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Fourier analysis, Schur multipliers on $7 and
non-commutative A(p)-sets

by
ASMA HARCHARRAS (Paris)

Abstract. This work deals with various questions concerning Fourier multipliers
on LP, Schur multipliers on the Schatten class S” as well as their completely bounded
versions when LP and 8% are viewed as operator spaces. For this purpose we use suhb-
sets of Z enjoying the non-commutative A{p)-property which is a new analytic property
much stronger than the classical A{p)-property. We start by studying the notion of non-
commuttative A(p)-sets in the general case of an arbitrary discrete group before turning
to the group Z.

0. INTRODUCTION, BACKGROUND AND NOTATION

M{LP) stands for the algebra of all Fourier multipliers on the space L?,
and M, (LP) for the algebra of those Fourier multipliers which are com-
pletely bounded on L? when the latter is endowed with its natural opera-
tor space structure. M{SP) denotes the algebra of all Schur multipliers on
the Schatten class S, and M., (S7) the algebra of those Schur multipliers
which are completely bounded on 5P equipped with its natural operator
space structure.

Our first motivation was to show that the following contractive inclusion
maps are all strict:

Mep(L%) C Mop(LF), M(59) c M(SP), Mw(S) C Mu(SP),
(M(L%), M(L?))o < Mon(L7),  (M(S),M(5%))p C Mey(SP),
where in the first three inclusions p is an even integer and 2 < p < ¢ < oc,
while in the last two 0 < 8 < 1 is arbitrary and p = 2/8. The reader should

note that the embeddings and isomorphisms we consider are natural in the
sense that they send a given element simply to itself.

1981 Muthematics Subject Clussification: Primary 43A22, 43A46, 461.50; Secondary
46870, 47B10, 47D15.
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204 A. Harcharras

For this purpose we introduce and study a non-commutative version of
the usual A(p)-sets. The idea behind all the proofs is the existence for each
even integer 2 < p < oo of a non-commutative A(p)-set which is not a
A{g)-set for any g > p.

In the rest of this section, we recall the facts and notations we need.

Section 1 is devoted to the study of the non-commutative A(p)-property
in an arbitrary discrete group G. This is a new analytic property more
restrictive in general than the classical A(p)-property. We start by recall-
ing the definition of A(p)-sets and we point out their relationship to 1;_he
set M(LP(my)) of all Fourier multipliers on LP(r), the nog—commutatwe
LP-gpace associated with a discrete group G equipped with 1t§ usual trac:e
To. Then we introduce the non-commutative A(p)-sets. We point out their
relationship to the set Men(L¥{1p)) of all completely bounded Fourier mul-
tipliers on LP(7) when the latter is endowed with its natural operator
space structure. This justifies the terminology “A(p)cn-sets” we use for “non-
commutative A(p)-sets”. The links between A(p)-sets and the algebra
M(L?(mp)) on the one hand and between A(p)c,-sets and Mcb(I.JP(Tg)) on
the other hand are proved by using the non-commutative version of the
Khinchin inequalities proved in [26] (see also [27]). Then for all integers p
we consider two combinatorial properties defined on subsets of G: the B(p)-
property and the Z(p)-property. We show that the B(p)-property implies
the Z(p)-property and that the Z(p)-property implies the A(2p)en-property;
the latter result is the crucial point of this work.

In Section 2, we consider the A(p)q,-property in the particular case of
the group Z. We prove that this property is very different from. the: usual
A(p)-property. More precisely, we prove that there exists a set which is A(p)
for each 2 < p < oo but not A(p)e, for any 2 < p < cc. Then we show that
for sach even integer p > 2 there exists a A(p)cp-set which is not a A(g)-set
for any g > p; this kind of sets will play a key réle in the proofs.

In Section 3, we focus on Fourier multipliers, We prove that for 2 <
p < oo an even integer, M, (L?) cannot embed continuously into M (L‘q) for
any p < ¢ < oo. Recall that for p = 2/6 and 0 < 8 < 1, the embedding of

(ML), M(L?))s into M{LP) is strict (see {45], see also [40]). Then since as

we recall the embedding of M, (LP) into M (LP) is strict for any 2 < p < 00,
it is natural to wonder whether the embedding of (M (L*®), M(L?)})s into
Mep(LP) is again strict. We prove that this is indeed the case. More preciszely,
we show that Mo, (LP) does not embed continuously into (M(L>), M (L))
for any 0 < 6 < 1.

In Section 4, we introduce and study the so-called o(p)-sets and o (p)en-
sets. These are subsets of N x N playing for M(S?) and Ma,(S?) a réle
analogous to the one played by A(p)-sets and A(p)s-sets for M(LP) and
M., (LP) respectively. We will see that from any given A(p),-set, we can
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obtain a o(p)ey-set and thus we get for even integers p special a(p)ch-sets.
Indeed, we prove that for any even integer p > 2, there is a a{p)en-set
A C N x N which is not a o(g)-set for any ¢ > p.

Section 5 is devoted to Schur multipliers. For each even integer 2 <
p < oo, we prove the existence of an idempotent Schur multiplier which is
completely bounded on S? but not hounded on §7 for any p<g<oo In
fact, our idempotent Schur multiplier is not even bounded on the subspace
of 57 formed by all Hankelian operators, denoted by &9 in the sequel. This
answers a question raised by J. Erdos. Therefore, the embeddings M(59)
M (5%} and My (S7) C Mc,(SP) are strict whenever 2 < p < ¢ < oo and p
is an even integer. On the other hand, we show that for each 2 < p < 00, the
set Mcp(S5P) does not embed continuously into (M{S%), M (5%))s for any
0 < 8 < 1. This answers a question raised by V. Peller. We also establish
links between Fourier and Schur multipliers as follows. Let M(HP) (resp.
M (H?)) be the algebra of Fourier multipliers (resp. completely hounded
Fourier multipliers) on the Hardy space H?, and let M(G?) and M, (G?)
be the corresponding algebras of Schur multipliers on GP. The spaces HP
and &P are viewed as operator subspaces of I7 and SP respectively, We
show that M(HP) can be injected continuously into M(&?) in the same
way as M, (HP) is injected into M (S5%). For this purpose, we are led to
characterize the multipliers of M(&?) and Ma,(6P) (our characterizations
are easy consequences of [29], [30]).

Section 6 is included for the sake of completeness. Using probabilistic
ideas, we exhibit a very “large” Z(2)-set, roughly the “largest” possible one
which enjoys some additional properties. On the other hand, we introduce
same simple combinatorial properties on the subsets of N x N ensuring the
a(4)e property; we call them property (C) and property (R). Then by
using similar probabilistic ideas, we exhibit “large” sets. satisfying one of
these combinatorial properties.

Acknowledgments. This work owes a great deal to the author's thesis
advisor, Professor Gilles Pisier. His precious help and availability made this
work possible and we would like to express our gratitude to him. Some results
were obtained during a stay at Texas A&M University which we thank for
its hospitality and financial support.

We now review the standard notation we use. Let E and F be Banach
spaces. We denote by B ® F the algebraic tensor product of £ and F,
and by B(E, F) the set of all bounded operators from E to F. B(E, E) is
abbreviated to B(E). By stands for the open unit ball of E. idg denotes
the identity map on E. If E;, F; are Banach spaces and u; is in B(F;, F;)
for i = 0,1 then ug @ u; denotes the operator which carries z ® yin B @ By
to up(z) ® ui(y) in Fy @ Fy, extended linearly.
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A contractive map u : £ — F is said to be u-surjective if u{uBg) D Bp.
1-surjective maps are called metric surjections.

For 1 € p < oo, a measurable space (2,v) and an arbitrary Banach
space E, we let LF({1, dyv, F) be the set of all F-valued functions f on 2
which are Bochner measurable and such that

£ 22 (2,a0,) = (k IFitallis d.r/)l/p < oo
a

If 2 is the torus T and » is the normalized Lebesgue measure, then
LP(T, dv, B) is simply denoted by LP(E). We let H?(E) be the E-valued
Hardy space, consisting of all f in LP(F) such that the Fourier coefficients
F(n) =0 for all integers n < 0. L?(C) and H?(C) are simply denoted by L7
and H? respectively.

More generally, let M be a von Neumann algebra endowed with a normal,
faithful and semi-finite trace T3¢, For 1 < p < oo, LP(7as) denotes the non-
commudtative LP-space associated with M equipped with 7ar. By definition,
this is the Banach space obtained from the space of all © in M satisfying
@]l po(ry) = Tar((z*@)P/2)/P < 0o after completion with respect to the
norm || - [ ze(r (cf. [16, (28], [38]). By convention, L% (73) denotes M.
The non-commutative LP-space associated with B{H), where H denotes a
separable Hilbert space, equipped with its usual trace, is nothing but the
p-Schatten class on H. It will be denoted by SP(H) when 1 < p < o0
S%(H) stands for the set of all compact operators on H. In the particular
case H = {5 (resp. £, the n-dimensional Hilbert space), the usual trace on
B(4:) (resp. M, := B{£2)) is denoted by tr (resp. tr,) and the space SP(H)
is simply denoted by S? (resp. SE) for each 1 < p < 0.

If 7 and 7 are normal, faithful and semi-finite traces on von Neumann
algebras M and N respectively, then we let mas @ 73 denote the trace on the
von Neumann algebra generated by M @ N defined by: 7 @ tv(z @ ) o=
Tar(2)Ti(y) for z € M and y € N. Then 7ay ® 7y I8 still normal, faithful and
semi-finite, and thus we can consider unambiguously the space LP(Ta @ T ).

Given a discrete group G, » denotes the left regular representation of
G into B(£2(G)), L*(ry) denotes the non-commutative LP-space associated
with the von Neumann algebra generated by »(G) with respect to its usual
trace denoted by 7, and LP{7)} denotes the non-commutative L?-space as-
soclated with the von Neumann algebra generated by X\(G) @ B{{) with
respect to the trace 7 = 5 ® tr.

Given M and 75 as above, the spaces L™ (i ®tr) and L (T3 @ tr) form
a compatible couple for complex interpolation and we have isometrically (cf.

[20])

Vi<p<oo, IPiry@tr)=(L%(ry @tr), L' (ra; @ tr))1/p
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This allows us to view the Banach spaces LP(7yr) as operator spaces in a
natural way (cf. [33], [34]).

0.1. Compl.ex interpolation. Let (Ey, E;) be a compatible couple of
Banach spaces, i.e. By and E; are both continuously injected into the same
topological space, Let

A={z€C|0<Re(2) <1}, 4;:={z€C|Re(z) =7}

for j = 0,1. Then let G(Ey, E;) be the set of all functions f of the form
I = > fnive Ju®x where the z;’s are in Eq N Ey, the functions fy, : A4 -— C
are continuous en A and analytic on its interior and vanishing at infinity.
Denote by F(FEy, Ey) the completion of § (Eo, By) for the norm

1} := max{ sup |1£(2}z, sup }£(2)]e,}-
2EAG zEA:

For 0 < & < 1, consider the subset Ny(Eg, Bq) of G(Ey, E1) of all functions
which vanish at ¢ and let Sg(Ey, E1) be its closure in F (El, E1). By defini-
tion, the intermediate space Ey obtained by complex interpolation between
Fp and Ey corresponding to ¢ is the Banach space F (Eo, £r)/Sp(Ep, Ey)
equipped with the quotient norm || - ||. We refer the reader to [39] for the

proof that this definition of complex interpolation coincides with the one
given in [2].

LEMMA 0.1: Let (Ep, Ey) and (Fo, Fy) be two compatible couples such
that Eg N Ey s dense in both Ey and E;. Then (B(Eqg, Fp), B(E1, F1))s
embeds contractively into B(Ey, Fy) for each 0 < 6 < 1.

Proof. Let E be the completion of Ey M By for the norm lz|lz =
max{||z||z,, [2)lg, } and F be any Banach space containing continuousty
Fy and Fy. The assumption on (Ey, Fy) permits injecting continuously both
B(Ey, Fy) and B(E\, F1) into B(E, F). Thus they form a compatible couple.

By density of B(Ey, Fy) N B(Ey, F) in (B(Eg, Fy), B(E1, F1))p and of
FEp Ny in Ey, we are reduced to showing that || Tz|ly < 7'||o|lzle for each
T in B(Ey, Fo) N B{(E, Fy) and z in By N E,. To check this, let ¢ be in
G(B(Ey, Fy), B(By, F1)), f in G(Ey, By) such that ©(#) =T and f(0) = =,
and consider the function g which takes z in A to w(2)(f(2)) in By N Fy.
Clearly g belongs to G(Fp, Fy) with g(#) = Tw. Moreover,

gl = mex sup [e(2) (Dl < 8% 2p Lo @)lsie, 7 () s,
< (max sup lo(2)lszs, ) (max sup [1£=)s;) = lellI1

This gives the required inequality after taking the infimum over all such ©'s
and f's. m
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0.2. Operator spaces. By an operator space E, we mean a closed sub-
space of B(H) for some Hilbert space H. Such an object has natural norms
| Iln on Mo (), the set of n x n matrices with entries in E. Indeed, M,(E)
can be viewed as a subspace of B(£Z(H)) via the natural identification be-
tween M, (B(H)) and B(£3(H)). This sequence of norms satisfies Ruan's
axioms:

Va,b € Mn,¥e € Ma(B) oz blln < lola, [2/ln]bl] az,..
Vo € Mo (E), Yy € Mn(E) ||z @ yllntm = max{|iz|n, [y}

Here the norm on M, is the operator norm, the & denotes the direct sum
of matrices and the dot denotes the usual matrix product.

Tn the operator setting, a map u : B — F is said to be c.b. (short for
completely bounded) if the maps

u™ s Mp(E) — Mn(F),  (&33)55 = (w(@i5))is

are uniformly bounded. We let CB(E, F') stand for the space of all ¢.b. maps
endowed with the norm

ulles = sup flu" ).

CB(E) will stand for CB(E, E). An operator u is said to be a complete con-
traction (resp. complete {sometry) if each u™ is contractive (resp. isometric).

Z. Ruan gave an abstract characterization of an operator space as a
Banach space E with a sequence of norms on the M,(E)’s which satisfy
Ruan’s axioms (see [36]). This abstract characterization allows defining for
operator spaces the notions of duality, complex interpolation etc.

The standard dual of an operator space E is the usual Banach space B*
with the norms corresponding to the isometric identifications of M, (E*)
with CB(E, M) as in [4] and [17]. The complex interpolated space between
two operator spaces Eg and F; compatible as Banach spaces is the usual Ba-
nach space Fy with the norms corresponding to the isometric identifications
M (B5) = (M (Bo), Ma(B))o (see [33]).

When E and F are two operator spaces, CB(E, F) is an operator space for
the structure corresponding to the isometric identifications M, (CB(E, F))
= CB(E, Mn(F}).

Note that the min, (short for minimal) tensor product is a very useful
tool to describe completely the operator space structure of an operator space
as well as the ¢.b. maps between operator spaces. Let E C B(H) be a
concrete operator space. By S® @min F, we mean the completion of S @ F
for the norm induced by B(2(H)). Then the operator space structure of
the interpolated space Fy and the one of the operator space dual E* are
completely described by the following isometric relations:

5°@ninE" C CB(B,S®) and §°@minEe = (5% @minBo, 5°° Smin B1)s-
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Amap u: E — Fis ch. if and only if idge ® u extends to a bounded
operator from 5% @min £ into §° Bmin £, and we have |[uflg, = [[idge @u -
5 @min £ — 5% Dmin F“

LEMMA 02 Let (ED', Ey) and (Fy, Fy) be two compatible couples. Assume
that Fo M By is dense in both Ey and E,. Then (CB(Ey, Fu),CB(E1, F1))s
embeds completely contractively into CB( K, Fg) for each 0 < 8 < 1.

Proof. For arbitrary operator spaces E and F we may view CB(E, F)
as a subspace of B{5™ @i E, 5° Qumin F} via the isometric embedding
which carries T € CB{E, F) to idgee ® T € B(5°° ®min E, S @iy F).

Now let Ep, By, Fy and Fy be as above. Lemma 0.1 applied to (S @mpin
By, 5% @min B1) and (8% @pin Fy, S%° @min F1) implies that for each 0 <
<1, (B(SDO Rmin £0, 5% Bmin Fo), B(Sm ®min 1, 5% Qumin Fl))e embeds
contractively into B(S5 @miy, B, S @min Fp). This implies that (CB(Ey, Fp)
CB(E+, F1))g embeds contractively into CB(Ey, Fy). Actually, the embed)ding’;
is completely contractive. Indeed, for each integer n > 1,

Mn(CB(Eo,Fo),CB(El,Fl))g = (M, (CB(Ey, Fg)),Mn(CB(El,Flj))g
= (CB(Eo, M (Fo)), CB(E1, M, (F1)))o
C CB(E@, (MH(FO),MH(Fl))Q)
= CB(E@,Mn(Fg)).

Thus the embedding M, (CB(Ey, Fo),CB(E1, F1))g C M, (CB(Es, Fy)) is
contractive. m

G. Pisier proved in [34] that in fact the theory of operator spaces can
be developed equivalently using other sequences of norms on the M, (EYs.
Indeed, let 1 < p € oo be a fired number, let E be an operator space and
let E* be its dual operator space. For an integer n > 1, we let SE[E] denote
the space M, (E) but equipped with the norm of "

SELE] = (S°[EL SA[EDs
where 53°[E] denotes M, (E) for convenience only, S}[E] is the space M, (E)

?fiewed as a sybspace of (M, (E*))* and 6 = 1/p. Note that S2][E] embeds
isometrically into 7, [E]; we let SP[F] be the completion of |, .., SE[E].

ProposiTioN 0.3 ([34]). For all = in M, (F), we have ||z||ps (B =
5112.p lia - @ - b|gpim where the supremum is over ail a,b in the unit ball of
SuF. Therefore an operator u : E — F is c.b. if and only if the maps
u" : SE[E] — SE[F| are uniformly bounded, in which case we have lufley =
P,y U™ : SEIE] — SE[F])|. |

Now let us go back to the case of non-commutative LP-spaces. If M is a

von Neumann algebra with a normal, faithful and semi-finite trace 73 then
. o . :

since L°(7as) is a C*-algebra, it has a natural operator space structure
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given by any concrete realization as a C*-subalgebra of some B{H). Since
L'(7ar) coincides with the predual of L™ (714), it also appears as an operator
space in a natural way. Indeed, it is a subspace of the standard dual of
L%(7y). Hence the spaces LP(7ar) ave also canonically endowed with an
operator space structure, the one obtained by complex interpolation in the
operator space category. Applying Proposition 0.3 we get a nice and simple
characterization of the c.b. maps between these spaces since for each integer
n > 1, we have the natural identifications

Sﬁo {Lm (TM)] =L (’T‘M ® trn), Si [Ll (TM)] = [! (TM ® trn).
These imply that we have isometrically

SEILP(rar)] = (S 1L (rar)], SHILH (maa)))e
= {L®{rp ® trn), LMy @ tr,))e = LP (Tar @ trp).

Therefore a density argument yields SP[LP(rar)] = LP (Tar ®tr) isometrically.
Thus Proposition 0.3 implies

PROPOSITION 0.4. Let 1 < p < oo, LP(a) and LP(7n) be two non-
commutative LP-spaces and E C LP(ty), F C LP(7w) arbitrary operator
subspaces. Then an operator u : E — F' is c.b. if and only if the operator u®
idgs : EQSP — F®S? which takes x®y to u(z)®y wherez € E and y € S?,

AR Smans .
extends to a bounded operator from E ® i B} nto Fp & 57" (rv@tr)
Moreover, ||l = |u ® ids» . F® P (ru®®) _ o gpt (m®tr)”-

0.3. Non-commutative Khinchin inequalities. Let e, : {—1,1}N —
{~1,1} be the nth coordinate projection, » the uniform probability measure
on {—1,1} and 1 < p < oc an arbitrary real number. In the commutative
case, the classical Khinchin inequalities say that there exists a constant
kp > 0 depending only on p such that for all integers » > 1 and all scalars
21,...,%n we have

01 [esm
i=1

See e.g. [23] for the proof. Later on these inequalities were generalized to
the non-commutative case by F. Lust-Piquard for 1 < p < oo (cf. [26]) and
by F. Lust-Piquard and G. Pisier for p = 1 (cf. [27]} as follows. Let M be a
von Neumann algebra with a normal, faithful and semi-finite trace 7. For
each 1 < p < o0, there exists a positive constant Ky»(,,.) depending only
on the pair (M, 7ar)-and p such that for all n > 1 in N and all 2y,..., % in
LP(7as) we have, in the case of 1 <p < 2,

2 kp(E;Ll ‘wﬂg)l/z when 1 <p £ 2,
Lr{{~1,1) | £ kP(E;}zl Imﬂz)l/? when 2 < p < 0.
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k(]
(0.2) H £5a;
J‘:ZI J J| LP({—l,l}M,V,Lp(TM))

i 1/2 n /2
2 Kpogr )inf{H( b} ) + ”(§ 252) !
N ng o Lr(Tar) j=1 s

where the infimum is over all decompositions of the z;'s in LP(ry;) as yi -+,
while

‘n
(0.3) H E.’L‘
j;l T Lp({_lvl}mivpr(TMJ)

L 1/2
SKLP(TM)max{H( E .’1:_,3:3') }
j=1 LF(mar)

in the case of 2 < p < cc. In the particular case of S the constant Kge will
be denoted by K, for simplicity.

Lv(m)}

Lr(rar)’ “(iw;%) v

J=1

0.4. An explicit description of §2"¢ and §PUeC(SPY, An operator
in B(£z) will frequently be identified with its matrix relative to the canonical
basis of £5. Let £2 be the set {~1, 1} » be the uniform probability mea-
sure on {2 and let e;; : 29 — {—1,1} be the (i, j)th coordinate projection.
For 1 < p < oo, §7""¢ denotes the space of all operators ¢ = (z;;);; in
5% such that the operators (g;;2;;); ; belong to S? for almost all choicgs of
signs (€4;)i,; on N x N, equipped with the norm

2l somme 2= [[(€4ji 1,51 Lo( 20 0, 8-

We denote by SP(5%} the set of all matrices z = (2;;);; with entries @5 in
S? and which are—when viewed as operators on £, (£2)—in the p-Schatten
class on the Hilbert space £5(£s), equipped with the inherited norm (note
that SP(SP) is exactly the p-Schatten class on £2(4;) via the identification
mentioned above). Then, similarly, we let $7:""¢(SP) be the set of all oper-
ators T = (x;);,; in §°°(5§°°) with entries in §°° such that the operators
(£i52i5)i,; arve in SP(SP) for almost all choices of signs (£i)s; on N x N,
equipped with the norm ’

2]l sorne(sp) = IEa3215)a,5]| o (20,0057 (57 -
The next result essentially goes back to F. Lust-Piquard [26].

LemMMa 0.5. There is an explicit description of the space SPne (resp.
GPURC(SPY) for each 1 < p < oo as follows. For all = = (ai;)i; in SPUe
(resp, SPU(SP)) awe have, for 2 < p < oo,

ot a5 () ) (5 (S ) ),

%
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Tesp.

I max{(z H(Z%%)w p)l/P’
([ )

2

while for 1 <p < 2,

il:cng uns 2 inf {( (Z |y13 )p/ﬂz)

Tesp.

|zl gpoume(gpy & inf{(zu(;yijij)lm ;)1/;0
(U= )

where the infimum is over all possible decompositions of x us a sum of y =
(yij),;,j ond z = (Zij)qu, both in SP ('r‘esp. SP(SP))

(Z(Zml) )

Proof. We prove the lemma for SP""¢(SP) when 2 < p < co only; the
other cases are quite similar and left to the reader. We start by recalling
that for each 2 < p < oo and each © = (4;)s,; in SP(S¥) we have

(04)  |zllgr(se) zmax{(zn(zi:w’fjmij)l/z ;)1/107
(SIS

Tndeed, this holds for p = 2 and p = occ. Therefore, by complex interpolation,
it is also satisfied for all 2 < p < 0o. Now fix 2 < p < oo, If z = (m45)i5 €
Sr:unc(GPY then the oo x co matrices (g45%i5);,; satisfy (0.4) for almost all
choices of signs (g;;);,; on 2 since the matrices belong to SP(S¥) almost
surely. Thus after integrating over all these choices of signs, for each z =
(mij)i,j in Sp,unc(sp) we get

p 1P

o)

Jellgnsoe(sn, > max {(Zj: | (;w;jm”)
(Si(T)

1/2

1/2

1/2

)"}
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The converse inequality is obtained with the help of (0.3). Indeed,

P 1/p
2|l spne(sey = ( S ” Z €ijTij ® i P d”)
20 (1,)ENxN (57)
1/2

< K, max {||(Z(mu- ® i)’ (i) @ ) )

S:D(Sz’)1

> (235 ® i) (i) © ey)”) "
P (%;x;;.% 55)" [ ony
(Sooet o)
= Kpma{| 2 (Saien) o],
IS (Sewes) ol )
< Kpman{ (] (D) [,)"
(SI(weet) 1))

0.5. Additional non-standard notations. In the sequel, we frequent-
ly use the following definitions and notations.

A matrix z = (zx1)r,; with entries zy; in some fixed set is said to be
Hankelion if zy; = zprpr whenever k+1=k + 1.

For 1 < p < oo, GP (resp. GP(S5F)) stands for the subspace of S? (resp.
SP(SP)) formed by all Hankelian matrices z = (@ki)k, in SP (resp. SP(5P)).

For a set 4, 1,4 stands for its indicator function, and | 4| is the cardinality
of A.

If Ais a subset of a discrete group G and if F denotes either LP(7g) or
LP(7) for some 1 < p < oo then we let

Fr={feF|Ft)=0, vt G\ A}

Recall that for f in LP(ry) (resp. LP(7)) the Fourier coefficient F(t) is
defined as follows:

sp(sp)}

51:(5?)}

o~

7ty = (] (eesp. F(E) = 70 ® idso [(M () @ idey) £,
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We denote Fg simply by F, and when G = Z and A = N, LY will be still
denoted by HP. Similarly when JF is a class of oo X oo matrices and A is a
subset of N x N we let

Faqi= {:c:: (mkl)k,l Ef'l‘k[ =0, V(I{;,l) € Nx N\A}

Fruxn is denoted simply by F. Moreover when F is a Banach or an operator
space the sets F, and F4 are automatically viewed as Banach or operator
subspaces of F.

For A ¢ N, we set A := {(k,l) € Nx N | k+1 € A}, and any subset of
N x N which can be written as A for some A C N is called a Honkelian set.
Then given a map ¢ : A — C we let

5:A-C (kD= okt
For an analytic function f on T and all z in T we let fioy(2) = #(0),
while for all integers n > 1,
av—1

Fay(2) = > Fk)e"
fpm2n—1
Similarly given an co x oo matrix & we let z(g) = (o) while for all integers
n > 1 we let

Biny =21 (p1) | 2n-1<kpican}  (Schur product).

0.6. Peller’s theorem. The aim of Peller’s theorem is to realize &GP
and more generally 8P(S?) as a space of functions on the torus T which we
will describe here for 1 < p < oo only. Consider the Banach spaces (Besov
spaces)

AP .= {f : T — C analytic | |fll4r < 00},
AP(SP) = {g: T — 5% analytic | ||g|| 4=(sr} < o0},

where

oo 1p o
l!fH.AI’ = (Zzn“f(n)”ip) 3 HQHAT’{SP) = (Z 2ni|g(ﬂ-)”1;;p(sw))
n=0 n==}

THEOREM 0.6, The following maps are well defined, bounded and bijec-
tive:

ifp

-~

Ap —F Gp, f -+ (f(k + l))k,lzo:
AP(SF) — &P(S7), g (G(k + 1))kiz0-
In other words, as Bonach spaces, AP is isomorphic to &P and AP(SF) is
isomorphic to 6F(SP) in a canonical way.

In the case of GP we refer the reader to Section 2 of [29] (the norm of
AP as described above is given explicitly on page 450); while for the case of
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GP(S5P), we refer to Section 3 of [30] (the norm of AP (SP) described above
is implicit there). Therefore we have

27 -1

‘ Z mOkzkHLp’

k=gn—1

- i P N\1/p
||aeuapg(§zn > et )7

kﬁgnﬁl
and similarly for all z in GP(S7), we have

2" -1

{ Z Topz*

k=271

Le(s#)’
o0 2" -1 . 1/p
)l ez (s ( 2" ‘ Top2®
22| 3 )
(zoxz" := ( when k = 1/2). These descriptions provide &” and GP(SP) with
very useful equivalent norms as follows.

COROLLARY 0.7. (i) For each fizred 1 < p < o0, the following are equiv-
alent norms on GP:

[zl & (Z Hm(n)il%p)l/p, Yz € &P,

=0

(ii) For each fized 1 < p < oo, the following are equivalent norms on
GP(SP):

Yz € GP, JF.’J:(n) ng o 9gn/p

2l grsny 22 2777

d 1/p
lelleris) 2 (3 logn)Bosny) - Vo € 67(5).

n=>0

0.7. Some suitable operator norm inequalities

PROPOSITION 0.8. Let 1 < g < 00, let a, 5 > 1 be such that 1/a41/8=
1, ¥ a positive operator in S9* and (z,), o finite sequence of operators in

S%%F Then
|
'ana:n Sqa}.
n

H ; m;‘;ymnHSq < lyl gee max { H Z T
i

This proposition goes back to [26] when (z,), is a family of self-adjoint
operators. The general case for which the proof uses basically the three line

lemma, can be found in [35]. The next corollary follows easily by a reiteration
argument.

COROLLARY 0.9. Let 1 < g < oo, > 1 and for each 1 < J=r, let I; be
a finite set of indices, a; > 1 with Eggl 1/a; =1, and (a:ﬁj’;.))nje I o family

Sqﬁ’
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of operators in §29%. Then

| 5 alalaf) )
ni€l;
1<j<r

Sa

lIC! ” Z I“‘SP‘;?J Q”S,fj) [,S““‘j }

0.8. Fourier multipliers. A scalar-valued map ¢ on A C & is said to
be a Fourier multiplier on LF (7o) if the associated operator
M, :span{(t) | t € A} — span{Z(t) | t € A}, N(E) = @(E)N(T),

extends to a bounded operator on L (7) (still denoted by JVL:D); We.let
M (L% (7o) stand for the set of all such maps. Then M (I (m0)) is a unital
Banach algebra for the pointwise product and the norm

ol ag 28 (ra)y = 1M = Ly (7o) — Ly (7o) .

Let M, (L% (7o) be the subalgebra of c.b. Fourier multipliers ¢ on
LB (o) (i.e. the corresponding operators M, are c.b.), equipped with the
norm

< Hmax{” Z 2zl

1ol st (28 (1) 1= 1My = I (70) = L3 (70) s
By Proposition 0.4, a multiplier ¢ belongs to My, (I# (7o) if and only if M,®
idgs is bounded on L% (10) ®SP as a subspace of LP (1) with |l pr,y, (22 (o)) =
| M, ® ids»||. By duahty, it is very easy to see that for all 1 < p,g < o0
where 1/p+ 1/¢ =1 we have
M(IP(r0)) = M(L¥(m0)),  Men(LP(r0)) = Men(L#(70))

isometrically. Note that the duality (f,g) = 7o(f§) for f in L?(m), g in
Li(my) and § = Zte o G(t71YN(¢) is the suitable choice to have the previous
identifications via the identity map. Therefore we can restrict ourselves to
the case where 2 < p < co, We see easily that

M(LA(r0)) = Mar(L*(70)) = beo(G)
isometrically. Since Mgy, (L* (o)) € M (L% {m}) € M(L* (7))
contractively, by complex interpolation we get
M(L%(0)) C M(LP(m)) C M(L*(m0)),
Mo (L7 (10)) C Mep(LP(0)) C© M(L*(70))

contractively. By repeating the same argument, we see that for all 2 < ¢ <
p < oo we have

M{LP(mo)) € M(L(70)),

= Mcb(L2(TO))

May (P (70)) © Mo, (L7 (70))
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contractively. Thus (M ({LP(1)))2<p<co and (Meb(LP(10)))2<p<oo are two
decreasing families of algebras,

Now assume moreover that G is Abelian and equip its dual group &
which is compact with its Haar measure. In this case, the von Neumann
algebra generated by X(G) in B(£2(G)) coincides with L°°(G') LP(75) coin-
cides with I?(() and LP(7) coincides with LP(G, SP). This applies e.g. to
the group Z which will be discussed later.

REMARK 0.10. It follows from well known results (cf. e.g. [7], [8]) that
the canonical Hilbert transform defines a c.b. multiplier on L? for 1 <
p < oo. Therefore the natural projections of Lf onto L¥ which send f
to ) peaf (k)z are uniformly completely bounded when fl Tuns over all
intervals of Z. In other words, the spaces L%, where A C Z is an arbitrary
interval are uniformly complemented in L? as operator spaces. Hence for
1 < p < co the inclusion maps

Moo (L) = Mep(LP), 0§,

where ¢ is the trivial extension of ¢ by zero outside A, are uniformly bounded
when A runs over all intervals of Z.

0.9. Schur multipliers. Let {e}«,; be the canonical basis of 57, 1 <
p < oo, and A be a subset of N x N. A scalar map ¢ defined on A4 is said to
be a Schur multiplier on 5% if the associated operator

T, : span{er | (k,1) € A} — span{en | (k,1) € A},  ewr — w(k, Dew,

extends to a bounded operator on §% (still dencted by T,); we let M{S5)
stand for the set of all Schur multlphers on §%. Then M (Sp ) is a Banach
algebra for the pointwise product and the norm

lellarcsz) == 1T = 5% — S%-

We denote by M, (5%) the algebra of ¢.b. Schur multipliers ¢ on 5%,
equipped with the norm

el atanisny = 1T 5% ~+ 5% lcb-
We denote by M™(S%) and MZ(S%) the subalgebras of M(S%) and
M, (5% ) respectively formed by all Schur multipliers on S% which have a
Hankelian form (a multiplier ¢ is viewed as an 0o x oo matrix).

When A has a Hankelian form (ie. A = A for some set A C N), we
let M(&%) (resp. M, {S%)) be the algebra of all scalar maps ¢ defined on
A such that the corresponding operators map &%, boundedly (resp. com-
pletely boundedly) into itself. Note that a multiplier on &% necessarily has
a Hankelian form. ‘ :
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For an example of c.b. Hankelian Schur multipliers on S, we can quote
the following. Fix z in T and consider the map . : (k,1) ~ 2"T". Then the
corresponding operator is by definition

Ty, : 87— 5P,

where [, is the unitary operator

(@r)ia — (25T ardey = Dz Dy,

10 0

0z 0
D:=10 0 2
Clearly T, is an isometry and in fact T, is a complete isometry. Therefore
0. € MIE(SP) for all 1 < p < oo

For the study of the spaces M(SF) and M, (S7), we can again restrict
ourselves to the case where 2 € p < oc since for 1 < p,q < oo such that

1/p+1/qg =1 we have
M(SP) = M(8%), Muw(S*)= Mu(S?)
isometrically. As noticed previously, these identifications can be done via

the identity map if we wish, by a suitable choice of the duality between 57
and S9. Namely, we set

vz e S7, Yy e St (x,y) = tr(zy).
There is 5 nice description of M(S?) for p = 2 and p = o0:

M(S%) = My (5%) = Lo (N x N),  M(8%) = Mp(5%) = I2(£1, Leo)
isometrically, where I'3(£1,4) is the space of all operators from £; to £x
which factor through a Hilbert space, equipped with the usual factorization
norm. The case p = 2 is trivial while the case p = oo (for which [32] gives

the precise statement repeated below and which goes back in essence to
Grothendieck) is not (see {32] for more references).

THECREM 0.11. For ¢ : N x K — C, the following are equivalent.

(i) @ s a Schur multiplier on §°° with norm less than 1.
(ii) There evist o Hilbert space H and sequences (hn)n nd (km)m of vec-
tors in the unit ball of H such that @(n,m) = (hn, km) for all n, m in N.
(iti) The operator w, : &1 — Lo which tokes e, to .. ¢(n, m)er, belongs
to I%(£1, s ) with norm less than 1. Here {e,}n denotes the canonical basis
Of El. .
(iv) @ is a c.b. Schur multiplier on S with ¢.b. norm less than 1.

Tt is useful to note that this description provides a. class C of very simple
multipliers in the unit ball of M(5%), those of the form ¢(n,m) = anbm
where @ = (@n)n, & = (bm}m are in By_. The interest of this class C
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comes from the fact that there exists a universal constant K > 0 such
that Tonv(C) C Bag(se) C Ktonv(C) where conv(C) is the closure of the
convex set generated by C in the simple convergence topology on N x N (cf.
32]).

For 2 < p < 00 we have contractive inclusions

M(5%) C Mop(SP) © M(SP) C M(S2),

Indeed, M(S™) embeds contractively into M(S5?) and we use complex in-
terpolation. More generally, we see that for 2 < p < ¢ < oo we have the
following contractive embeddings:

M(S%°) C M(S9) C M(SP) ¢ M(5%),
M(8%) C Ma(S%) C Muw(S7) € M(S?).

'1“fherefore (M(857))2<p<oe 80d (Mep(SP))2<p<on are two decreasing families
of sets.

1. NON-COMMUTATIVE A(p)-SETS IN DISCRETE GROUPS

In this section G denotes an arbitrary discrete group with unit e,
denotes the left regular representation of G into B(¢;(G)), L?(r) denotes
the non-commutative LP-space associated with the von Neumann algebra.
generated by X\(G) with respect to the usual trace 75, and LP(7) denotes
the non-commutative LP-space associated with the von Neumann algebra
generated by X(G) ® B(4;) with respect to the trace T = 7y ® tr where tr
denotes the usual trace on B{fy).

DEFINITION 1.1. Let 2 < p < co and A C . We say that 4 is a A(p)-set
if the spaces L% (1) and L3 (7o) are isomorphic, or equivalently, there exists
a constant A > 0 such that for all finitely supported families of scalars a,

we have
2
| en®)] <Al

We let Ap{A) or sometimes simply A, stand for the smallest constant A for
which this happens.

1/2

The reader is referred to Subsection 0.8 for the definition of the algebra
M(LP(7p)) of Fourier multipliers as well as its subalgebra M.y, (LP(7p)).

DEeFINITION 1.2. A set A C (F is said to be an interpolation set for
M(LP{7)) for some 1 < p < oo if the restriction map
Q: M(LP(10)) = Loo(A), 0+ ((t))ica,

is p-surjective for some constant . We let pp(A) or simply pp, be the smallest
constant 4 for which this happens.
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The following result shows that A{p)-sets can be viewed as classes of
interpolation sets.

PROPOSITION 1.3. Let 2 < p < oo and A C G. The assertions below are
equivalent.

(i) A is a A{p)-set.

(ii) A is an interpolation set for M (LP(70))-
Moreover, up(A) < Ap{A) € Kro(rpyptp{d) where Kpn(zyy 18 the constant
defined in {0.3).

Proof. Assume that A is a A(p)-set. For & = {(g)y in Loo(A) we let &
be its trivial extension to £eo{G) equal to zero outside A. Then for any f in

L?(m),
f ooy Y
H ;}af(ﬂ}\(t) L) B H ;Etf(t)x(t) Lz (rg) = )\p(teZA Igtf(tﬂz)l 2

el ()

ted
< Apllelleee () 1 F 11 22 (ro)-
Thus & is in M(IP(7)) and it satisfies €| a(ze(re)) € Apllelltna(a)- This
means fp < Ap.
Conversely, assume that A is an interpolation set for M(LP(7)). Then
for any § > 0, each choice of signs £ on A admits a lifting & in M (LP('J‘(')))
with (|E1ar¢ze(ro)) < #p + 0. This implies that for any f in L% (1), say with

finitely supported Fourier transform f, we have

oy < s8] Tesfon0] .,
. it&

since f = Mz(Mzf). Then we integrate the inequality over all the choices of
signs on A:

e < (| | Sefone|,ave)”

{—1134 ted
= (p + )| e FEN )

ted
Now we apply the non-commutative version of the Khinchin inequalities
(0.3) and let & tend to 0 to obtain || flize(r) < Kio(r)bisllfllza(ry)- Hence A

is a A(p)-set with A, < Krp(r)ip. m

REMARKS 1.4. (i} Since the embeddings L>®(r) C L%(p) C LP(70) C
L2(rp) for all real numbers 2 < p < g < oo are bounded, we see that the

Lr({-1,1}40,L0(r))
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A(g)-property implies the A{p)-property. Thus we have a decreasing family
of sets ({A C G| Ais a A(p)-set})acpeoo.

(if) Although no significantly new examples are known, it is useful to
consider also the case 1 < p < 2. A set A is called a A{p)-set in this case
if Lf (7o) and LY (7o) are equivalent Banach spaces for some and thus any
1 < ¢ < p. Similarly we denote by A,(A4) the smaliest constant A > 0
such that for any f in L% (75) we have 1fllzora) < AlFllpiprg). With this
terminology it is known by an extrapolation argument that if ¢ > 2 and
A is a A(g)-set then A is a A(2)-set. Conversely, if A is a A(2)-set then A
is a A(g)-set if and only if its indicator function 14 belongs to M{LI(r)).
Moreover for each set A we have

(1.5) Aa(A4) < Ag(4) < Xa( D)1 Lall e (zogryy-

Now we extend the previous definitions and results to the non-commuta-
tive case. Namely we define subsets of @ playing for the sets M {LP(m)) a
rdle similar to the one played by A{p)-sets for M(LP(rp)).

DErFINITION 1.5. Let 2 < p < co and A C G, We say that Ais a A(p)cp-set
if there exists a constant C > 0 such that for all finitely supported families

of operators z; in SP? we have
1/2
(i) |, )
P
ted 5

. \1/2
|Zrwos,, < cmof](Lain)

Then we let; )\;b(ji) stand for the smallest constant C for which the inequality
above holds.

gr’

REMARKS 1.6. (i) Using Jensen's inequality it is very easy to see that
when p > 2, any f in LP(7)} satisfies

o) max{| (3 7 7e) | [ (D FaFe) |} < 1l
teG te@

Hence the A(p)q,-property means simply that the norms || « ||pz¢-y and || - |
are equivalent on L% (7) where for any f in LP(7),
50 }

= ma:x{ H ( S A f(t))musn’ “ (Z f(f)l?(ﬁ)*)l/zi
teG i3S

Therefore if A is a A(p)e,-set then 14 is in M, (LP(7)), Le. the natural
projection of LP(7g) onto L% (7y) is ¢.b. with c.b. norm less than or equal to
A (4).

(ii) Given two A(p).n-subsets As and Ag of G, the set Ay U Ay clearly has
the A(p)cb-property with Agb (Al U AQ) < A;b (Al) + /\;b(/lg)

DEriNITION 1.7. Given 1 < p < oo, a subset A of G is said to be an
interpolation set for My (LF (o)) if the restriction map
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Q : Mp(LP(m)) — £oo(A), @ = (@(E))ien,
is surjective; then it is y-surjective for some constant y and we let ,u;;',b(./l)
or simply j_c;h be the smallest constant u for which this happens.

The following result shows that in this more general setting, A(p)cp-sets
can also be viewed as classes of interpolation sets.

PROPOSITION 1.8. Let 2 <« p < oo and A C G. The assertions are
equivalent.

(i) A is a A(p)e,-set.

(i) A is an interpolation set for Me,(LP(mp)).

Moreover, ;,L;"Jb (A) < )\gb (1) < KLp(q_),u;b(A) where Kpp(ry is defined in
(0.3).

Proof. Assume that A has the A(p)p-property. For € = (g;); in £oo(A)
we let £ be its trivial extension to £.o{G} obtained by adding zeros. Then for
any f = 3 ,cq A(t)®a in LP(7), say with finitely many non-zero operators
T:, we have

HZE¢>\(t) ®mt »
teA L 1/2 1/2
S A;b mm{” (tEZA \Etlzxzmt) HS}" ’(“’EZA 15“23}.&5{;?) | Sp}

< 3 lele gymae { || (i) QHSP,H(%mtw:)”z "

tels
Hence using (1.6) we get
n STENE) ®
tEG
Thus & is in Mp(LP(70)) with |E]| s, zeeroy) € APIE]leway, Which means
that usP < A
Conversely, let A be an interpolation set for M, (LF{7g)) —a“nd 6> 0. Any
choice of signs ¢ on A admits a lifting £'in Mew(LP(70)) with &l ara (2o (o)) <
p® + 4. This implies that for any f = 3,4 N (t) ® @ in LR {7) we have
1flzon < (52 + 8[| S eont) @
teA
(since g7 = 1 for all t € A). Letting 6 tend to 0 we see that each f in Lf(7)
satisfies, for each choice of signs £,

1fllzoery < 1

< A ellecs (I Fll oy

Lr(r)

Lr(r]

Z s.tk(t} ® = H

Le(r)
vy {(7)
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We integrate the right side above over all choices of signs on 4 to get
P 1/p
| F oy < #;b( | H > e ®$t” dv(z))
L# (7}
{1,134 tecA

Zeﬁ\(t) ® s:t‘

teA

__ ,,ch

LF’({-—l,l}A,y,LP(T))

Now we apply the non-commutative version of the Khinchin inequalities
(0.3) to obtain
sp}'

Illzo(ry < Kpoiryus® max{” (thw.’;)l/z}
teA

gn’

1/2

(2ae)"
teA
That s to say, A is a A(p)cy-set with AS® < K7pyu®. u

REMARK. As the embeddings Mex (L% (7q)) € Moy (L4(m)) € Men (LP(70))
C M(L*(mp)) where 2 < p < ¢ < o0 are bounded, we see that the A en-
property implies the A{p)cy-property. Thus the family ({Ac G| Adisa
A(p)eb-set})acpeos OF sets is decreasing for each fixed discrete group G.
On the other hand, the A(p)cs-property trivially implies the A(p)-property.
Moreover for any 4 C G and any 2 < p < q < 00 we have

M) SAPA), pp(A) S pEEP(A),  Ap(4) < AD(A).

CoMMENTS 1.9, Clearly, we can naturally extend our definitions to the
case of 1 < p < 2. We say that a set A C G is a K(p)cp-set if there exists a
constant ¢ > 0 such that for any sequence (z;):e4 of operators in SP say a
finitely supported one, we have

it {|(So) ], + () ) <[5 00

where the infimum is over all decompositions of the z;’s in S? as x; = Y+ 2.
We let K"(A) stand for the smallest constant ¢ for which this holds. Recall
that the converse inequality (with constant 1 instead of c) is satisfied by any
set A and note that the K(2)q,-property is trivial.

Let 1 < p < 2 and 1/p+1/p’ = 1. Then, for a given set 4 C G, the
following are equivalent.

Lz ()

(i) A is a K(p)es-set and each c.b. multiplier on I¥%(rp) extends to a
¢.b. multiplier on LP (7).

(ii) A is a Ay (p')-set.

Indeed, assume (i). By Proposition 1.8, we need to prove that A is an
interpolation set for M (L¥' (7)) = Mo (E2(70)). Equivalently, we need to
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prove that the choices of signs on A extend uniformly compi.etely b.oundedly
to multipliers on LP{7p). Let € = (£:)iea be an arbitrary chmce. of signs on A.
Then, for any finitely supported sequence (z¢)tea of operators in 57, we have

litezzxgm(t)@mt Le(r} /2
1/2 1
< it (I w) ", (=) )
1/2 1/2
=t (D) L, (D) )
Tyt - 87 ey
V1,7 ST ted

Thus by our assumption on A we get

“ T en() ®mt“ < K;b(A)“Zx(t) ® thLp( .
ted Lr(n) ted T
This means that £ defines a c.b. multiplier on L (79) with ¢.b. norm less than
or equal to K;b (A). The second assumption on A says that the restriction
map
M (LP(r0)) = Man(L(m0)), ¢+ elas

is surjective, hence p-surjective for some constant p > 0. Then, for all
§ > 0, each choice of signs £ on A extends to a c.b. multiplier on LP(rg)
with norm less than or equal to pKgP(4) + 8. Therefore we are done and
PP (A) = peP(A) < ukP(A). o _

Conversely, assume (ii). Then by Proposition 1.8, Ais an interpolation set
for Mcb(Lpl (70)) = Men(LP{70)). A fortiori, each c.b. multiplier on Lﬂ(ffq)
extends to a c.b. multiplier on LP(7p) since every multiplier on L% (7o) is
in particular a bounded sequence on A. On the other hand, let 4 > 0
be fixed. Then since every choice of signs £ on A admits a lifting & with
NE M (22 (70)) Su?,"(!l)%—d, for every f=3 ea » (1) @ 2 In L% (r) we get

IS enpon], <wr@-o|Tres|, -
Le(r) Lr(r)
tgA tEA
Hence if we let § tend to zero, integrate over all these choices of signs and ap-
ply the non-commutative version of Khinchin’s inequalities (0.2}, we obtain

s, (I(S) " IS )

Yt,2: €57 te
<P ore @
ted

]L:"(T)

where Kps(r) is the constant of (0.2). This means that A is a K (p)cp-set.

Moreover, K;b(A) < P (A)/ Koy = u;‘? (A)/Kr(ry. m

icm
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REMARK. Let 1 < py < p < 2 < 9’ < 0o, Then it is well known that

any A(p')-set is a A(py)-set. However, we do not know whether a A(p')a,-set
must necessarily be a K (p;)ay-set.

In the sequel, we are interested in finding properties simpler and stronger
than the A{p)cp-property. This aim is achieved for even integers by intro-
ducing two combinatorial properties called the B(p)- and Z(p)-properties.
For the group Z, the B(p)-property was first considered by W. Rudin in
[37] while the Z(2)-property was introduced by A. Zygmund in his work
[46], which justifies the name of the latter property. Thus our properties
are nothing but an adaptation of Rudin’s property to the case of arbitrary
discrete groups, and a generalization of Zygmund’s property to arbitrary
positive integers and arbitrary discrete groups.

DEFINITION 1.10. Let p > 2 be an integer. A subset A C & has the B(p)-
property if for all p-tuples (£1,...,t,) and {s1,...,8,) in AP, the equality
t7's1.. 47 s, = e (e is the unit of G) holds if and only if {t1,-. ., tp}

= {311 .- ':S.’P} (l)

ExamMPLE. When ( is a free group, every free subset A of G has the B(p)-
property. Indeed, let (¢1,...,tp),(s1,...,8p) in AP be such that #71s; ...
..t7lsy is the empty word and assume {t1,-.,tp} % {51,...,85}. De-
note by ég the first index such that t;, # s; for all 1 < § < p and 4; the
last index for which t;, = #;,. Then we would have ¢; Los, oSy —1ty T =
517;%—1 .. .tlsgl...tiﬁls;l. The reduced word of t;lsiu...sil_ltal is ex-
pressed with letters in A and contains necessarily the letter t;;l while the
reduced word of 8, %_1 .- .tls;1 . T ! which is also expressed with let-
ters in A does not contain b 1. This means that there exists a word which has
two different reduced expressions, both with letters belonging to A, which
contradicts the freeness of A. We will see later that this property which is
adapted to free groups is well adapted to the case of the group Z.

DeriNiTION 1,11, Let p > 2 be an integer. For each 1 < ¢ < p, we set
vi =1 when 1 is even and »; = —1 otherwise. Then we say that a set A has
the Z(p)-property if Z,(A) < oo, where

Zy(A) r= sup (b1, .. 1) € 4P | Wi # j, i 15 &8 82 =4}
=Yl

ProrosiTioN 1.12. Let p > 2 be an integer. Then the B(p)-property
implies the Z(p)-property. Moreover, each B(p)-subset A of a discrete group

G satisfies Z,(A) < (g‘—!)z if p is even and Z,(A) < BLEEL) if p is odd.

(1) In each set, elements are repeated according to their multiplicity in the corre-
sponding sequence,
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Proof. Let (t1,...,%p), (81,.. ., 8p) in AP be such that £ .. . £,7 = &} ...
...87 with (v5)1¢j<p as in Definition 1.11 and ¢; # t;, s; % s; for all
1 <4 #7<p Then ' .. tz%sp 7 ...57"t = e. Since A has the B{p)-
property, we have necessarily (with elements in each set repeated according
to their multiplicity)

{11 <i<p iodd}U{s; |1 <i<p, ieven}
={t;|1<i<p, ieven}U{s; |1 <i<p, iodd}

But t; #t; and s; # s; for all 1 < ¢ # j < p, therefore we have

{t; | 1<i<p, ieven}={s; |1 <i<p, ieven},
{t;|1<i<p, 10dd} = {5, |1 <3< p, ©odd},

and it is easy to deduce from this the announced control of the constant
Zp(4). m

THEOREM 1.13. Let p > 2 be an integer and let G be o discrete group.
Then every subset A of G with the Z(p)-property is a A(2p)en-set. More-
over, there exists a constant C), depending only on p such that M2(4) <

3max{Z,(A)/3), 0} for each A C G.

The proof is much easier to follow in the particular case p = 2 for which
it appears in the Appendix (Proposition 6.1), and we urge the reader to look
at it first.

For the proof of Theorem 1.13, it will be convenient to make the following
definitions and to use the inequality of Propesition 1.14 which was found by
G. Pisier.

Given a partition P of {1,...,p}, weset k =1 (P)for 1 < k, 1< p
if & and ! belong to the same element of P. Now given two partitions P
and Pa of {1,...,p}, weset Py < Py ifforeach 1 < kI <p k=1 (P1)
whenever k = [ (P3), and we write Py < Py if Py < Py and |Py| < |Pa|.
This provides the set of all partitions of {1,...,p} with a partial crder for
which Puax = {{1},...,{p}} is a (unique) maximal element and Puin =
{{1,...,p}} is a (unique) minimal one. Finally, if I is an arbitrary sct and
£ =(&,...,6) € I?, then P¢ is defined as the unique partition such that
forall 1 < kI <p k=1 (Pg) if and only if & = &;.

PrROPOSITION 1.14. Let (02, 2,%) be a probability space and (2;)ier
family of independent random variables with P{g; = 1} = 1/2 = P{g; = 1}
for each i € I. Let p = 2 be an arbitrary integer and for 1 < 7 < p,
let E; be Banach spaces, f; : I — E; be finitely supported functions and
w: By x...x By — F be a p-linear map of norm not ezceeding 1, where
F is an arbitrary Banach space. Fiz o partition P of {1,...,p} and set
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Ap={je{1,...,p} | {j} € P}. Then

Z So(fl(fl)s--"fi’(fp))HF

£el® PeSP
E=(Ela“'1§}1)

<TI0l TT (5ol )

jcAp el idAp 2 igl
1<ji<p

Proof. We start by noticing the following. Given a finite set a =
{f1,..., s} of indices (s > 2), we consider s — I independent copies of the
family (e;)ier on (£2, X, P) assumed large enough, denoted by (Y7, (e, %) )ier,
ooy (Y5, (e,1))ier- Then we set

Zi (e, 1) =Y, (o, 1),

ij(a7i) = Y:’fk—l(aai)yjk (c, i), 2<€k<s -1,

Zj, (1) = Y5, (e, 4).
Clearly, each of the families (Z;, (@, %))icr,. .., (25, {0, 9))ics has the same
distribution as (g;};c7. Moreover, using successively the orthonormality of
each of the families (Y}, (e,1))ier, we check easily that for any function

n:a — I, the integral {, i1 Z;, (o, n(jx)) dP is 1 if 0 is constant on o,
and 0 otherwise.

Now if we are given a partition P of {1,...,p}, say P = {as,...,an}
then for each set v, with [ax| > 2, we can define a family (Z;{o, 1))ic1, jea,
as above. Moreover we can construct these families so that they are mutually
independent. A simple verification shows that

> elfil&)s - fol&)) = [ 0(d1(w), ., $p(w)) dP(w)

Eelr, Pe<P o]
where £ = (£&1,...,&p) and for each integer 1 < j < p we have set

Yoicr Zilak, 9)(w)f3(1) if j € oy with |ag| > 2,
Pier Fild) if j € Ap.

Hence by using Hélder’s inequality we get

> elfale) B <] 16@)les - 16y)le, ()

Yw e 2, ti(w) = {

ECIP PP {2
1/
< TT lesim TT (Vlesl, a®) ™
jedp jEAp 02

i<i<p
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[0l I (J1Saeosof, @)™
jeAp i€l lg_;l‘(p iel
1 IS o0l T (5| Sasol, )"
JE.AP 1€l 1<3<p il

Proof of Theorem 1.15. Let f = 3,4 ™ (8) ® m with ¢ v @y finitely
supported. Then

12y = () = 1520 57 ey

2
H M
—HZ>\7)® Z 33&1.’,‘06; La(r)
YEG EEI})P
gt G =y

where, for each 1 < &k < p, we have set

pp=1, =1 if k is even,
g =%, Vp = —1 if kis odd.
Then
2
Ha
=2 | X =],
jed geAP
PR

il

2
12! Hep
DI RO
~eG P partition £€AP, Pe=
of {1,...p} g¥1 -Eup—'r

Y| Y et

2
)

where C) it a constant depending only on p and more precisely on the
number of partitions of {1,...,p}. Henceforth, all the constants which will
appear during the proof and Whmh depend on p only will be denoted by Cp
for simplicity. On the other hand, let

o)

S = max{“ (mzjlmfmt)

531 M
+ 0y Z (2l X e
PP pax  vEG ge.ri?' PE__
: Ep =7

1/2

’
gir

A2
(L)
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and for each partition P, let

2
= E l E .T'I-Ll :L,.U'P
31 i 2
g
TEG  EEAP,Pc=P
?1-»-5% =7

With these notations, the inequality above becomes
2
(17) ||f”Lp2p(-,-) S 2S(Pmax) =+ Cp Z S(P
P#Pmax

Our aim is to prove that S(Pmax) < Z,;(4)S? and that there exists C,
such that for each partition P # Pp,.., we have

(1.8) S(P} < CoS®||f |1 Fony-

STEP 1. The assumption that A has the Z(p)-property implies S(P
< Zp(A)8?P. Indeed,

S

YEG  &1..,EpEAdistinct
E;l- LT =y

AY, X el

vEG £1,.. ,EpEA distinct

max)

x5 |Is2

1. "P...
< Zp(4) Z II(CCEPJ (= 1)*9351- w?:”sl
£1,,6p€A
=Zp(A)|| Yo (=) (@) el gl <«
€1,-08p€A

P
) Hmax ” Z mg.w&}
=l { tied 5 s» }
where for the last inequality we applied Corollary 0.9. Therefore S(Prax) <
Z{A)S?P,

STEP 2. Given an integer 1 < k < p—2, we show that if (1.8} is satisfied
for all the partitions P with [P} < k&, then it is also satisfied for all P with
|P| <k + 1. Indeed, let Py be a fixed partition with |Pg| = k + 1; then

2
ED D] D DI SO T D

*
Lg%,
€A

vEG gem P:<Po EEAR, P <Py
P =y byt =
<2 m nel? w ol
P2 1 P
- ZH Z mfl“'wsp SQ+ZZH Z Tey - T,
TEG  EEAT, Pe<Py TEG " £E4%, Pe<Py

G g =y VL g =y
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1 Hp 2 S{P
§22“ Z Iel”.:};gp SQ+20P Z ( )'
YEG | £€AP, PPy B<Po

u v
bt =y

According to the induction hypothesis, each P < Py satisfies (1.8} since
|P| < |Po| = k + 1, hence we are reduced to proving the inequality

2
451 Hp
z H Z mﬁl e mgri 52
FeG  EEAT,P:<Pp
1y
E;l---fpp'_"'ﬁ'

< CpS* || FII -

Now

YD ekt ’

52
~elG  §eAP, Pe<Pg

EL L EnT =y
Hp 2
= Zk(q)@( Z mgll.“mgp) ,
L2(7)
~yeG £€A?, P:<Po
& g =
2
= Z (>\(€1) @ $El)'u'1 (>\(‘£2) ® wE?.)M (NG @ mfp)#p L2
feAr, Pe<Pp
2

= SN AlE). hié) Lo

geAr, P <Py

where for each 1 < j < p, f; is defined on A by setting f;(£) = (\{t) @ Ly )
for t € A. The f;’s belong to L*(7). At this level, we apply Proposition 1.14
0 {—1,1}¥ equipped with the counting probability v, to the n,th coordinate
projection on {—1, 1} denoted by &; where {n, | t € A} is an enumeration
of the set A, to the functions f; : A — L?(7) above and to the p-linear
contractive map which is the product from L2 (7) x ... x L*(r) (p times)
into L2(7). Hence, letting Ap, == {j € {1,...,p} | {4} € Po}, we get

| X Ak s

L3(7)
£EAP, PPy

< I1 20, T (1 [Sean

jﬁAp Sted 1SjSP - 1:1 teA
L .
JEAr,

i G DIENCE

(-L1)¥ tea

, 1/
F dz/) ’
£29(7)

(p—|Awy)/p
r du) P Pp
e (r)

since for each 1 < j < p, we have
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ng(t) == (Z >\(t) & mt)“j — f}lj, thfj(t) — (Ztﬁ)\(t) ® xt).”'j.
teA teA teA ted

On the oth-er hand, applying Jensen’s inequality followed by the non-commu-
tative version of the Khinchin inequalities proved in [26] and [27], for each
integer 1 < 7 < p we get

{_15,1}w “ tEZA e (t) ® 2y ;(T)dv)lfp
< ({_15,1}»« | getx(t) oul” a)"™
< Hgangy max { | EZA(%(t) 9 (DB 2)) o
| (t;(x(t) ENINCETR )
= Kyop(ry mace{ | (Mem; 52) " [ | (X(e)@,;mtm:)”j )

S!p} = KLZ?(T)S.

?
s

1/2
= Ksz(,.) rnax{“(z:c::ut) I
teA
This means that

s

€AP, P <Pp

(Seet)™

&) - 5ol

—|A A
sy & HrreSP IS

Therefore we have

NP>

YEG  (EAT, P <Py
E;l."&-;?:

Now since the inequality § < ||f||L2r(r) always holds and since Py # Prax
80 that |Ap,| < p, from the above inequality we get

2
b K 2 21 p1120—2
Sl X e < KSR
YEG (AP, PeZPy
P =
STEP 3. The minimal partition satisfies the inequality (1.8). Indeed,

Proposition 1.14 applied similarly to P, instead of Py gives the much
more precise inequality S(Ppi) < Ki’;,,mﬁ'zp,

< (Koo S) 20 1ra )| f Twe).

2
K1 Hp
$£1 PRCEEY pr 52

CoNcLusION. By means of Steps 2 and 3, the inequality (1.8) is satisfied
for all partitions P # Puax. Therefore, upon taking into account Step 1,
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the inequality (1.7) gives

This means that letting z = S7Y|f|zae(r) we have z?P — Cpa®(P-1)
2Z,(A) < 0, which easily leads to & < 3max{Z,(4)"/®), C,}. Hence we
are done. m

As an illustration of Theorem 1.13, we derive the following result already
obtained in [19].

CorOLLARY 1.15. Let {g, | n € N} denote an arbitrary free subset of
the free group Foo. Then for each 2 < p < oo, there exists a constant G, > 0
depending only on p such that for each finitely supported sequence {2 )n30
of eperators in SF, we have

CEORNN DRNCALEH

neN

Lo (r)
s Opmax | (Dwiae) o [ (S mwet)

Proof. Since {g, | n € N} is a free set in I, it has the B(p)-property
for all integers 2 < p < oo. Then, by Theorem 1.13, it has the A(2p)cp-
property for all integers 2 < p < co. Therefore the inequality (1.9) is satisfied
forallreal 2 < p<oc. m

50’

CoMMENTS 1.16. Taking inverses in the definition of property Z(p) is
compulsory. Indeed, let us say that a subset A of G has property ZT(p) if
the constant

Z3(A) = sup [{{t,-..,tp) € A7 [ t1...tp = 7}
yeG

is finite. When G is Abelian, such a set is certainly a A{2p)-set as shown in
[37] but it is not a A(2p)ey-set in general. As an example, take A = {2¢+27 |
i,j = 0} in G = Z. Then A has the Z*(p)-property for all p but does not
have the A{p)cy-property for any 2 < p < oc as we will point out later in
Corollary 2.9. However, a Z (p)-subset of an arbitrary discrete group enjoys
a weaker and actually a strictly weaker analytical property, namely: for all
zy in $%°, we have

o) | (;%(ﬂ z) ..,

<\zZr max{“(thm;‘)p/2|
’ tEA

52’ sz}'

(Sate)™]
ten

icm
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Indeed,
P2 9
NG ) ” = H 5 ( )
”(tEZA (t) ® o Z Ve Z Tt )|l
vEG Loy tp€A
fl...tp———")‘
2
:ZH Z a‘,tl...wtp .
YEG  t1,.tpEd s
t1..tp=y
SEAY, D lme ke
VEG byt €d
b tp=y
< Z;(A)“ Yz whzn.a, o
£, tp €A

Using Coroilary 0.9, we get

I(Soe=)T,

< 25 [Tma{| 35 s, | 5 i, )
, =1 ti€d tieA
“(ZMt) ®$t)p|
teA

L) < Z;(A)max{lygmrmt ’glmtmf ;}. n

In the Abelian case, if a subset A has the Z¥(p)-property then Lip (r)
satisfles an inequality analogous to “type 27, i.e. for every finitely supported
sequence (T4)seq in S%, we have

“ Zx(t) ®~'Eti () < (Z;(A))l/(zp)(lemtngzp)l/Z_

teA teA
The proof of (1.11) sketched below is similar to the one given in [43]:

2p
ISx0se?, <[ Sxme( T
teA {r) [T P
s (t],...,fpje.’l
(51:---»5?)611?1
tl‘fl_l-"t:a&";1=’7

»
gr’

(1.11)

* #*
wtlu’ﬂ'gl N .m'tpmfp) L)

= ” _ Z wtlwgl...mtpmgp
(E1,... tp)EAP
(ﬁla-":‘fpje‘dp
tiér ey e

2 l|z4, %5, -

{11ty )EAP
(£1a-"1‘EF)€AP
troetp=£y...{p

g1

IA

; :rtpa:zp ||g2.
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For a compact operator ¥, (s;(y));»1 stands for the decreasing sequence
of the eigenvalues of the operator {y" y)1/? (repeated according to their mui-
tiplicities). With this notation, we have

HZx ®-’L‘t‘L2 )é Z ZSj(.'L‘“ﬂ'JEl...mtpmzp)‘

teEA (t1,....tp)edA? J21
(&1,...,6p)EAP
ty.tp=£1...&p

Then, using the general Horn inequality proved in [43], we obtain

H Z)\(t @ T

ted

L2

< Z ZSJ ze)55(2¢, ) 35{24,)8; (ms )

(t1yenytp) AP J21
(£15eeabp)EAP
t1otp=E1.Ep

=3 S S sil@)si(me) - silen,)si(2e,)

YEG  (t1,...tp)EAT  F21
(El,---:fp)eAp
ty . tp=y=E1...Ep

2
:ZZ( Z Sj(mtl)---sj(wt,,)) .

JZLYEC  t1,..taEA
tl...tp="'l'

Using the agsumption on A, we get

| Srten,, <HOTY X s G

teA FRLlyEE@ 1, tpEA
1., tp—’}'

=z Y s siley)

FES R TRY |
P
=ZH > (Zs?(a:t)) .
=1 Ttgd
This implies that

\Zkt)@)fﬂt” 2(e) <(zf 1/(2p)( (ZS ’-E.g) )1/(2p)

ted teAd

%

< (ZH(4)) 1/(2@)(2;1 (Eszp(mt )1/;0)1/2
2.
€4

izl
< (7 W (Pl

icm
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2. NON-COMMUTATIVE A(p)-SETS IN Z

We start by stating the definitions and the results proved in Section 1 for
the group Z, in which case LP(rp) coincides with L? and LP(r) with LP(SP)
via the identification for each integer n between the operator ~(n) and the
function 2™ defined on the torus T.

DEPINITION 2.1. (i) Let 2 < p < cc. A subset A C Z is called a A(p)-set
(resp. A{p)ch-set) if there exists a constant ¢ > 0 such that for a! f in Ly

(vesp. L% (S7)), say with ¥ finitely supported, we have
| Flize < el flize,

Tesp.

flaran < eamss {| (3 FoFon) ™| (5 o), )
ned ncA

We denote by Ap(4) (resp. X3*(4)) or simply A, (resp. AS°) the smallest
constant ¢ for which the inequality above holds.

(i) Let 1 < p < co. A set A C Z is said to be an interpolation set for
M(LF) (resp. Me,(LP)) if the restriction map Q defined on M(L®) (resp.
M (LP)) by sending a Fourier multiplier ¢ on L* to the sequence (¢(n))nes
in £y(4), is surjectlve and thus p- surJec’mve for some constant p. We let

pp(4) (resp. uSP(A)) or simply p, (resp. By ") be the smallest constant u for
which this happens.

PROPOSITION 2.2. Let 2 < p < oo. For A C Z, the following properties
are equivalent.

(i) A is a A{p)-set (resp. A(p)en-set).

(i} A is an interpolation set for M(LP) (resp. M.,(LF)).
Moreover, for each set A C Z, we have

Hp(4) < Ap(4) S hppp(4)  (resp. g (4) < XP(A) < KppgP(4))

where ky (resp. K,) is the constant defined in the Khinchin inequality (0.1)
{resp. (0.3)).

The following known facts show that there is a restriction on the size of
A{p)-sets {thus a fortiori on A(p)cy-sets).

Facrs 2.3. (i) ([37]) There exists a constant ¢y > 0 such that for any
A(p)-subset A of Z (2 < p < c0) and any integers a,b, N with N > 1, we
have

|40 [a, 0+ NB| < er(Ap(4))> N2,
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(i) ([9], see also [42}) For any fived 2 < p < oo, there exists a constant
co such that for any integer N > 1, there exists Axy C [0, N] satisfying

eaN?P < |An| & sup Ap(An) < co.
Nzl

Thus the decreasing family ({A C Z | A is A(p)})2<p<so of sets is in fact
strictly decreasing.

In the sequel, we are interested in the size of A{p)w,-sets where p is
an even integer. More precisely, our goal is to construct large and actually
the largest A(p).p-sets possible. For this purpose, we use the combinatorial
properties introduced in Section 1, namely the B(p)- and Z(p)-properties
which we recall below.

DEpNITION 2.4. Let p > 2 be an integer. We say that a subset A of Z
has the B{p)-property if for all p-tuples (na,...,np) and (my,...,my) in AP,
S = yob_ my implies {ny | 1 <k <p} = {mp |1 <k < p}, where
in each set, the integers are repeated according to their multiplicity in the
corresponding sequence. We say that A has the Z{(p)-property if Z,(4) < oo,
where

P

Zp(./l) 1= sup {(nl, . ,’!’Lp) e AP |V # i ng -‘,é 5 & Z(—l)k’mﬂ = fy}‘
~EZ B,

Theorem 2.5 below was proved previously {cf. Section 1} in the more general

case of subsets of discrete groups.

TuEOREM 2.5. (i) If A C Z has the B{p)-property then it has the Z(p)-
property with Z,(A) < (EN? if p is even and Zp(A) < (B2)? if p is odd.

(i) Bvery set A C Z with the Z(p)-property has the A(2p)q,-property.
Moreower, there exists a constant C), depending on p only such that }\5};(/1) <
3 max{zp(-/l)ljzpa Cp}-

COROLLARY 2.6. For each even integer p > 2, there ezists a A(p)ch-set
which is not a A{q)-set for any g > p.

Proof. Let p > 2 be a fixed even integer. By a construction in [37],
there exists a set A C N which has the B(p/2)-property and satisfies

T AN [a,a+ Nbj|
lim sup ————————=

> 0.
N—oo a,beN NZ/p

So there exist sequences (ai)k, (bk tk, (N )i of integers with im0 Np = 00
and a positive congtant ¢ such that for each k, we have

CJV}?/:D < i/lﬂ [ax, ax +Nkbk]|.
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By Fact Z:S(i)a if A has the A(g)-property for some ¢ > p then for each
integer k, it also satisfies (c; is the constant appearing in this fact)

(Ag(A)2erN2e > | AN [ag, ag + Nyby).

Since ¢ > p and Ny can be arbitrarily large, we see that this cannot hold.
Thus A is not a A(g)-set and we are done. =

From the Rudin set appearing in the proof above, we can construct a
sequence of sets as in the following corollary. The corollary will be used for
the proof of Theorem 4.9 while a reformulation of it will be used to prove
Theorem 4.8.

COROLLARY 2.7. For each even integer p > 2, there exists o sequence of
sets An, C 27,27 such that

sup )\;b(/ln) < 00,

inf 272774, > 0,
nz0 nz0

The next result shows that the A(p)a,-property is much more restrictive
than the usual A(p)-property.

PROPOSITION 2.8. There existe a numerical constant § > 0 such that for
each 2 < p < oc and each A(p)a-set A, if A contains the sum A + A of an
arbitrary finite set A then |A| < §(2X5P(A))8#/(P—2)

.

Proof Step 1. If a A(p)cn-set A contains the sum B+ B of some finite
set B with property (x) below, then |B| < 2(2AsP(4))%/(-2)

We say that a set B of integers has property (%) if given an enumeration
B = {b1,bs,...} (b # by whenever k # I), the following holds: if 3, = -1,0
or 1foreach k2 1, 3,5, |B8k] €4, and 2ok>1 Orbe = 0, then Brby = 0 for
all k > 1. - N

Let A be a A{p)ch-set and assume that there exists a set B = {b1,.- ., b}
with cardinality n > 1 satisfying (x) and such that A D B+ B = {by + b; |
1<k, < n}. Let € = (eri)i<h,icn be such that for all 1 < k,I < n,

Ep =g ==*1, VYk#l,
if Wi ot 5, 20, 5% by + by,

1
Ekh = {Eij if 34 =4 4, 2B =bi—l—bj.

Note that & is well defined since B satisfies (x). We are interested in control-
ing the norm of the operator 7. defined on 5% by sending = = (Zg1)1<k,i<n t0
(Eklmkl)lsk,jsn. Let 2 = (21)1<k,1<n be a fixed operator in S? and consider
the function f, which takes z in T to (zbk"‘blmk;)lsk,ggn in . This function
is clearly well defined and belongs to L?(S2). Moreover, fu(z) = D,z D, for
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all z in T, where by definition D, is the unitary operator

20 L..00
0 22 ... 0
D=1 . A :
0 0 ... =z

Therefore [} fo]| zs(s2) = || %]l 55 - We define the map v on Z by setting v/(by, -+ by)
=gy forall 1 < k,1 < nandv(s):=0for s € Z\ B+ B. Note that v is well
defired since B has property {(x}, and v is the trivial extension to Z of some
choice of signs on B + B. Hence |[v||ar,, vy € AP (B + B) € AL(A), that
is, the operator M,, associated with the multiplier v is such that M, ®idgw
is bounded on LP(S?) with ||M, ® idge|| < A°(A). We check easily that
M, ®dgg (fa) = fr.(a) Thus

ITe(@) 52 = | frgellzngszy < As (D fellzagsny = 3P (A) |1z

Hence T has norm at most )\;b (A). This implies that if we denote by oy,
the unconditionality constant of the canonical basis of SZ, where m = n/2
if n is even and m = (n —1)/2 if n is 0dd, then oy, < X?(A). Indeed, given
a choice € = (gu)1<k,1<m Of signs we can consider the map £’ defined on
{1,...,n} x {1,...,n} by setting for cach 1 £ k < n,

€'k, k) = €6, 7) if 35 # 5, 2by, = b; +b;,
and for all 1 < Lk < m,

E"(k +m,l) = Ekl,
gk )=ek+m,l+m)=1

e'{k,l 4+ m) = ey,
k1

when n is even, and

gh+m+11)=cy, £ki+m+1)=cn,
gkD=ck+m+1,l+m+1)=1 ifks],
gm+ L) =¢m+1Ll+m+1)=1

when n is odd. By the above, |T:|lgsz) < I|Tellssy) < AsP(A). By the
results of [22] we have m*/? < 2, m*?. Thus m*/2 < ZAgb(A)ml/P, equiv-
alently | B| < 2(2A5P(A))?P/ (P-2),

STEP 2. There exists a numerical constant § > 0 such that each finite
subset A of 7 contains a subset B with |B| > 67| A|*/4 satisfying ().

We start by picking up an arbitrary by in 4 and assume that for some
integer k > 1, we have k elements by,...,bx in A such that {b1,...,bx}
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enjoys (*). Then consider the set

k k
b1,---, b == = —
[N {;ﬁzbil‘dlglgk, B=0,1, 1&;@”54},

Then

k! 27 4
L
Assume that lA| > ZLk* Then there exists at least one btz in A\[by, ..., bg].
We check easily that {b1, ..., bk, bgy1} still has property (). Indeed, suppose

4

that 3 .., Biby = 0 for some 8 = —1,0 or —1 and 1 <4 < &k + 1. Since
{b1,..., by} has property (%), the only case to check is E?=1 BGiby, — biy
= 0. But this does not hold since it would contradict the assumption that
brr1 € [b1,..-,bk]. This means that we can find by induction a set B =
{b1,..-,n, buy1} with property (x) where ¥n? < |4] < #(n + 1)* and
thus [B| > (£]4])"*

(b1, ... By] < 3%

CoNcLUSION. If A contains A 4 A for some finite set A4, then by Step
2 it contains B + B for some B with property (x) and |B| > (&|A[)V/4
Applying Step 1 we get |B] < 2(2X5°(A))%/ (=2 Therefore

|AI < 54(2Agb(_{1))8p/(17—2) = 5(2A;b(/1))8p/(p—2) .

COROLLARY 2.9. There erists a set which is A(p) for each 2 < p < oo
but not A(p)ey, for any 2 < p < co.

Proof. Consider A = {2¥ + 2! | k,1 > 0}. It is well known that A is
a A(p)-set for all 2 < p < oo (cf. [24], see also Comments 1.16). But by
Proposition 2.8, A cannot be a A(p)e,-set for any 2 < p < co. w

3. APPLICATIONS TO FOURIER. MULTIPLIERS

PROPOSITION 3.1. For cach 2 < p < o, the inclusion My, (LP) ¢ M{LP)
is strict.

Proof. Let 2 < p < oc. By Corollary 2.9, there exists a set A which is
A(p) but not A(p)w,. Hence, by Proposition 2.2, it is an interpolation set
for M (L) but not for My, (LP). Thus, a fortiori, the embedding of M, (L*)
into M(LP) is strict, m

COMMENT. It was shown in [21] that a Banach space X is a subspace
of a quotient of I? if and only if there exists a constant ¢ such that, for
any bounded operator T on LP, the operator T ® idy extends to a bounded
operator on LP(X) with |1 ® idx || < ¢||T|. Proposition 3.1 implies that
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there exists an operator T on LP such that T'® idgr is not bounded, which
means that S is not a subspace of a quotient of L (cf. [31]).

PROFPOSITION 3.2. For each 2 < p < g < co where p is an even infeger,
the inclusion map M (L9} C M (LP) is strict. Moreover, M, (L?) does
not embed continuously into M(LT).

Proof. Let 2 < p < oo be an even integer. By Corollary 2.6, there exists
a A(p)-set which is not a A(g)-set for any ¢ > p. By Proposition 2.2, it
is an interpolation set for M (L?) but not for M (L?). Thus, M, (L) does
not embed continuously into M(L7). m

As a direct application of Lemma 0.2, the interpolated space (M{L>),
M(L?))a;, embeds contractively into Men(LF) for each 2 < p < co. Thus,
it is natural to wonder whether we do have equality. The following lemmas
will be nsed for the study of this as well as for the proof of Theorem 5.2.

LEmMMA 3.3. Let X, Y be two Banach spaces and v : X —= Y bea
bounded operator. Assume there exist ¢ > 0 and 0 <r <1 such that for all
y in By, there exists  in cBy with ||uz ~ y|| < r. Then u is surjective.
More precisely, u is u-gurfective for some constant ju < c/(L—1).

Proof. The proof is elementary. Indeed, for ¢ in By, we can produce a
sequence of vectors yx in By with y1 = ¢, and a sequence of vectors y in
X such that |24l < ¢, yrer = L{yx — uzy) and |luzy — x| < 7. Then let
T =3 4sq7 " Tri1. We clearly have y = ug and |jz{| < ¢/(1 — r}. This means
that w is p-surjective for some g < ¢/(1 ~7r). m

LEMMA 3.4. Let 0 < 8 < 1 and z in (Xo, X1)s. Then for all 5,6 >0 there
exist xg in Xo and z, in X such that £ = zo+x1 end |zollx, +sllz1]x, <
8%||z||g + 4.

Proof. See page 103 of [2].

LEMMA 3.5. Let (Xo, X1) be a compatible couple of Banach spaces and
Y be an orbitrary Banach apace. Consider two operators ug : Xg — Y,
1y 1 X4 — Y which agree on XoNXy. Assume that the operatorug : Xy —= Y
obtained by complez interpolation is u-surjective. Let o) = 256801,
Then up (resp. ui) is necessarily surjective. Moreover, it s cvp(6, p)-sur-
jective (resp. ai(f, u)-surjective) for some constant satisfying

oo (8, 1) < ()M (=) |y |0/ C=8)
Tesp.

a1 (6, p) < afl — )P lfug]| 78

Proof It suffices to prove the part concerning ug since for each 0 <
§ < 1, (Xo,X1)s = (X1, X0)1-9. By replacing ug, us and z by uollur ]|~
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upflug]| =t and pllu1| respectively, we can assume that u; has norm one
(ur # 0). Let y be in By. Since ug is p-surjective, there exists z in X,
with [|zlle < p and ug(z) = y. For fixed s > 0, by Lemma 3.4, there exists
a decomposition & = mg + @1 with ||zp)lx, < %4 and lzi)lx, < 8%1u
Let us start from s such that s~1u < 1, equivalently s > #1/(11—9)_ Then-
ug : Xo — Y satisfies the conditions of Lemma 3.3 with r — r(s} =1y
and ¢ = ¢s) = 5%u. Hence, Lemma 3.3 implies that ug is u(s)-surjective
for some p(s) < e(s)/(1 ~ r(s)). The infimum of s — ¢(s)/(1 —7(s)) when
s runs over |pt 179 oo is attained at sy, = (0/p)Y=1) and its value is
a(@)ylf(l‘g) with a(f) as in the statement. = :

PROPOSITION 3.6. For each 2 < p < oo, the interpolated space (ML)
M(L*))2/, embeds strictly into My, (LP). Moreover, My, (LP) does not embed
into (M (L), M(L*))g for any0 < 8 < 1.

Proof. Since Mc,(LP) embeds into Mp(L®) foreach 2 < 5 < p < 00
we can restrict ourselves to even integers p. Let A C Z be any interpolatioxi
set for Me, (LP) which is not an interpolation set for any M (L) with ¢ > p.
Corollary 2.6 implies that such a set A exists. This means that the restriction
map Q which carries a multiplier ¢ in M, (LP) to the sequence (p(n))peq
in £{A) is surjective and a fortiori if we suppose that Mg, (LP) embeds
into (M{L*), M(L?))p for some 0 < 6 < 1, then Q : (M{L>=), M(L?))s —
£oo(4) is also surjective. Lemma 3.5 implies then that Q : M (L) — £ (A)
is surjective. Hence, A is an interpolation set for M(L°°) and thus for all
M(L?%). This contradiction completes the proof. m

4. o(p)-SETS AND ¢(p)c,-SETS

_ DEFINITION 4.1. Let 2 < p < co. A subset A of Nx N is called a o(p)-set
if there exists a constant €' > 0 such that for all z = (z;;);; in 5%, we have

lalor < Cmax { (3 (L leal)”™) ", (35 (S )™ ).
We denote by o,(A4) t;;:snj:liest constant C' >j0= ;n ’:;113 inequality.
Recall that if 2 < p < oo then for all z = (z4),; in S?,
lolls 2 max { (3 (S keal?)”) L (35 (Soles) ™)),
so that A is a o‘(p)—setzL ?flanziz(jnly if the followin;:ai'e ;;:ivalent norms on 5% :
ol 2 mase {3 (3 ) ™) (55 (35 ) ™)),
f=l = i=1 4=l

Vz = (zi5)i,; € 5.
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In other words, A is a o(p)-set if and only if the spaces 5% and %™ are
isomorphic.

REMARKS 4.2. As first properties of o(p)-sets, we mention the following.

(i) Every subset A; of a o(p)-set A is a o(p)-set with op(Ay) < op(Aa).

(i) If A; and A are o{p)-sets, then so is A; U A, and op(A1 U Ag) <
op(Ar) + g As).

(iii) A is a o(p)-set if and only if *4 = {(i,5) e NxN| (j,4) € A} isa
o(p)-set. Moreover, 0p(*A) = a,{A).

(iv) Let {ng)i>1 be a strictly increasing sequence of integers and let Ay
be a subset of [ng..1, e[ X [x—1, ] for each k>1. Then A =],5, Ay is
a o(p)-set if and only if supy>1 op(A) is finite. Moreover, sup> op(Ap) <
53(4) < 25upys1 oyl Ar).

The reader is referred to Subsection 0.9 for the definition of Schur mul-
tipliers on S7.

PROPOSITION 4.3. Let 2 < p < oo and A C N x N. Then the following
assertions are equivalent.
(i) A is a o(p)-set.
(if) The canonical basis {ei; | (i,7) € A} is an unconditional basis of S%.
(iil) The restriction map below is surjective:
Q: M(S") — lw(4), ® ¢la.

Letting op(A) denote the unconditionality constant of the canonical basis
of 8% and up(A) denote the smallest constant p for which Q is p-surjective,
we see that for each set A C N x N (with K, = Kgr defined in (0.3)),

ap(d) < O'p(A) < Kpap(A),  pp(d) < op(d) £ Kp#p(*‘l)-

Proof The proof, analogous to that of Proposition 1.8, is left to the
reader. m

DEFINITION 4.4. Let 2 < p < co. A subset A of NxN is called a o (p)eb-set
if there exists a constant €' > 0 such that for all @ = (mi5)s,; in 54 (57), we
have

lizl|sr(gm) < Cmax { (; H (Z m@-jw?j) v
() 1))

We denote by o5°(A) the infimum of the constants C' for which this inequal-
ity holds.

P )1/19
s» ’
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Since (0.4) always holds, A is a o(p)cp-set if and only if for all z = (z;;); 5

in 5% (5%), :
P N\p
SP) ’

ll2]| 52157y 2 max { ( Z ” (z Iijm;?j) 1/2
: j
(; ” ( ; mz‘jmij) 1/2 g;p)lfp}.

Equivalently, A is a o(p)ea,-set if and only if 8% (SP) and S5""°(SP) are
isomorphic. All the properties in Remarks 4.2 have an analogous version for

o(p)ep-sets. Proposition 4.3 also has a ¢.b. version as follows. We will skip
all the proofs.

PROPOSITION 4.5. Let 2 < p < o0 and A C N x N, Then the following
are equivalent.

(i) A is a o(p)ep-set.
(ii) The restriction map @ which takes v € M, (SP) to ©la € Lo (A) is
surjective.
(iil) The operators T, where € = (g5;);; withe;; =1 or =1 if (4,7) € A
and €;; = 0 if not, defined on SP by sending an operator € = (%i;)i; to
T.{z) = (eij®i5)i,;, are uniformly c.b.

Letting oS®(A) denote the unconditionality constant of the canonical basis
of 5% viewed as an operator space, and ps(A) the smallest constant p for
which Q is p-surjective, we see that for each A C N x N (with K, = Kg»
defined in {0.3)),

a(A) < o(A) < KpaP(A),  pP(A) < a5P(A) < Kppi®(4).

REMARKS 4.6. (i) Since M(S7) € M(57), My (S?) C My (S?P) for all
2 < p< g < oo and the embeddings are both contractive, the o(g)-property
implies the o{p)-property, the o(q)p-property implies the o(p)cp-property,
and o,(A) < oq(A), 052(A) < oP(A) for each set A. On the other hand,
the o(p)ep-property implies trivially the o (p)-property, and op(A4) < oS (A)
for each A.

(i) Bach bounded map ¢ = {wi;),; supported by A defines a Schur
multiplier on 8”7 (resp. a c.b. Schur multiplier on SP) whenever 4 is a a(p)-
set (resp. o(p)ep-set), and

l@llarise) < op{ @l tmxry  (resp. l@llarass) < o2 (ANl g (rescry )-
This applies in particular to the indicator function 1,4 of a o (p)-set (resp. a
a(p)ap-set).

(iii) The preceding results can be extended to the case p = oo, but then
the resulting notion is entirely elucidated by the work of N. Varopoulos (cf.
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[44]) who characterized the sets A C N x N for which the restriction map
Q:M(SM)HEW(A)’ ‘PHlplA:

is surjective. His work shows that this holds if and only if A can be written
as a finite union of 1-sections and 2-sections in the following sense. We say
that a subset A C N x N is a I-section (resp. 2-section) if the first (resp.
second) coordinate projection is injective when restricted to A.

(iv) The definition of o(p)-sets and o(p)a,-sets can be extended to the
case where 1 < p € 2 as follows. Roughly speaking, a subset A of Nx N is
called a o(p)-set if S% is isomorphic to SH"™, and it is called a o (p)ey-set if
S%(8?) is isomorphic to §%"°(S?). Moreover, we let o,(4) be the smallest
constant C' > 0 such that for all © = (@) ; in S5, we have

lz]|s» > C~ 1nf{( (Ziyul)p/z)w (2(ilzijz)ﬁ/2)1/p}

i=

where the infimum is over all decompositions = = y + z with y = (yi;):
and z = (2;);,; both in §7. We let 05°(A) be the smallest constant C' > O
such that for all z = (;); in SA(SP) we have
1/p
-)

|| gz g0y = C mf{( H(Zy”y”)lﬂ
z-i,*jzij)l/2|

SIS )T

where the infimum is over all decompositions ¢ = y +z with y = (i) and
z = (#i)i,; both in SP(SP). Then, in analogy with Comments 1.9, it is easy
to check that if 1 < p < 2, a subset A C NxNis a o (p')-set (resp. o (p’)en-set)
where 1/p + 1/p' = 1 if and only if it is a o(p)-set (resp. o(p)ep-set) in the
above sense and its indicator function 14 defines a bounded (resp. c.b.)
Schur multiplier on SP.

PROPOSITION 4.7. Let A be a a subset of N and let
Av={(1,/) ENxN|i+je A}

() For 1 <p <2, A is a o(p)ep-set whenever A is a K (p)en-set with
cb(A) < ch(A)

(it) For2 < p < oo, disa o (p)cn-set whenever A is a A(p)cy-set with
o (2) < AP ().

Proof. We sketch only (ii). Let @ = (z4);; be in S%(S*). Using the
assumption on A, we get : . A
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”(93%3)2,.7“51’[5'1’ = ”( :l’:” ,JEELP(SP (871

=2 ( 2 meew)

(4,4)e4
i+ j=n

)\Cb max{” Z (memu)lfz ‘

Lo(s3(57)

se(sey’
” 2 (Z‘T”x;«’f)i/z ® i .S'P(.S‘P)}
i 3§
since
(Z( 3 moa) (T o)) =3 (Laim) oo
n€A el (i)l i
i+j=n i+g=n
(Z ( Z Tig ®3ij) ( Z Ty ® ez’j)*) i = Z (Z%Sﬂu)l/z ® €.
ned i ived (i.5)ed iog
j=n f=n

Hence we get

max{(z H Zm”m”)lm p)lfp’
(CI(Soset)

1/2)p )1/13}
This implies that 4 is a o (p)cy-set with o2>(4) < ASP(4). u

THEOREM 4.8. Let p > 2 be an euven inieger. Then, for each n > 1, we
can find o Hankelian subset A, of [1,n] % [1,n] satisfying

sup oS (An) < oo, inf n~UHE/R)4, ) > 0.
nzl nzl

(@i )i5llsm sy <

Proof A reformulation of Corollary 2.7 implies that for each inte-
ger n > 1, there exists 4, C [0,n] such that supnzl)\;b(fln) < o0 and
infry n“z/?’[./lf,ﬂ > 0. Then for each n, we let A, = A, thus 4, C [0,n] %
[0,n]. To ensure |A,| > n|d,|, we can clearly assume that A, C [n/2,n].
Therefore, using Proposition 4.7, we get a sequence (Ap)n>1 of sets satisfy-

ing sup, 5 05 (An) < oo along with inf,; n~(1+2/P)A, ] > 0. »

THEOREM 4.9, For any even integer p > 2, there is a o(p)ep-set A C
N x N which is not a o{q)-set for any g > p. More precisely, the indicator
Junction of A is not in M(S9) for any ¢ > p.

Proof Let p > 2 be an even integer. Then, by Corollary 2.7, there exist
a constant ¢ > 0 and sets A, C [2""1, 27| for each integer n > 1 satisfying
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e2?n=1/P < |A,| and sup,s; ASP(4n) < oo. Such sets necessarily satisfy
SUP, 51 Ag(An) = oo for all p < g < co. Indeed, by Fact 2.3(i), there exists a
constant ¢; > 0 such that

c22n—13/p < An| < 6122(n—1)/c1)\§([1ﬂ)
for all integers n > 1, that is to say,

e2n=1)(1/p—1/9) « cl)\g(/ln) < ¢y 8up )\3(/1;“).
B>l

Since 1/p—1/q > 0 and n can be arbitrarily large, sup;sg Ag(Ax) = co. On
the other hand, we let

Ap = (2" 2" + A, = {(2" +4,2" +j) | i47 € A},
Note that for all n > 1, we have
An c [2”,2ﬂ"l—1[ % [2n52n+1[ﬁ{(i,j') | ije 2n+1 "I‘An}

Then we consider the set A := [ ., An. We apply successively the c.b.
version of Remark 4.2(iv), Proposition 4.7 and the fact that the A(p)q,-
property is stable under translations, to see that A is a o(p)e,-set, as follows:

a;b(A) < 2sup af,b (An) < 2sup )\f,b(2”"'l + 4,) = 2sup )\;b(/ln) < 00,
n2l n>1 nzl

Yn > 1.

Now we check that 14 & M(S9) for all ¢ > p. Indeed, taking the supre-
rum after applying (1.5) to each A,, we get

sup Ag(An) < sup Aa(An)sup |14, laszey < sup Ap(dn)sup L, |arize
n>l 2l n>1l 2l n>1
< sup )\;b (Ar) sup ||14, lasgzey-
n>l n2l

Sinee by our choice of {Ap}n>1, SUP, > AZ(An) < co and sup,sq Ag(dn) =
00, we have necessarily sup, .y ||1a,|lar(ze) = 00. We can easily see that

Lanllaeesny = W1 laasey 2 11y oy,  Ynz L.
Then, using Peller’s results (see Subsection 0.6), we get

sup |14, [a(s) Z sup i1, |lariee) = sup |1, |arqre = oo
n>1 nzl ™ nzl

Thus 14 ¢ M(S?) and so A is not a o(g)-set by Remark 4.6(ii). =

5. APPLICATIONS TO SCHUR MULTIPLIERS

The last assertion of the following proposition answers a question raised
by J. Erdos as Remark 2 in {18] (I am grateful to Professor E. Katsoulis for
indicating this reference; see [1] for related work).
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THEOREM 5.1, For all 2 < p < g < oo where p is an even integer, the
inclusion maps

M (89) C Map(S7),  M(89) ¢ M(S?)

are strict. Moreover, there is an idempotent Schur mulitplier which 1is c.b.
on SP but not bounded on 59 for any q > p.

Proof Let p > 2 be an even integer. Then by Theorem 4.9, there exists
a o{p)-set A C N x N which is not a o(g)-set for any ¢ > p. Moreover,
14 & M(S7). Using Remark 4.6(ii), we see that 1, € M, (57} and we are
done. =

THEOREM 5.2. For 2 < p < oo, the following canonical inclusion maop 18
contractive:

(M(8%), M(5%))g/p C Men(S7).

Moreover, Mg, (SP) does not embed into any interpolated space (M(5%),
M(S%))s when 8 runs over |0,1]. Therefore, the inclusion above s strict.

Proofl. The first part follows immediately from Lemma 0.2. For the last
part, we can clearly restrict ourselves to even integers p. Thus, fix an even
integer p > 2 and let A C N x N be a o{p)cp-set which is not o(g) for any
g > p. Such a set exists by Theorem 4.9. Thus, 4 is an interpolation set for
Mo, (SP) but not for M(S?) according to Proposition 4.5, i.e. the restriction
map Q : M, (SP) — £oo(A) is surjective but Q : M(S9) — £, (4) is not. If
we assume that M., (SP) embeds into (M(5%°), M(85?)); forsome 0 < 6 < 1,
we see that @ : (M(9™), M(52)); — £.o(A) is again surjective. Lemma 3.5
implies then that @ : M(8%) — £ (A) is also surjective. This contradicts
the assumption that A is not an interpolation set for M(S%) forany ¢ > p. m

Now we will be interested in M(&?), My, (5P) and in establishing some
links between Fourier and Schur multipliers. We start by recalling a few
notations. For a set A C N, we define A := {(k,]) e Nx N|k+[ € A} and
we say that a map ¢ : Nx N - C is Hankelian if @(k, ) = o(k’,!") whenever
k+1=Fk 1 for all (k,1), (¥,0') in N x N. Recall also that for ail integers
n2landall o Nx N C, welet ¢ i= lfn(p (Schur product) where

Ip:={0}and I, .= {k e N|{ 2" L <k < 2"} for n > 1.

PrROPOSITION 5.3. For a Hankelion map ¢ : N x N — C, the following
are equivalent,

(i) » € M(GP),
() The multipliers @) are uniformly bounded in M (6’; }.

(iil) The multipliers Wy ore uniformly bounded in M(&?)
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Moreover, the two norms defined below are equivalent on M(ESP):
lolimcer) =2 sup lomyllaer ) = sup |0 llamier)-
n>0 Tn n>0
Proof. The equivalence between (ii) and (ili) is easy since the spaces
@&P are uniformly complemented in &P. To prove the equivalence between

In
(i) and (iii}, consider z in &P, We have Ty () = 3,50 Lo (F(ny). Thus by
Corollary 0.7(1),

1/p 1/p
ITo@lsr = ( 1Tpem @) < (3 1T ion l2ml%)
nz0 n>0
i/p
< sup [T,y 3e) ( P £ ng)
2 n>0

i

sup ol menllzlisr < lellaerlizler.
n>

PROPOSITION 5.4. For o Hankelion map ¢ : N x N — C, the following
are equivalent.

(i) ¢ € M (SP).
(it) The multipliers ¢, are uniformly bounded in Mcb(e‘; ).

(iil) The multipliers @) are uniformly bounded in Mcb(GPS.
Moreover, the two norms defined below are equivalent on M, (GF):

Py 5= S = & 51 n R
el Mo (sm) sup ||90(n)||Mcb(b;n) nzpo oyl (en)

Proof. By the characterization of c.b. maps given in Proposition 0.4, we
can prove Proposition 5.4 exactly in the same way as we did for Proposition
5.3 by applying (i) of Corollary 0.7 instead of (i). w

PROPOSITION 5.5. For all 1 < p < oo, M(HP) can be continuously
injected into M(GP) via the map which takes p € M(HP) to p € M(&P),
where @ sends (k,1) in N x N to o(k +1).

Proof. We assume first that ¢ has support in I,,. Then by Corcllary
0.7(i) we have

1@ |72y = H@llM(e; y = sup{{|Tp(z)ller | llzler <1}
n F

Im n

& sup{| M, (H)laz, | 1]z, <1}
= sup{[| Mo (f)llzp, | Ifllmz, <1}
(see Subsection 0.6 for the definition of A?). Applying Remark 0.10, we get

1@ aeeey = llellarcarz ) = el aaiar).-
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Using Proposition 5.3, we see that for all ¢ in M(HP),

@1l ar(ery = s 18 () |29y igpoJlsa(n)HM(m) < lellaeerrsy- m

PROFPOSITION 5.6. Mcn(HP) can be contractively injected into M (5P)
vie the map which takes @ € My, (H?) to @ ME(S?) :

Proof Let ¢ be fixed in My, (H?) and M, : HP — HP be the associated
operator. Since ¢ is ¢.b.,, M, ® idg» extends to a bounded operator on
HP(S?). On the other hand, for an operator  in SP, we consider one more
time the function f.(2) = D,xD, defined on T where D, denotes the unitary
oo X 0o matrix

R e
1-v]

.o

fo lies in HP(SP) and satisfies || fz | gr(sey = {|2]| 52 Now write T (z} for the
o0 x oo matrix (@(k+1)ze )k, We see that M, ®idgs (f,)(2) = DT (z)D,.
Hence, the operator v

Ty 87— 8%, (zm)eg — (olk + Daee,
is well defined, has a Hankelian form and satisfies
1Tzl se = | M, @ idse(fa)]| Lo(se)
< 1My lesiam | foll oisey = 1@l ara ey lzllgo-
This means that $ is in M7 (SP) with ||| s ss) < ||l a,, czey- In & sim-

ilar way, using Proposition 0.4, we prove that in fact § € MJZ(SP) with
& aezz sy < Nl carmy- m

REMARK. The case p == 1 is quite interesting since My, (H') and M (S*)
coincide isometrically. See [32] for the proof. The question seems to be open
for other non-trivial values of p.

6. APPENDIX.

For the sake of completeness, we include a different way to show the
existence of “large” A{4)qp-sets by using probabilistic ideas to exhibit “large”
sets having the combinatorial property Z(2) and satisfying moreover some
additional assumptions. We check first that the Z(2)-property implies the
A(‘l)cb-property directly (without using Theorem 1.13). Recall that a set
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A ¢ 7 is said to have the Z(2)-property whenever

Za(A) = sup [{(ny,n2) € A x A|ny —ng =k}| < co.
PROPOSITION 6.1, If A C Z has the Z(2)-property then it has the A(4)g,-
property and A (A) < (14 Za(4))H/4.

Proof. Let f =3, 2.6 be in L*($*), say with finitely many =,

# 0. We have o
£ Escsey = 157 FlEacsny = 2 17 F @) s
kEZ
For all integers k, we have
F}(k) = Z Ty, Trg-

ny oA, ~nytnz=k

Thus, for each k # 0,
— 2
IFF@IZ < (Y lohsals) SZ@) Y lohonb

nynaed ny,nz€d
—n1t+na=k —nyFng=k

Hence, using the trace property, we get

IR IOIEESZC D DY

keZ k€EZ nime€A
kF0 R#EQ —nitng=k

—awY. Y

ke ni,naEd
k%0 —ni+ng=k

S ZQ(A) Z tr(wmm:lmnzng

1, EA

< Ay Y anal, 3 amar, )

ni€EA ng €A

- Zg(_/l)“ denm;; :
ne

tr(ay, Tn, T, Tny )

tr{n, &5, TnyTp,)

g2

2 2
PERAC YL
nEA

S'J
2
)max{ Zq:*x Z:r xh
n*n Sza nvn
neA neh

Thus,
| #lEasy < | 32 wnen
ned

< (L + Zy(4)

2
5?}'

Finally, we get
| fllzagsey

1/2
< (1+ Zo(A

P men [ sien) | o | (S ovet)

neA

Lo
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The following is essentially a result known in the folklore of harmonic
analysis but it does not seem to appear in print anywhere.

PROPOSITION 6.2. For all small § > 0 and oll C > 2/4, there exist
constants C1, Ca depending only on § such that for all sequences (un)n>1
of non-negative integers with 37 ., un 2 < oo, there egists a Z(2)-set A
satisfying:

o Zo(A) £ C.
es For all m > ng, where ng is an tnieger depending only on the conver-

gence speed of 3 5y Un 2 (e Do B un 7 < 1 /4), we have

C’;u}l/z"‘s < AN [tg, 2uy]| < C’zu,l,/z‘a.

Proof Let {&}r>1 be a sequence of independent random variables on
a standard probability space (for example the torus T equipped with the
normalized Lebesgue measure dP = dt/{27)) such that for each k, £, takes
its values in {0,1} and has expectation E&, = 8/k* where o = 1/2+ § for
simplicity, with & < 1, and f is a constant depending only on &, to be fixed
later. Thus P(¢; = 1) = 8/k* and (¢ = 0) = 1 — §/k.

With each w in T, we associate the subset A, = {k € N* | & (w) = 1}.
We will show that by a convenient choice of 3, most of these random sets
A, have the required properties. Indeed, for v € Z* we set

Zoly, Au) = [{(k, 1) € Ay x Ay [k —T=7} = Y &(w)&w)-

ki>1
k—l=-y
Then
(6'12) ZQ(')‘:Aw) = ka(w)5k+iﬁl(w) = Z2(W|=Aw)'

k21
We split N* into Jy and Jy where

A=t 2skyl, @+ 29l o= 10+ 29) 0 2+ 29)y]

in order to have the variables {£xr+jy|}rey; independent for each j. Then

we let
=Y &w

PEN?

STEP 1. We start by selecting among the sets A, those with the Z (2)-
property. Using (6.12), we see that for every integer m,

P{sup Zy (v, Aw) > 2m} = P{sup Za(y, 4u) = 2m}.
v#0 y21

Za (7, A )bty (@)-
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Hence,
P{sup Z2(y, ) = 2m} < P{sup Z2,1(7, Aw) = M}
770 121

+ P{sup Za2(7, Ay) = m}.
¥21

For each v > 1, we have

P Zor (A 2my < Y. Pl (k@) =1]i=1,.
klr-'vkm.e']l
distinet
= > Hﬂm{sh Yery 4y (w) = 1}

kl; xk'mEJl .7*‘1
distinct

> H P{&x, (w

By yeeeskin €J1 F=1

1A

W) +v(w) = 1}

Thus,

Now we use the fact that for all K > 1,
K

Z_<1+§ dt—1+1—}~E(K1 @ 1).

This gives us (recall that 20 > 1)

kelJ a=1 “k=1+2sv
R 0
<A (Y m)
v k=1 s=1 k=14287

g=1
1 1 |

— (1 — a),-),:Zoa_-l 4 ,-},2u—1 ; Pyt
< 1 20

- (l — C}:)’Yza"'"l t 40:,-},20:—1(201 1)

1 2o 1
<
“\l-a 20-1/q2a1

m}
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Thus, we obtain

Z < doy
=, ka _},.7 cx - (20!—1) 20—1

by assuming for simplicity ¢ small enough, say § < 1/v/2 — 1/2 so that
1/(1 — a) € 20/(2a — 1}. By tho same calculation, we get

>, =
’i,a k —|“")f (204 — 1)720c i

k€ Jg
Hence
I c'rn. Cm
P{Zy (v, 4w) 2 m} < e’ P{Z32(7, Au) 2 m} £ S @I
where ¢ := 4% /(2c — 1). This implies the estimate P{Z5(~, Ay) = 2m} <

2¢™ /422~ 1™ and therefore
P{sup Za(y, Au) 2 2m} < 2™ > 1/4%™.
0 ¥21

By taking m > 1/(28) and [ such that ¢ = (1+28)3%/8 < 1, say 8 =
(6/(8(1 4 26)))/2, we obtain

P{sup Z(v, Aw) > 2m} < 2¢™ (1 - L ) =8 ™ 49m
¥#0

1= 26m 2om—1  THm)
Therefore, we conclude that
IP{ZQ (Aw) < 2';%} >1- P]_(m) > (.

Note that if we take C = 2m > 2/6 and § small encugh (say § < dp for some
8o > 0) then we can ensure that Py(m) < 1/2.

STEP 2. Among the random sets A, satisfying Za{A,) < 2m, we will
select the “largest” one in the sense of cur condition es.
For cach integer 7 > 1, I, stands for the interval [u,, 2u,[. We have

2y - 21.!."——1
B, N 1,| = ( Z Ex(w ) Z £
LRSI k=g
Since
Dby 1 2y, —1 1 2p—1 1
Cuilun):=f | <8 Z e <Calu) =5 | b
Uy . Up—1
we gt

Ci{tn) € B4y N In| < Caltn).
We define the constants ¢y and €% depending on § only as follows:

gl-= ¢
Caltn) = e () — k) = f ™ = 200/,

-



954 A. Harcharras
B 1—or —N) < b (2uy )™
Calun) = 77— ((2un = 1)'7" — (tm ST 5un
T a2 /28
= gu = gl

Since (£, — &y )% is a sequence of centered and independent random vari-
ables, the variance of {4, N In| is

Wy — 22Uy, —1
2
I 4o 0 Il = By O Ll 12 = | Z (4 - = 7 16— Bl
ﬂu.vL k=un
Hence,
I1Au N In] = Bl Ay 0 Lo |72
Zun—1 2u,—1 2uUn—1 ﬂ
<3 el = Y EED= 3, =B LI
k=1 =1y k=un
Using Chebyshev’s inequality, we obtain
P{| 4w NIa| - ElA, N 1u|! 2 1E|A, N L}
< 4 4 2 —1/2+r5.
~ ElA, NI T Ol(un) c, "

For each fixed integer N, we have
{3n> N, ||4o N I,| — Eld, N I|| = FE[A. N L[}

= | {Il4e N Ia] — BlAu N Iu|| 2 3E|Au N 1nl}
n=N
Therefore
P{3n = N, ||4u NI| ~Bld, NIl | 2 lIE|A NI}

4 Z e ian

n—HN

Py(N).

Then since
{||4u N L} - E|4, N L] | < sElA, NI, ¥nz N}
C {C1ut?7% < |4, NT,| € Coul/*%, ¥n > N}
we clearly get, for each fixed integer N,
P{C1uL/* ¢ < AN L] € Coul/?7% ¥n > N} 21— Py(N).
Thus we finally obtain
P{Z2(A,) <m& C1ul/?7% < |A, N I,| € Coul/?*% vn > N}
> 1= Pi(m) — Py(N).
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Since by our assumption on (un)n>1, P2(N) tends to zero at infinity, there
exists an integer ng such that 1 — Pi(m) — Py(ng) > 0. Note that
limp, ¥—oo (1~ Pr(m) — P2(N)) = 1.

CONCLUSION. ‘There exists at least one set with the properties required
in Proposition 6.2. u

CoNSEQUENCE. For each 4 < p < oo, there exists an idempotent Han-
kelion Schur multiplier which is c¢.b. on §% but not bounded on &P.

Indeed, let p > 4 and choose 0 < & < (p—4)/(2p) small enough. Consider
the sequence (un), defined by u, = 271, According to Proposition 6.1 and
6.2, there exists a set A C N which has the A(4).,-property and satisfies, for
all n > ng,

C2n-D0/2-8) < | 4| € Cp2P—1(1/2-8)

where A, 1= ANI, with I, := [2"71,2"[ I, := {0} and where the constants
C1, C; and the integer ng are defined as in Proposition 6.2. Fact 2.3(1) irnplies
that there exists a constant ¢; > 0 such that for all integers n > ng we have

012(?1—1)(1/2—5) < |dnt < 6122(n—1)/p)\§(/1n) < 6122(?:—1)/1: ;f;lp )\g(ﬂk),
~Ng

that is to say,
Cra(n=DA/2-2/p-5) < sup Ap(Ak).

Since 1/2—2/p— 4§ > 0 and n can be arb:tra,rlly large, supgsq Ap(Ar) =
Using Proposition 2.2, we see that sup;»q 4p(As) = 00. On each interval An,
we may find a choice of signs £, such that its extension to Z by addmg 0’s
onZ\ I, and s on I \ Ay, denoted by &,, satisfies [|€n||arzey = §pp(Aa).
This is clearly possible by using the definition of the constant u,(4,) and
an extreme point argument. Then we consider € := 3 -, nfn. Note that
e(k) = %1 for each integer k > 0. Using Proposition 5.3 and Peller’s results
{see Subsection 0.6) together with Remark 0.10, we get

1€ ne (Gr) = bup li& n)“M GP ) = SUP 1€nlzoll sz 2
= Sg% 1€nlla(ze) = %Sup«ngo pip(An) = co.
T

Hence £ does not belong to M{&P). Now we consider 1 := 1 (e + 1y). Recall
that 1y 4 is a c.b. multiplier on H? since A is a A{4)g-set, and that the
constant function 1y is trivially a c.b. multiplier on H™ for all r. Therefore,
N € My (H*). The idempotent Hankelian multiplier 7 is in Mg, (S*) by
Proposition 5.6 but is not in M(&P) by the above and the fact that the
constant function 1 is trivially a c.b. multiplier on 8™ for all T, S0 We are
done.
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Now we show the existence of “large” o(4)ch-sets by using probabilistic
ideas to exhibit “large” sets having the combinatorial properties (C) or (R)
defined below after checking of course that they imply the o(4)cp-property.

DEFINITION 6.3. We say that a subset A of N x N has property (C) if
C(4) < co and that it has property (R) ¥ R(A) < oo where

C(4) = sup {7 eN| (1) e A& (i) € A},

R(A) :=sup|{i eN|(i,j) € A& (1,5') € 4}
i#g’

REMARKS 6.4. (i) If A C N has the Z(2)-property then the Hankelian set
A associated with A has (C) and (R) with both C(A4) and R(A) less than
Za(A).

(ii) (C) and (R) are different combinatorial properties. As an example,
the set A := N x {1} UN x {2} has property (C) but not {R) (note that
neither () nor (R) is stable under finite unions). However, A has property
(C) if and only if the set *A := {(i, §) | (j,i) € A} has property (R) and we
have C'(A) = R('4).

(iii) 1-sections (resp. 2-sections) are not 2-sections (resp. l-sections) and
are not finite unions of 2-sections (resp. 1-sections) in general but they have
both (C) and (R). Assume that Ay, ..., 4, are 1-sections (resp. 2-sections).
Then A := | Ji_; Ai necessarily has property (C') (resp. (R)) with C(4) < n
(resp. R(A) < n) but it does not have property (R) (resp. (C)) in general.
However, a set with (C) (resp. (R)) is not a finite union of 1-sections (resp.
2-sections) in general. As an example, consider an increasing sequence (k;);
of integers tending to infinity with k;y1 > k? for each i and let

=]
A= kD), (o, Ka), (b, B2 | i ST B2, ki < k< kgt ).

i=1
Then A satisfies C(A) = 2 but cannot be written as a finite umion of 1-
sections; moreover R(A) = oo.

PROPOSITION 6.5. Let A C N x N. Then A is a ¢(4)qp-set whenever A
has property (C) (resp. property (R)). Moreover,
o (A) S L+ CANYY (resp. o5°(A) < (1 + R(A))V4).
Thus, a finite union of sets having properties either (C) or (R) is necessarily
a a{d)e,-set.

Proof. According to the c.b. version of Remark 4.2(iii) and Remark
6.4(ii), we can restrict ourselves to the case where A has property (R). Let
T = (245);,; be in $4(S*), say with only finitely many non-zero entries Tij.
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We have
* 2
I2|l5e(gay = tf((}:%‘ ® ez‘j) (Z% ® eij))
'i’j 1:1.?
2
=o(Teioec) = Tty
T"’j’k 1Aljl"‘!:""
. p * * 2
(o) (Seinn) = 5[,
gk i r Ik i
w 2 2
- Z ” Zm”m“j o 2 ” 2_ i 52’
7 i J#Ek
Using the assumption on A as well as the trace property, we get
2
4 . *
laligsese < 30 [ Do ahas| , + RS Y Jatmal?s
J i jék i
2
) Zx;fj,,xij ot RIAYD O tr(whijalyma)
M & ik
2 *
< e (Tt (St
i i i 7 J
2 2
< Zw?jwz’j o T E(A4) Z ” Zmiji‘fj o
1 d J

This implies that for each = = (z4);; in 5%(S%), we have

lalsusty < 0 RO max{ (3 atms) )"

(sz H ( S,‘: xijm;j) 1/2 ;) 1/4}, =

REMARK. Incidentally, the converse of Proposition 6.5 might be true:
perhaps cvery o (4)ey-set is a finite union of sets satisfying either (C) or (R).

PROPOSITION 6.6. For all small § > 0 and all ¢ > 1/8, there evist
constants ng, C, Oy > 0 depending on § and ¢ only such thet for each integer
n 2 g, there exists a subset A, of [1,n] x [L,n] satisfying C(4,) < ¢ (resp.
R(4,) < ¢} and Cin3/2-9 < |4,] < Cynd/2-9,

Proof Let {£;}1<ij<n be asequence of independent random variables,
say on the torus T equipped with the normalized Lebesgue measure dP =
dt/(27), such that for each 1 < i, < n, &; takes values in {0,1} and has
expectation E¢;; = 3/n/?+% where 4 is a non-negative constant to be fixed
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later. For each w in T, we let
Ay ={(6,5) € f1,n] x {L,n] | §;(w) =1},
Clearly {Ay] = Y1<ijen Gis(w) and thus ElA,| = Bn2/?=5 For each 1 <
i# 1 < n, we let
O, ¢, Au) = {5 € [Lnll(i, ), (@, 5) € Al = D Eiglw)éin(w).
124sn
Then, given an integer m > 1, by the independence of the £;;’s we get
]P{u) [ C(i,il,Au) Z m]— = P{w' Z f,;j (w){;'l-:j(w) 2 m}
1<j<n
=Plw|IN<h#fFE. .. # Im < nsuch that
ij()€pj(w) =1, Vi=Ji,..., Jm}

( ﬁ Plw | & (w)&irg (w) = 1})

>

1€ AimSn k=1
m 2
} Y
- Z ]._.[ nit28 | = p2mé-
IShi# i ln k=1

This implies that
ﬁZm
Plw | C(AL) 2 m} = P{w |

2mé

D,

1<izi’ <n

sup C(i,i,A,) 2 m} <
1<izi<n

< nz(lmmé)ﬁ2m.
By choosing 8 such that 8% < 1/2, we get P{w | C(A,) > ¢} < 1/2 since

1 —¢b < 0. On the other hand, (&;; — E&;);,; is a sequence of centered and
independent random variables and hence the variance of |4,,| — E|4,] is

| 14u| — ElAu| {72 < Bn%*7% = Elay|.
Thus, using Chebyshev’s inequality, we get
Plw[]14u] ~ Bl4u]| 2 §EAu|} < 4/(BJA|) = 40330 =: P(n),
Pluw|3n*20 < |A,| < $4n3/2%) > 1 — P(n).
This completes the proof since P(n) tends to zero at infinity. w
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Space-time continuous solutions to SPDE®s
driven by a homogeneous Wiener process

by
ZDZISLAW BRZEZNIAK (Hul) and SZYMON PESZAT (Krakéw)

Abstract. Stochastic partial differential equations on R? are considered. The noise
is supposed to he a spatially homogeneous Wiener process. Using the theory of stochastic
integration in Banach spaces we show the existence of a Markovian solution in a certain
weighted L7-space. Then we obtain the existence of a space continuous solution by means
of the Da Prato, Kwapiend and Zabezyk {actorization identity for stochastic convolutions.

0. Introduction. The paper is concerned with the following stochastic
partial differential equation:
on) e (h) = AKE) + 106 X(62) 00 X, YA,

X(0= 'E) = C(m)

Throughout the paper we assume that A = 37, o5, Galz)D* with 6. €
Ce2(R?) is a uniformly elliptic differential operator on R, and W is a spa-
tially homogeneous Wiener process taking values in the space of tempered
distributions on R¢, '

By a solution to (0.1) we understand the so-called mild solution, that is,
a solution of the integral equation

(02)  X(t) = S(E)C +| S(t—8)F(s, X (s)) ds+{ S(t — 5)B(s, X (s)) dW(s),
0 0

where S is the scrnigroup generated by A4, and F, B are Nemytskil operators
corresponding to f and b, that is, for £ > 0, z € R4, and functions u, :
R o IR,

(03) F(t,u)(z) = £t u(z) (Bt up)(z) = blt, @ u(z))¥ ().
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