(m) = {n € M(H>) : p(m,n) < 1}. The set
{m e M(H®*) : P(m) = {m}} of trivial Gleason parts is a closed subset of
M{H®>} that properly contains the Shilov boundary I'(H*) of H* (comp.
[G, Ch. X.1]). We denote by D(z,r) and A(z,r) the euclidean disc and the
pseudohyperbolic dise of center z and radius r respectively. By || - [l we
denote the sup-norm on H™°, Qur reference for the Corona Theorem (used
e.g. in the proof of 3.7 below) is also [G]. We write f ~ g for two functions
f and g if there are positive congtants ¢ and C such that eg < f < Cyg.
Recall that an operator T is Fredholm if it has closed range and both the
dimension of its kernel and the codimension of its image are finite. A vector
z € X is called hypercyclic for an endomorphism T : X — X if the orbit
{T"z} of z is dense in X.

For basic facts on bounded analytic functions and functional analysis we
refer to [R2] and [R1] respectively.

2. Boundedness, Fredholm operators and the essential norm of
M,. We start with the following casy characterization of boundedness.

ProrogiTion 2.1, Let v be a weight on . The following statements are
equivalent:

{a) M, : H® — H> is continuous,
(b) ¢ € H™®,

In this case | Myl = |¢|lc. If HS # {0}, the statements above are
equivalent fo:

(c) My : HY — HY 4y continuous (and also here | M| = [|¢]|)-

Another observation will be useful to avoid considering operators on HY.
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PROPOSITION 2.2. If M, : HY - HY is bounded and both v and w are
radial weights vanishing on the boundary, then My =M, : HY — HZF.

Proof. It is well known that (HPY' = H and (HJ)" = Hy® (see [BS]
and [RS]). Moreover, the evaluation functional J., 6:(f) = f(2) on HY, acts
on H® as the evaluation functional (comp. the analysis in [BDLT)). Since
M (5,) = ¢(2)ds, we have, for f € Hy,

(M f,8:) = {fp(2)dz) = f(2)p(2). m

Note that by Proposition 2.2, for radial weights v vanishing on the bound-
ary, M, : H3® — HZ° has closed range if and only if M, HY? — H? does
(see [R1, Thm. 4.14]). A similar fact holds for Fredholm operators M, and
for isomorphisms. Thus, for radial weights tending to zero at the boundary,
one can consider only the case of H°.

Invertible multiplication operators and the spectrum of M, can be char-
acterized very easily.

LEMMA 2.3. Let v be a weight on D. The following statements are equiv-
alent for o € H™:

(a) M, : HZ® — H is invertible (or, equivalently, surjective),
(b) 1/ € H™ (or, equivalently, there emists £ > 0 such that |¢(2)| > €
for all z € D).

The analogous equivalence holds for HY if HS # {0}.

Proof. Observe that the inverse to M, must be of the form M;, and
apply Proposition 2.1. n

Since A ~ M., = M, _,, the above result shows that the spectrum of M,

satisfles o(M,) = w(D) = (M (H°)). This implies that M, is not compact.

The class of Fredholm operators is another important class of closed
range operators. Following Axler [A] we get a characterization of Fredholm
multiplication operators.

PrOPGSITION 2.4. Let v be o weight on D and ¢ € H*. The operator
M, : H® — H is Fredholm if and only if there ewists ¢ > 0 such that
lo(2)| > € for all 1 > |2| > 1 —&. Consequently, oe(M,) = p(M(H>)}\ D).
The same characterization holds for HS whenever HY # {0}.

Proof. Suppose first there is a sequence (z,) C D with |z,| — 1 and
lo(2,)| — 0. Taking a subsequence if necessary, we may assume that (2,) is
an interpolating sequence for H*. Thus (see e.g. [G, Ch. VIL1]) for each N
there is px € H° such that

() = 0 ifn<N,
PN En) = wlzn) ifn >N,
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and lon]leo < O80p,>n |¢{2n)| for some fixed C' > 0. Let
Xy ={f€H: flza) =0foralln > N}.

Clearly 8,, € X5 C (H®)', n > N, so X3 is infinite-dimensional: indeed,
the &, are linearly independent in (HS®)' (and in (H?) whenever H?
{0}). Since (p — @n)(2n) = 0 for n > N, range(My-,,) C Xn. Further
we conclude from (H®/Xy) = X3 that H®/Xy is infinite-dimensional.
Therefore range{ M.~ ) bas infinite codimension in HZ°, so M,_,, is not
Fredholm. Now, |[¢nllec — 0 as N — oo. Since the set of non-Fredholm
operators is closed, we see from ||M,_,, — M| < || that M, is not
Fredholm.

Conversely, by the assumption, ¢ can have only finitely many zeros
21, 2n inside I with multiplicities mq, ..., M, respectively. Let LR (f) =
F¥)(2) be the evaluation maps for derivatives. Observe that

n mi—1

range(M,) C ﬂ ﬂ ker 6.
i=1 k=0

Ifge N, Nikg ! ker 58 then g/¢ € H(D) and therefore the assumption
implies that g/¢ € HZ°. Hence range(M,,) = M., it ker 6% and M,
ig Fredholm. w

The essential norm of a continuous linear operator T' is defined by
|T|le = inf{||T — K| : K is compact}. Since {|T||le = 0 if and only if T is
compact, the estimate on || M, |l proved below shows that My, : H3® — H®°
is non-compact when ¢ 3% 0 (comp. the remark after Lemma 2.3). Re-
call that if T' € L(E), the essential spectral radius ro(T") of T is defined
by re(T) = sup{|A| : A € co(T)}. It can also be calculated by ro(T) =
limy, | T7||&/™ < IT||e (et [C]). Let us see what this means for the continu-
ous multiplication operator M,,.

CoroLnanry 2.5. Let v be o weight on D and let ¢ € H®. Then for
M, HE — HZ we have ro(My) = |Mplle = [[My]l = {l¢|lca. The same
holds for HY if HY # {0}.

Proof. It suffices to observe that 7e(My) = ||¢|leo, by Proposition 2.4. w

3. The closed range property of M. The operator M, : H® — HJ®
is' always one-to-one. Therefore the closed range multiplication operators
are precisely those operators that are bounded from below (i.e., [[M, f(ls =
Clf||~ for some C > 0 and every f € HS®) or, equivalently, are into isomor-
phisms.

LEMMA 3.1. Let ¢ € H®, If v and w are two weights on D and u :=
v/w is equivalent to an essential weight, then every closed range map M, :
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H® — H also has closed range as o map M, : HYY — HY. An analogous
result holds for HY and HY # {0}.

Proof Assume that M, does not have closed range on H?2e, There are
functions f, € HZ with ||fallw = 1 and | My fajw < 1/n. Clearly there
are z, € D such that |fn(zn)|w(za) > 1/2. Let g be chosen from H,
u = v/w, such that ||gs]e < 1 and |ga{za)|u(z) 2 m > 0 for every n € N.

Hence || fagnlle = m/2 > 0. Now, dlearly || M fagn[lv < 1/n and the proof
is complete. Taking f,, € Hy, we get the H, 09 version of the result. =

Now, we study general closed range multiplication operators. The follow-
ing simple and certainly known fact was pointed out to us by P. Wojtaszczyk.
Another proof can be obtained by the machinery of uniform algebras.

PROPOSITION 3.2. The map M, : H® — H* has closed ronge if and
only if @ does not vanish at any point of the Shilov boundary I'(H>®) of H™.

REMARKS. 1) Since the Shilov boundary of H> can be identified with
the space of maximal ideals of L®(9D) [G, V.1.7], a function ¢ does not
vanish on the Shilov boundary if and only if j¢p| is essentially bounded away
from zero on the unit circle.

2} All inner functions ¢ generate multiplication operators on H* with
closed range.

Proof (of Proposition 3.2). Let ¢* be the radial limit of ¢. If A C 0D is
a subset of positive measure such that [¢*| < € on A and |¢*| < 1 elsewhere,
then we take the outer function

1§ et+z s it
f(z)fexp{gjﬂmlog|f (e )idt}=

where |f*| = 1 on A and |f*| = € on 8D\ A4, to get || M, flloc = [|&* f*]leo < &
Thus if |¢*| is not essentially bounded away from zero then M, is not
bounded from below. The converse is obvious. m

COROLLARY 3.3. Let v be an (essential) weight on D and @ € H™, If
M, : HP — H has closed range, then ¢ does not vanish at any point of
the Shilov boundary of H™.

REMARK. It is an open problem if the same holds for HY instead of HS®.

COROLLARY 3.4. Let ¢ be an outer function. Then the following asser-
tions are equivalent:

(a) My : HS® — HZ 1s mvertible for some (or each) weight v;

(b) M, : HZ® — H is a Fredholm operator for some (or each) weight v;
(¢} M, : H® — H* is an isomorphism into for some (or each) weight v;
(d) ¢ does not vanish at any point of the Shilov boundary of H®™;

(e) there is > O such that ¢(2)| > € for each z € D.
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REMARK. The equivalences (b)«»(c)<(d) hold for all ¢ &€ A(D).

Proof (e)=(a)=(b)=>(c)=(d) follow from Lemma 2.3 and Corol-
lary 3.3.

Let ¢ be an outer function and assume (d). Since ¢ does not vanish
anywhere on the Shilov boundary of H, |¢| is essentially bounded away
from zero on the unit circle. Since i is outer, we have

17 etz "
(p(Z) = {}Cp{“z";”\wmngkO(ﬂ )ldt}

Hence 1/¢ is an outer function generated by log |1/p(e*)| and it belongs to
H*, Lemma 2.3 applies. m

The corollaries above vield that if ¢ is outer or belongs to the disc
algebra A(ID), then M, has either a closed range on every H3° or on none
of them. By the inner-outer factorization of bounded analytic functions, we
have ¢ = B -m -, where B is a Blaschke product, m is a singular inner
function and € is an outer function. Since ¢ is assumed to be non-constant,
M, : H3® — HZ® has closed range (equivalently, is an into isomorphism) if
and only if My, M, and Mg have closed ranges. Now, we have to look more
carefully at inner functions. It turns out that they always generate closed
range operators on H but they need not have closed range on other H;°.

Let X be a commutative unital Banach algebra and = = {z1,...,z,) €
X™. The joint spectrum o{x) is defined as the set of all A = (Ay,..., Aq) € C?
such that there do not exist y1,...,y, € X satisfying

Z(m,; — }\i)yi = 1.

Analogously, for a Banach space ¥ and operators T; : ¥ -+ Y which mu-
tually commute, we define the joint approzimative point spectrum oap(T),
T =(T1,...,Ty), as the set of those A = (A1,...,An) € C" such that

(T = Ayy o, Ta=An) Y = YT
is not an into jsomorphism,
(T = Agsee o, Do = M) () = ((T1 = Ac 1))y (Tn = A - 1) ()

THEOREM 3.5. For any weight v there is o closed subset Ay, I'(H™) C
Ay C M(H®)\D, such that M, : H® — H® hos closed range if and only
if @ does not vanish on Ay (or, equivalently, oap(My) = ¢(Av))-

REMARKS. 1) We will see later on (Theorem 3.10) that the upper bound
for A, can be achieved.

2) Using the same proof we obtain Theorem 3.5 for HY except the inclu-
sion I'(H®) C A,.
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Proof (of Theorem 3.5). Let & = (1, - < oyon) € (H)" be arbitrary.
‘We define

§() = cap(Mpys -1 My, ),
where the spectrum a,, is calculated in the algebra of endomorphisms of
H, hence it depends on the weight v. We show that:
1. 5(@) € o(P) (the joint spectrum on H*);
2, #(P(p)) = P(&()) for any polynomial map P,
P(CC]_,...,'.’L’n) i (Pl(ml:---7mn)1"'1Pm(-’B1:"-13311))1
where P, ..., Py, are polynomials of n variables; i.e., & is a subspectrum on

H in the terminclogy of Zelazko [Z, p. 251].
Assume that A € o(@). Then

Z(c,a;, ~ M)y =1 for some (y1,...,yn) € (H™)"
If A € (%), then there is a sequence (fi) € Hy®, || fxllo = 1, such that
1 Mp,—r;fello =0 ask-—cofori=1,...,n.

This contradicts the observation that
Vel = | 32 My Mimnidi]| € D010l 1Mpmnifullo =0 as k= oo,

and proves statement 1.

Condition 2 for a joint approximative point spectrum of operators on
any Banach space has been proved in [SZ, Th. 3.4] and, independently, in
[ChD, Th. 1]. Thus our condition 2 follows from the definition of 7.

Finally, for every commutative Banach algebra X and every subspectrum
& on X there is a compact set A C M(X) such that

F(b1y. .., bn) = {(b1(a),...,bn(a)) : a € A},
as shown in [Z, Th. 5.3]. Applying the above fact to X = H* and 7 as
defined above we get A, C M(H*).

Take ¢ = z. By Proposition 2.4, My has closed range on every H°
for every A € I. Thus

and ¢(A,) N D = §, which implies that DN 4, = 0.
Let X € @(I"(H®)), ¢ € H*™. Then M,_, does not have closed range
on Hg° by Corollary 3.3. Thus A € 0,5 (M,,) on HZ®. We have shown
p(D(H™)) € p(A,)

for any p € H™. It suffices to take A, = A, U I'(H*®) to complete the
proof. = :

‘We now try to identify the set 4, from Theorem 3.5 for various weights v.
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If B(z) is a Blaschke product with infinitely many zeros, we can apply
Proposition 2.4 to deduce that the multiplication operator Mg is not Fred-
holm on HZ®. On the other hand, for many (but not all) weights it has closed
range as can be seen from the next result.

It is enough to consider only weights v such that —logv is subharmonic
(since every essential weight satisfies this condition). A special role is played
by moderate weights v, which arc those that satisfy —Alogv ~ (1 —[2]%)~2
(see [BO], [52]). A radial weight is equivalent to a moderate weight if and
only if it is normal (see [SW], [L1], [L2] and [DL]), i.e.,

w(l— 2" L w(l-27m)
gup —r—m——te < 00 and  sup inf ———————— > L.
nellg{ v(l —2-n-1) kEEnEN v(l —27mk)
Indeed, Alog(l — |2|*)* = —4a(l — |z|*)~?; moreover, for radial weights

v, ~Alogwu > 0 if and only if 1/v is log-convex (and, then, by [BDL], v
is essential). Thus —Alogw ~ (1~ |2|*)~? means that v(z)/(1 —|2{*)* and
(1 — |2%)® Ju{z) are essential weights for suitably chosen o, 8,0 < ¢, 8 < c0.
By [DL}, if v is normal then there is an equivalent weight w such that

CwE) L (L=l

(1 [z#) w(z)

are log-convex, Le., ~Aloguw ~ (1 - ’2‘2)_2.

A weight v is normal if v tends to zero at the boundary not faster than
some weight (1 — |2])%, 0 < & < oo, and not slower than another weight
of the same type. All the weights (1 — |z|)* are moderate, as also are, for
instance, the weights |Imz]® on the upper half plane transported through
the Riemann map onto the unit disc.

for suitable ¢, 8

THEOREM 3.6. Let v be a moderate weighi. The map M, : H® — H®
(or My, : H® — HY if HS # {0}) has closed range if and only if ¢ € H™
does not vanish on any triviel Gleason part, Consequently, oup(Myp) = @(4),
where A 48 the set of all m € M(H®)} with trivial Gleason part.

REMARKS. (i) A function ¢ € H™ does not vanish on any trivial Gleason
part if and only if v can be factorized as a product ¢ = uh, where u is a
finite product of interpolating Blaschke products and h € H™ Is invertible
in H% [Go, Th. 1].

(i) If m € M(H®) has a non-trivial Gleason part then there is a closed
range operator M, : H® — HZ® with ¢ vanishing on . Indeed, by (G,

Th. 2.4, p. 413, there is an interpolating sequence (o) such that m belongs
to its closure. We take as ¢ the corresponding Blaschke product.

LEMMA 3.7. Let o € H®. Then ¢ does not vanish on any trivial Gleason
port if and only if for every v < 1 there is € > 0 such that forany z € D
there is p & ID such that g(z,p) < r but lp(p)| Z €.
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REMARK. In fact, formally we obtain more: if ¢ vanishes on some trivial
Gleason part then for any r < 1 and any & > 0 there is a pseudohyperholic
disc of radius r on which || is not greater than e.

Let us note that it suffices to consider inner functions ¢ which are finite
products of interpolating Blaschke products. The necessity part then follows
from Lemma 1 of [KL] (see also [H, Lemma 4.2]} or more explicitly from
N, Lemma 1].

The following straightforward sufficiency argument was kindly provided
by R. Mortini.

Proof of sufficiency in 8.7. Let o vanish at a trivial point x € M(H*),
By the Corona Theorem, there is a net (2,) C D tending to z. Recall
that ©.(¢) = {z —{)/(1 — 2(). By {H, Th. 4.3], ¢, tends pointwise to a
constant map L : D — M(H*), L(z) = z. This implies that ¢ o ¢,
is a bounded net of analytic functions tending pointwise (so uniformly on
compact sets) to zero. Thus for any r < 1 we have sup|, <, [¢(¢z.(2))] — 0
as « increases. This completes the proof since ¢, (D) is a pseudohyperbolic
disc of radius . u

LEMMA 3.8. For every o > 0 and every n € N the function (1 —r)®r™ is
increasing for v from 0 to n/{a+n) and then it decreases.

Proof. It suffices to analyze the function log((l — e*)*¢'™) for t €
{—0c,0). m

LemMa 3.9. Let v(z) = (1 — |z])*, a > 0. For every £ > 0 we can find
T < 1 such that for each zg € D there is f € HY, iifllo = 1, such that for
every z € D with p(z,z) > r we have

|f{z)viz) < &

Proof Assume that 2% — 1 > 1/a. Without loss of generality we may

consider only points zp with |zp| > 1 — 27", Let
1=-2"" < |z) £ 1-2"""1  for some n > ng.
We choose k > 1, k € N, such that ¢(2™ — 1) < k £ (2™ — 1), which
implies :
k
1-27" ¢ —— <1271,
a+k ~ 1-2

By Lemma 3.8, there is a positive ay such that the function gi(z) := ax2®
satisfies

L Hgk”v =1

(e () -

Pointwise multiplication operators

iom

We define the function f as follows:

1/ z
1) = 3 (2 - pule) rte)
Since the first factor is of modulus < 1, we have || f||, < 1. Moreover,

L |gr(20)|v(=0)
2 |gx () v (%)

Lge(l =27l -2

Flaololz0) = lan(z0) (o) =

- 2-n)k

v

v

1 g1 1 a(amtl-1)
() (=)

2a4-1

1 1 1

S (_) , > L(4e)®,

e 211+1*_2 =
2 (1+ Qn'lﬁ)w( )T 2

Choose a natural number | such that
1—otloge

L L s

1 ;1: -1 (1
2 gkl -2 Du(l—2-7) ~ \2 (1— 2-"-1)F

187

and corlaider a euclidean disc ¢ contained in D, inner tangential to 6D at
1 and such that the euclidean disc D(0,1 — 271 is inner tangential to C' at

—(1—-27%). There is r € (0, 1) such that
D(0,7) 2 €\ D(1,22),

where D(z, R) devotes the euclidean disc of radius R and center .

We will show that outside (@, (D(0,r)) which is the pseudohyperbolic
disc of center zp and radius r the function f multiplied by the weight has

modulus < £,

Observe that the map £ -+ |(E—s}/(1—ts)|, 0 St <5 0<s <1 is

decreasing, and we have

Z o

.

2 — (L =27
1—fgol(1 =21
1-2-"—(L=2"""%)
1—(1—2")(1~2"")

<1-27%

This implies that ¢, (T%G) D D(0,1 —27"7Y). Thus if z & 1824 (D(0, 7)),

then either

2} =1~ o=l oz & . (D{zo/ |20, 26))-
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Fix such a z. By Lemma 3.8, if [z| > 1 — 27"~! we obtain

— 9=y (] — g-n—l
0(e) < antalote) < SLZTL BT

T G
— k1
<(2 *)“(HW)

o (1 N z—n—l)k
(1 — anr—l)k
S (2—-!‘*“1)0605 S e,
Ifze Y=g (‘D(zﬂ/lzﬂla 25)) we get

Fie) < 5

Since ¢, (z) € D(zg/}zg[,Es). u

Proof of 3.6. By [S1, Th. 2] (comp. [S2, Th. 6]) every moderate weight
is essential. For every moderate weight v we find o and S such that both
v(2)/(1 - |z])* and (1 - |2|)?/v(2) are moderate. Thus, by Lemma 3.1, it
suffices to prove our result for power weights v(2) = (1 — [2])* for all g,
0 < & < vo. By Corollary 3.4 (since the points on the Shilov boundary have
trivial Gleason parts), it suffices to prove the result for ¢ an inner function
and, by Proposition 2.2, only for the space HZ°.

Sufficiency. Since v(z) = (1 — |2])*, Lemmas 1 and 4 of [DL] imply the
existence of 0 < R < 1 and 1 < € < oo such that for any f € HZ,

4C|| £l u(z)

fz) = flp)| € W@(Z:P) and res)

for all z, p with g(z, p) < R/2. Assume that ¢ does not vanish on any trivial

Gleason part in M(H™). Take f € Hg® with || f||, = 1. There is z € D such

that | f(z){v(z) > 1/2. Apply Lemma 3.7 for § < R/(16C) to find & > 0 and
p € D with g(2,p) < § < R/2 such that |(p)| = &. Now,

F ) (p)e()] 2 £l f(p)o(2)] %‘

£

> G @)~ [ £)() ~ JE@) 2 15
Necessity. Let p, ||¢]|co < 1, vanish on some trivial part. By Lemma 3.7

and the remark below it, there is a pseudohyperbolic disc of radius r < 1

such that |¢| < ¢ on that disc. By Lemma 3.9, we find a function f € H?

with ||l = 1 such that |fv| < & outside the corresponding disc. Thus
| M, fllv < & and M,, cannot have closed range. u

Now, we identify A, for a weight tending to zero very rapidly. To do this
we define the lower norm of the operator T' as

L{T) s=mf{IT A - | = 1}-

= (2

Z)
e Pzo (z)

<eg,
| o]

<C
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TueoREM 3.10. Let ¢y (2) = (w — 2)/(1L — Bz) and v(z) i= e~ /{112,
The lower norm of M, + HF — HX tends to zero as \w| — 1.

It follows that A, = M(H®)\ D for the weight considered.

CoROLLARY 3.11. The map M, : H® — HZ (or M, : H® — HY)
for the weight v defined above is an into isomorphism if and only if it is
Fredholm, i.e., there 16 € > O such that |o(2)] 2 € for |2| > 1 — ¢ or,
equivelently, ¢ does not vanish on. M(H*) \'D. Consequently, oqp(M,) =
p(M(H=)\ D).

REMARK. It follows that M, : HJ® — Hg° has closed range if and only
if ¢ = hb where h is invertible in H™ and b is a finite Blaschke product.

Proof (of Corollary 3.11). It is easily seen that e~/ (~l#l /(1 — 2]y
is equivalent to an essential weight because (1 — t)e'/(*~% is Jog-convex
(comp. [BDL]). Assume that M, has closed range. Then by Lemma 3.1 and
Theorem 3.6, ¢ does not vanish on trivial Gleason parts, i.e., ¢ = hb, where
h is invertible in A and b is a Blaschke product. If b were an infinite
Blaschke product then b would have a factor ¢, with w arbitrarily close to
the boundary. This leads to a contradiction because the lower norm of M
is clearly less than or equal o the lower norm of My, =

COROLLARY 3.12. Let 0 € H®. Then M, : H® — H° (resp. M, :
HY — HY) has closed range for every weight v on I if and only if M, :
H® — H® (resp. M, : HS — HY) is Fredholm for some (equivalently,
every) weight w on D

Proof of Theorem, 8.10. Since the weight v is radial, all the rotations are
isometries and without loss of generality we may assume that w is positive.
Let w € [l — 1/n,1 — 1/(n -+ 1)]. We define the function fr : D — C by

en

fﬂ(z) V= ,n‘-n,(‘l . z)-",'
Observe that || fu|ls = 1. Indeed, fu(l ~ 1/n)v(l —1/n) = 1 and fo(t)u(t)
increases for ¢ € (0,1 — 1/n) and decreases for ¢ € (1 —1/n,1) (calculate the
derivative of log fy, (t)u(t)).
Choose 0 < £ < 1/2 and calculate

f“(l - "(‘I"fé??r)(l e xl a>n> - (1:)
ctom - (55" (2] )

Clearly C(g,n) — 0 as n - oo for any fixed &. Since v decreas.es as the
modulus of the argument increases while |f,| increases as the distance of

We define
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the argument from 1 decreases,
|[fn(2)lv(2) < Cle,n)

for z on the boundary of

Then using essentially the same argument we obtain the same inequality for
all z & M.

We determine the intersection of the boundaries of the two discs in the
definition of M. We have to solve the system

1
|2 = 1= (L+e)n’
PR P —
(1—é&)n
Taking z = z - iy we obfain
2 1
2yt =1-— AT om -+ (I epn?’
(I-z) 4y’ = ERE
Subtracting the first equation from the second one we easily obtain
g1 2e _ 1
(L—e2)2n?  (l+en’
hénce
2 1 1 42 4e
Y

TP (Ite@n? (1- e2)int  (1+£)3(1 —e)?n3’
In particular,
1 1 4z
T—en?  (Itepn?  (-&yn?
This implies that M is contained in the rectangle with vertices

. 1 £2./8
= (1 T xen (1- sz)n)'

2
Yy <
(

We estimate
2
92 (S 1- _‘E) = (% _ (1:|:15)n) + (1*325)2“2 < g2 (1i5)2 -+ dg
’ T TOE)HISEN2 | javEd-i)aE = —s
n (ST () (1-¢?)
< ._E.___ < 20
SA—ps E.
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Since the pseudohyperbolic disc is convex, A(l — 1/n,54/€) contains the
above rectangle, hence

A(l - %,5\/2) oM.

Since

we get
A(w, 54/ - -1m) > M.
2n

Finally, if we take ¢ and ngp such that 5/2 4+ 1/(2ng) < 4, then for n > ng
such that C'{e,n) < ¢ we have

low(Z)| - | frl2)|v(z} < & for z&D.
Indeed, |¢w(2)| = o(w, 2) < § for z € M while |fo(2)|v(2) <dforz ¢ M. =

OPEN PROBLEMS. (a) Show that if Alogv(z)(1— |2]*)? — coas |2| ~ 1
then A, = M(H>)\D.
(b) Show that if Alogv(z)(1—|z[*)* — 0 as [z| — 1 then A, = F'(H*}.

4. Hypercyclicity of the transpose multiplication operator M.
In [GS] Godefroy-Shapiro studied the hypercyclicity of the transpose mul-
tiplication operators on Hilbert spaces of analytic functions and obtained a
sufficient and necessary condition. In this section we show that this condi-
tion is also necessary and sufficient for transpose multiphers on (Hg)’. Our
main result in this section is

THEOREM 4.1. Let v be o radial weight on D such that lim|;_q v(2)
=0 and let p € H®. Then M}, : (H)Y — (H3) has a dense, invariont
hypercyclic vector manifold if and only if

(D) NID # .

To prove this result we shall use a result due to Bourdon [B] saying that
if T € L(B) is hypercyclic, then there is a dense, invariant vector manifold
in B consisting entirely, except for zero, of vectors which are hypercyclic
for T'. Accordingly, it is enough to prove the following result.

PROPOSITION 4.2. Let v be a radial weight on I such that lim ;)1 v(2)
=0 and let ¢ € H*. Then M, : (HYY — (HDY is hypercyclic if and only if
eI N oD #£ §.

Proof. Assume first that (D) does not meet . Since (D) is an open,

connected subset of C, either @(I3) ¢ D or (M) ND = 0. In the first case,

we have | M[|| = |lpllcc < 1. Then M, cannot be hypercyclic. The latter
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case follows from the former, since the inverse M; /o of M., is hypereyclic if
and only if M, is hypercyclic ([GS, p. 234]).

Conversely, assume that (D)NGD # . Since (D) is a connected subset
of C, the open sets

A={zeD:|p(z)] <1} and B:={zeD:|p(z)| > 1}
are both non-empty. Consider
U:=span{d,: 2 € A} C (H})' and Vi=span{d; :z € B} C (Hyp)'.

We show that both are dense in (H9)'. To see this, let f € (H])" = H®
satisfy (f,u) = O for all w € U. Then f(z) = O for all 2 € A, s0 f s
identically zero. The proof for V' is the same.

We now write 1" := M, ' (HYY — (H) 0y, and observe that for each n,
T™ = ML and Myn £(2) = ¢(2)" f(2) for f € HY.

We are now going to apply the hypercyclicity criterion from [GS, Cor. 1.5]:

Let E be a Banach space and let T € L(E). Suppose that (T™) tends to
zero pointwise on a dense subset Z of E. If there is o densc subset Y of B
end amap S:Y — Y such that T'S = idy and (S™) tends to zero pointwise
on Y, then T is hypercyclic.

(a) Since T™(d;) = w(2)"0z, we get [|[T"(d:)]} = |p(2)["]6z]]. Conse-
quently, for z € A, lim, [[T™(4;)| = 0. Thus (T™) converges pointwise to
zero on LV,

(b} Observe that {4, : z € D} is linearly independent, since H® C HJ.
We can define S : V — V by setting 56, = ¢(2)7*4,, » € . This map is
well defined as {4, : z € B} is linearly independent and |p(z)| > 1 for all
z € B. Clearly, S"8, = @(z)™"4, for all z € B, so (S™) tends pointwise to
zero on V.

(¢) Since TS86, = 4, for all z € B, we conclude that 7% = idy, This
completes the proof. m

ReMARK. Under the conditions of Theorem 4.1, if MY, : (HO) — (HOY
is hypercyclic, then it i cheotic, i.e., it also has a dense set of periodic
points. Indeed (comp. [GS, 6.2]), by assumption (D) N 80 # . There is
a relatively compact set G with G C I such that »(G) intersects . This
intersection contains a non-trivial arc of the circle, which containg infinitely
many roots of unity. Their preimages form an infinite subset B of G which
has a limit point in . The subspace H = span{§, : z € B} is dense in
(HOY for the norm topology, since every element f & HS® = (H)" which

vanishes on E is identically zero. Since every element in H is periodic for
M, the conclusion follows.
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An exponential estimate for convolution powers

by
ROGER L. JONES (Chicago, IL)

Abstract. We establish an exponential estimate for the relationship between the
ergodic maximal function and the maximal operator associated with convolution powers
of a probability measure.

1. Introduction. Let 7 : X — X denote a measurable, invertible,
ergodic peint transformation from a probability space (X, X, m) to itself.
For f € L}(X), define

1 n
*(z) = sup ————— 7rz)).
@)= s oy 3 1)
Let i denote a probability measure on Z and define
[s,]
Y s f(rim).

j=—o0

pf(z) =

For n > 1 define
1" f ) = u(e" ) ().
(See [2] for a discussion of these averaging operators, and conditions associ-

ated with a.e. convergence for f € L?, p > 1. Also see [1] where for a large
class of measures, (i, Bellow and Calderdn establish a.e. convergence for all

felLt)
In [2] the following condition was introduced.
DermviTion 1.1. A probability measure y on Z has bounded angular
ratio if |fi(y)| =1 only for v = 1, and
o) =~
lvj=1 1= [E{7)
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