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Space-time continuous solutions to SPDE®s
driven by a homogeneous Wiener process

by
ZDZISLAW BRZEZNIAK (Hul) and SZYMON PESZAT (Krakéw)

Abstract. Stochastic partial differential equations on R? are considered. The noise
is supposed to he a spatially homogeneous Wiener process. Using the theory of stochastic
integration in Banach spaces we show the existence of a Markovian solution in a certain
weighted L7-space. Then we obtain the existence of a space continuous solution by means
of the Da Prato, Kwapiend and Zabezyk {actorization identity for stochastic convolutions.

0. Introduction. The paper is concerned with the following stochastic
partial differential equation:
on) e (h) = AKE) + 106 X(62) 00 X, YA,

X(0= 'E) = C(m)

Throughout the paper we assume that A = 37, o5, Galz)D* with 6. €
Ce2(R?) is a uniformly elliptic differential operator on R, and W is a spa-
tially homogeneous Wiener process taking values in the space of tempered
distributions on R¢, '

By a solution to (0.1) we understand the so-called mild solution, that is,
a solution of the integral equation

(02)  X(t) = S(E)C +| S(t—8)F(s, X (s)) ds+{ S(t — 5)B(s, X (s)) dW(s),
0 0

where S is the scrnigroup generated by A4, and F, B are Nemytskil operators
corresponding to f and b, that is, for £ > 0, z € R4, and functions u, :
R o IR,

(03) F(t,u)(z) = £t u(z) (Bt up)(z) = blt, @ u(z))¥ ().

1991 Mathematics Subject Clussification: Primary 60H15, 60G60; Secondary 80J25.

Key words and phrases: stochastic partial differential equations in L4-spaces, homo-
geneous Wiener process, random envirenment, stochastic integration in Banach spaces.
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For p € R let L = LR, ™9l dz), g € [2,00), and let C, be the space
of all continucus functlons u such that Ju(z)le™@® — 0 as |z] — oo. Note
that L C LZ for ¢ < , and that Cu(R%) ¢ LI for g > 0. In the paper
we are 1nterested in the existence of a Markowan LI or LY M Cpyq valued
solution to {0.1).

The reason for introducing weighted spaces is that we would like to
cover the case of initial values being constant functions. Observe that if the
coefficients f and b satisfy the linear growth condition then, as the constant
function ¥ — 1 is not integrable on R?, the nonlinear operators F' and
B defined by (0.3) need not take values in any L2(R4, dz)-space. This is
another reason for working in weighted spaces.

It is very important to show the space-time continuity of a solution to
(0.1). Unfortunately it is not possible to establish a theory of stochastic
integration in the space of continuous functions. To overcome this difficulty
we first develop a theory of stochastic integration in I.-spaces. Then space-
time continuity follows from a generalization of the Da Prato, Kwapien and
Zabczyk factorization (see [10] and [11]) and some regularity properties of
the semigroup generated by A.

One can show the space-time continuity of a solution to (0.1) by means
of Kolmogorov's test (see e.g. [11], [31], [32], and [41]). The method based
on the theory of stochastic integration in L9-spaces seems to be easier, more
natural and more general.

In this paper we prove the existence of a solution to (0.1) under various
conditions on the coefficients A, f and b. First (see Theorem 1.1), we study
the case of f and b being Lipschitz continuous with respect to the third
variable. In order to ensure that the stochastic integral takes values in the
appropriate function space we have to impose a certain condition involving
the dimension d, the order of 4, and some analytic characteristics of the
spectral measure of the noise. Under this condition we show that (0.1) defines
a unique Markov family in the state spaces L§ and LI N Cp/y. Next we
consider the case of f having polynomial growth, and b being Lipschitz
and bounded. To ensure the global existence of a solution we impose on f a
certain semi-dissipativity condition. We also need to assume that the elliptic
operator A satisfies the weak dissipativity condition

{ Au(@)lu(@)|* 2u(z)e~2 dz < Cluli,
R’i

for v € Dom A

on any Li-space. Since only second order operators exhibit the above prop-
erty, we have to restrict our considerations to the case of order A = 2. In the
third theorem we also deal with a semi-dissipative drift. However, we assume
that W is a random fleld. This allows us to dispose of the assumption on
the boundedness of the diffusion term.
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The techniques used in the paper can be applied to the more general
class of stochastic parabolic equations. We believe that for some more spe-
ciftc problems our assumptions on the drift and diffusion can be relaxed. In
particular, in the framework of Theorems 1.2 and 1.3, the semi-dissipativity
condition might be replaced by the weaker “one-sided linear growth” as-
sumption from [1]. Furthermore, in Theorem 1.2, one should be able to show
the existence of a solution without assuming the boundedness of the diffu-
sion term b, possibly using either the method from [1}, or some comparison
techniques (see e.g. [16], [19], [23], or [26]).

In the present paper we concentrate only on the existence of a strong solu-
tion to (0.1) in the probability sense. The existence of martingale solutions
to Navier-Stokes and Euler equations driven by a spatially homogeneous
Wiener random field is studied in [7] and [9]. Nonlinear wave equations on
R? with a spatially homogeneous Wiener process have recently been consid-
ered in {35]. For the existence of invariant measures for the process given by
(0.1) we refer the reader to [14] and [38].

Linear equations of the type (0.1) with A = A, a multiplicative noise, and
¢ = 1 were introduced by Dawson and Salehi [14] as models of the growth of
a population in a randem environment. The same class of equations has been
considered by Nobel [29]. Equations with an additive spatially homogeneous
Wiener process were studied by Da Prate and Zabezyk in [12]. Nonlinear
stochastic partial differential equations with finite-dimensional noise on R¢
were investigated by Funaki [18]. The present paper is to a large extent
based on the work by Peszat and Zabczyk [34] on the L2-theory of SPDE’s
driven by a spatially homogeneous Wiener process, and on Brzezniak’s work
[4] and [5] on stochastic evolution equations in Banach spaces. From [34]
we use the representation of the noise as a cylindrical Wiener process on a
properly chosen Hilbert space. However, the theory of stochastic integrals in
Banach spaces, in our case LJ-spaces, enables us to obtain better regularity
of a solution. In particular, we can easily show the space-time continuity of
solutions. Moreover, we have relaxed the assumption from [34} on the noise
and the coefficients.

The results of the present paper have already been used by Tessitore
and Zabczyk [39] to investigate the positivity of solutions to stochastic heat
equations on RY, and by Brzefniak and Peszat [7] to study stochastic Euler
equations.

The paper is organized as follows. In Section 1 we introduce the notation
and we formulate the main results on the existence and umqueness of a
solution to (0.1).

In Section 2 we present basic facts concerning stochastic integration in
Li-spaces. We also evaluate the so-called +-radonifying norm of an inte-
gral operator acting from an abstract Hilbert space to an L7-space (see
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Proposition 2.1). Finally, we recall from [34] the fact that every spatially
homogeneous Wiener process can be regarded as a cylindrical Wiener pro-
cess on a Hilbert space H,, called the reproducing kernel Hilbert space or
the Comeron—Martin space of W. The properties of stochastic integrals in
L9 spaces follow from the general theory of stochastic integration in Banach
spaces. In order to make our presentation self-contained we summarize this
theory in Section 7.

In Section 3 we establish some analytical properties of the semigroup
generated by A and then we evaluate the ~-radonifying norm of convelution
operators acting from H,, into LJ. These estimates are crucial for our proofs
of the main results. Sections 4, 5, and 6 are devoted to the proofs of the
theorems formulated in Section 1. Some auxiliary results are gathered in
the two appendices. Namely, Appendix A is concerned with Ité's formula
for processes taking values in Banach spaces, whereas Appendix B deals with
the equation obtained from {0.1) by replacing A by its Yosida approximation.
The approximation result from Appendix B allows us to apply Ité's formula
to the process given by (0.1).

1. Notation and formulation of the main results. Let us denote by
& the space of all infinitely differentiable real-valued functions ¢ on R¢ for
which the seminorms po (1) = sup,epa |22 DPe(xz)} are finite. The dual &'
of & is the space of tempered distributions. We denote by {£,4) the value of
§€ 8 onv €S. For z € R? we define the translation operator 7, : § — 8
by 7o () =¥(-+2), ¥ € S. Then 7/, : 8§ -~ &’ is defined to be the adjoint
operator, that is, (1.€,¢) = {{, 7)) for all ¢ € $" and ¢ € S.

DerFiNiTION 1.1, A Gaussian &'-valued process VW defined on a fil-
tered probability space U = (2, F, (F;),P) is called a spatially homogeneous
Wiener process iff it fulfils the following conditions:

(i) For each 1 € 8, {{(W(£), %) }re(o,00) I8 a Teal-valued Wiener process.

(ii) For each t € [0, 00) the law L(W({¢)) of W(¢) is invariant with respect
to all translation operators 7, z € R?, that is, L(W(t)) o (r1)~1 = LIW(t})
for every z € R¢.

For a real-valued function 3 on R?, we set Yoy () = Y(—n), & € d.
Later, when 1) can be a complex-valued function, we shall write Py (z) =

W(—z), z € R?. We have the following result (see [34], Section 1).

ProrosrTioN 1.1. Let W be an & -valued process satisfying condition
(i) from Definition 1.1. Then W also satisfies (ii) iff there is a positive
symmetric tempered measure i on RS such that

(1.4)  EWQ), 6} W), 0) = @9 xp))  for all 0 € S.
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We call 4 appearing in (1.4) the spectral measure of W, and I" = Jj its

correlation function. If ji is finite then (see [34]) there is a stationary Wiener
random field W such that

W), ¢y = S Wt )p(z)de  for t > 0,pes.

Tt
Moreover, EW(t,x)W(s,y) = t A3 [(z — y) for t,5 > 0, T,y € R If uis
Lebesgue measure then (see [34] or {11]) W is a cylindrical Wiener process
on L?. Its time derivative W is then called a white noise on L2([0, 0o) x IR¢)
or space-time white noise (see [41]).

Let ¥ € C°°(R?) be a fixed strictly positive even function equal to e=I°!
for |z| = 1. Let q € [1,00] and ¢ € R. For brevity we denote by L9 the
weighted space LU(R?, 9, (z) dz), where ¥, (z) = (¥(x))?. However, we write
L7 instead of L{. The scalar product and norm on L2 are denoted by (-,-),
and | - |, The products on L? and on R? are denoted by the same symbol
(') > .

Note that 1§ = LR, g—elz] dz). For technical reasons {see the proof of
Lemma 3.1), it is convenient to replace the non-differentiable weight e~2l'l
by the equivalent and smooth ¥,. In the present paper we have chosen a
system of exyonential weights. However, all our results remain true if 4, is
replaced by 9, () = (1+||%)~€. What we really require of the weights is the
strong continuity on LI of the semigroup generated by A (see Lemma 3.1),
and this is guaranteed by estimate (3.9). Note that the weighted space €, of
continuous functions equipped with the norm |ulc, = sup,epe lu(z)|9,(z) is
a Banach space.

In this paper we shall show the existence and uniqueness of a solution
X to (0.1) from the classes K(L3) and K(L% N Cp/q) defined below. Let
T>0,0€R, g€ (2,00) and p > 1. We denote by K%.(LJ) the space of all
measurable (F;)-adapted processes Z having continuous trajectories in L3
such that

¥

N2l oy := (B sup [Z()[2.)MP < co.
llegizyy = (& o 120)%)
Furthermaore, we sef K(LL) = M K5 (LY), where the intersection is taken over

all T > 0 and p > 1. In the same manner we define the classes ng (Lg NCe)
and K,'(Lg Ney).
In the main theorems we need the following additional condition on W.

(H.1)  The spectral measure p of W is of the form u = > io ti, where
n € N, yp is a finite measure, and for each ¢ = 1,...,n there is
a subspace L; of R, possibly L; = R?, such that y; is absolutely
continuous with respect to Lebesgue measure my, on L;, and the
density n; = du;/dmy, belongs to L (L;,my,) for a p; € [1, 00).
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Assume that (H.1) holds, and write

aw = max (1 - ;) dim L;,

i=1l,...,n i

(L.5)

where
p; =inf{p € [1,00} s dpg fdmy, € Lp(Li,mLi)}.
Our main existence and regularity results are contained in the following

three theorems. The first one deals with the case of Lipschitz coefficients.
Before its formulation it is convenient to introduce some notation.

DEFINITION 1.2. Let ¢ € R and g € [2,00). We say that the pair (f,5)
of coefficients belongs to the class Lip(g,q) iff f and b are measurable, and
for every T > 0 there exist a constant L and a function lp € L such that

for all £ € [0,T], z € B¢ and y,z € R,
|F(t, 2, ) — f(t,2,2)] + [b(t, 2, 9) — b{t, . 2)| < Ly — 2,
(£t z,9)| + b, =,9)| < L(lo(z) + |y])-

THEOREM 1.1. Let o € R. Assume that (H.1) is fulfilled, and aw given
by (1.5) satisfies aw < 2m.

(i) Let g € [2,00), and let (f,b) € Lip(e,q). Then for every ( € L there
exists o unique solution X¢ to (0.1} from the class K(LE), and {X¢}cers 8
a Markov family with the Feller property.

(ii) Let ¢ > 2d(2m — aw) ™!, and let {f,b) € Lip(g,q). Then for every
¢ € LENCy, there exists a unique solution X fo (0.1) from the class
IC(LqﬂCQ/q) and {X¢}eersnc,,, is @ Markov family with the Feller property.

Qur next theorems deal with the case of a second order operator A, and
the coefficient f satisfying a certain semi-dissipativity condition. In partic-
ular, f can have polynomial growth. This causes some technical difficulties.
They are concerned with the fact that generally the semigroup S does not
transform L7 into Lg. This explains why we consider (0.1) on the state
spaces L,, £7, and £~ defined as follows:

- _ m CQ.

= (] L& ¢t =()Ca
4€[2,00) >0 p<l
Note that Cy,(R%) C Ct C L, for every o > 0, and Cp(R?) ¢ C~ C L, for
every g < (. Next we set
[ K(Co)

| K&y,
p<0

g€(2,00)
DerINITION 1.3. Let r € {1,00). We say that (f,b) belongs to the class
Dis(g,r) iff f and b are measurable, and for every T € (0, 00) there are a

)= [KC), K=

2>0
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constant L and a function lg € L, such that for all z € RY, ¢ € [0,7] and
¥z R,

|7 (¢, 2, 9)| < L{lo(=) + [yl + |u|")

(L.6) () = 6, 2)| < Lly — 2|1+ [yl™* + 7Y,

Fltz,y + 2y < L(lo(z) + [2] + 2" + [yl gl
and

|b(t, 7,9} < L{lo(=) + |yl),

|b(t, @, y) — blt, =, 2)| < Ly — 2.
If, additionally, b satisfics the boundedness condition |b(¢, z,y)| < lp(z) with
lp € Ly, then we say that the pair (f,b) belongs to the class BDis(g, 7).

Before proceeding further we present an example of a function satisfying
(1.6).

ExamprLe 1.1. Let f(t,z,y) = E?Zgl a;(t,x)y, t > 0,z € RY, and
y € R where n € N, and a; € Co([0,T] x R?) for j = 0,...,2n — 1 and
T > 0. Let ¢ € R and let ap € L, Assume that for any T > 0 there is a
C < 0 such that az,_1(¢,z) < C for all ¢ € [0,7], z € B%. Then f satisfies
(1.6).

THEOREM 1.2. Letr € [1,00). Assume that A is a second order uniformly
elliptic operator with coefficients from Cg°. Assume that (H.1) is fulfilled,
and aw < 2.

(i) Let o € R, and let (f,b) € BDis(p,7). Then for every ( € L, there
exists a unique solution X¢ to (0.1) from the class K(Lg), and {X¢}cer, i
e Markov family.

(i) Let ¢ > 0, and let (f,b) € BDis(g,7). Then for every { € CT there
ezists a unique solution X¢ to (0.1) from the class K(Ct), and {X¢}eecr is
a Markov family.

(iil) Let (f,b) € BDis(g, 7*) or every p < 0. Then for every & C™ there
is @ unique solution X, to (0.1) from the class K(C™), and {X¢}cec- ¥ 0
Morkou family.

As an illustration of Theorem 1.2 (see also Example 1.1), we have:

ExamrLn 1.2 (Reaction-diffusion equation on IR). Consider the following
particular case of equation (0.1):

X a X
T uw+§%me+waumwm
X(D,ﬂ’.‘) = g(m)ﬁ
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where a4, § = 0,...,3, are constants, W is the space-time white noise on
R, and b is a measurable function. Assume that as < 0, and that for every
T > 0 there are a constant K and a function [ such that for ¢ € [0, 7],
zc R and y,z e R,

|6(t, 2, y) ~ blt,z,2)| < K|y — 2| and
Then as a consequence of Theorem 1.2 we have:

(i) If { € C* then (1.7) defines uniquely a Markov family on Ct.
() If I € ¢~ and ap = 0, then (1.7) defines uniquely a Markov family
on C~.

bt z,y) < I(z).

Our last theorem is concerned with the case of W being a random field,
and f of polynomial growth. Since we can apply the Itd formula in this case,
we can drop the assumption on the boundedness of the diffusion term.

THEOREM 1.3. Let r € [1,00). Assume that A is a uniformly elliptic
second order operator, and the spectral measure p of W is finile.

(i) Let o € R, and let (f,b) € Dis(g,r). Then for every ¢ € L, there
exists a unique solution X to (0.1) from the class K(L,), and {Xc¢leer, is
a Markov family.

(i) Let ¢ > 0, and let (f,b) € Dis(g,r). Then for every ¢ € CT there
erists o unique solution X¢ to (0.1} from the class K(CT), and {Xeleees is
a Markov family.

(iil) Let (f,b) € Dis(g,) for every o < 0. Then for every ¢ € C— there

is 0 unique solution X¢ to (0.1) from the class KX(C™), and {Xeleee- isa
Markou family.

As illustrations of Theorem 1.3 we have the following two examples.
ExAMPLE 1.3. Consider the following particular case of equation (0.1):
8x X ol ! . W
B bo) = 55 (to)+ > aiXi(t,3) + ijXJ(tal‘)“bT(ﬁ, ),
=0 3=0
X(O> :Z:) = C(m):

where a;, b; are constants, and Wis a spatially homogeneous Wiener random
field on RY. Assume that G9n--1 < 0. Then it follows from Theorem 1.3 that
(1.8) defines uniquely a Markov family on C*. If additionally ag = by = 0,
then (1.8) defines uniquely a Markov family on C~.

(1.8)

ExampLE 1.4. Consider (0.1) with A being a second order elliptic oper-
ator on IR, 0(t, z,y) =y, and f{t,z, ¥) = —y*+ay for y > 0 and 0 otherwise.
Then as a consequence of Theorem 1.3, (0.1) defines a unique Markov family
in C* and in C~. Using a comparison theorem (see e.g. [16], [19], [23], or
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[26]), one can show that if the initial value is a non-negative function, then
the solution takes values in the set of non-negative functions.

REMARK 1.1. Assume that the hypotheses of one of Theorems 1.1 to 1.3
are fulfilled. Then we have the pathwise uniqueness of a solution. But it is
easy to deduce from the proofs that law unigqueness holds as well.

Let & be any of the state spaces listed in Theorems 1.1 to 1.3. Assume
that ¢ is an Fp-measurable random variable in £ such that E|¢]% < oo for
every p € [1,00}. Then it also follows from the proofs that there is a unique
selution in K(£) to (0.1) starting from (.

Assume that ¢ is stationary, or equivalently that its law is spatially
homogeneous. Then for every £ > 0 the law of X (¢) is spatially homogeneous
provided that the coeflicients f and b do not depend on the z-variable.
Indeed, to show that 75 (X(t)) and X(t) have the same law it suffices to
observe that 7,(X¢) is a solution to (0.1) driven by 7, W, and starting from
7z(¢), and then use law uniqueness.

2. Stochastic integration in L?-spaces. Let (&, B, 0) be a measurable
space, and let L(Q) = L2(O, B,0). Let H be a real separable Hilbert space,
and let {ex} be an orthonormal basis of H. In this section {G:}72, is a
sequence of independent standard (i.e. Ef, = 0 and D?8; = 1) normal
real-valued random variables defined on a probability space (£2, F, P).

A bounded linear operator K : H — L%(O) is ~y-radonifying iff the
series 3 oo, BiK ey converges in L2(£2, F,P; L7(0)) (see also Definition 7.1
and Proposition 7.1). We use R(H,L(0)) to denote the class of all +-
radonifying operators from H into L2{Q). Note that R(H, L4(()) equipped
with the norm

K rez,Le(o)) = (EigﬁkKBk‘iq{o))llz

is a Banach space.

The proposition below provides a useful estimate for the y-radonifying
norm of an operator given by a kernel. We supply a simple proof and remark
that the proposition is a special case of a more general result of Kwapieh
(see Proposition 2.1, Chapter IT and Theorem 5.4, Chapter VI of [40]).

ProrosiTION 2.1. Let g € [2,00). Assume that K € L{H,L(0)) s
given by (K){z) = (K(z),%)n, z € O, ¢ € H, where K € LYO, F,0; H).
Then K belongs to R(H, L(0)) and

”KHR(H,LE(O)) < C'(S [K(2) dﬂ(m)) 1/4‘
o .

. 4! .
Proof. Since the real-valued random variable ;_i:n GilK(z), er) s is
Gaussian for each z, there exists a constant C; depending only on g such that
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(5 kel )" = (B(1[S e o] a0e)) ™)
k=n 2 k=n

n+i q
<EYY Belk(e) en)n| db(z)

O k=n

/2

6§ (313 autkte), en| ) atte)
@)

k=n

IA

nl

o S|Z(i€(m),ek>2qu d6(x).

O k=n
Thus the series . 8z Key converges in L*(2, F,IP; L9()) and

o0
/
K1 oo = B> Bk, < CVo(§ 1K@l d0(a))
k==l @)

IA

q(o
which gives the desired conclusion. =

Let W be a cylindrical Wiener process in H (see e.g. {11]}. The stochastic
integral with respect to W can be defined first for simple processes and then
extended to the space £2{0,00; R(H, LY(O))) of all measurable, adapted
R({H, L9{(0))-valued processes o such that Egg ]|a(t)HZR(H,L,,(O)) dt < oo for
T < oo. In fact we have the following consequence of general theorems
on stochastic integration in Banach spaces and some special properties of
L%-gspaces (see Theorems 7.2 and 7.3, and Proposition 7.2 of the present
paper).

THEOREM 2.1. Let ¢ € [2,00). Then for any o € £2(0, 0o; R(H, L3(0)))
the stochastic integral Sga(s) dW(s), t 2 0, is an LI(O)-valued square in-
tegrable martingale with continucus modification and zero mean. Moreover,
for every p € (1,00) there is a constant C, independent of T and o, such
that

¢
[ [o(s) aw (s)
0

In the present paper W = W is a spatially homogeneous Wiener process
with a spectral measure . Recall (see Section 1) that v (z) = ¢(—z).
Denote by L‘E"S)(R‘i, 1) the subspace of L? (R4, u; ©) consisting of all ¢ such
that 9 = ). Set

H,u = {'I:ZIL : 71!7 & L?s)(Rd:#’)})

(i, G, = § ¥(2)e@) dul), b, € L) (RS, ).
]Rd

T

p/2

o < CB(] 1005) Bgmanion )
0

‘p
0<t<T La(o)
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Obviously, M, C &', and (H,, {-, ‘)1,.) 1s a real separable Hilbert space. For
further reference we present without proof the following version of Proposi-
tion 1.1 of [34].

THEOREM 2.2. (M, (-, -)n,) is the Cameron—Martin space of W. In
particular W is a cylindrical Wiener process on (H,,, (-, Y, ), ond W takes
values in any Bonoch space V' such that the embedding Hy — V s -
radonifying.

We present without proof the following slight generalization of Proposi-
tion 1.3 of [34].

LemMA 2.1. Assume that (H.1) is fulfilled. Denote by I, the orthogonal
projection of R onto Ly, and identify o € L*(L;,my,) with ¢RI R
such that (z) = Y(I1, ), z € RE. Then

Hy C Co(RY) + LA (Ly,myr,) +. .. 4+ L¥(Ln,my, ).

3. Analytic preliminaries. Recall that 4 is a uniformly elliptic oper-
ator of order 2m. Set
g(t,z) = Kt~ Cm) exp{—(jef?™ /) @=1} t50, 3 € RY,
the constant K being such that {,, g(t,z)dz = 1 for every ¢ > 0. In the
sequel we shall make use of the following property of the weights 9,
(39) VovI>03K1VzeRYVte [0,T], g{t,-)*9,(z) < Ki9,(z).

Recall (see [17]) that the fundamental solution G exists for the operator
8/9t — A. Moreover, G € C(Ry x R? x R%) and for each 7" there exists a
constant Ko > 0 such that

(3.10)  |G(t,z,9)| < Ky lg(Kat, e —y) forall t € (0,7, z,y € R,

Let n € Nand g € [2, 00). Denote by H™? the Sobolev space of functions
on R? with g-integrable derivatives of order < n. Then for any g, A with
domain H2™9 is the generator of a holomorphic semigroup S on L9 and

(3.11) S(tulz) = S G(t, z,y)u(y)dy forue L9, t> 0,z €R%
ke
Moreover, since G(t,x,-) € S for ali ¢ > 0 and z € R?, the semigroup S has
an extension to a semigroup on S'.
Lemyma 3.1. Let g € [2,00) and o € R.

(i) If o > 0 then the semigroup S defined on L9 by (3.11) has a unique
eztension to a holomorphic semigroup on L.
(il) If o < O then the restriction of S to LY is a holomorphic semigroup.
(iii} For every g, S is a Cy-semigroup on C,.
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(iv) For arbitrary o € RY, ¢ € [2,00) and t > 0, S{t) is a bounded
linear operator acting from LY into Cyyq- Moreover, for ench T there emists

a constant C' such that
”S(t)”L(LZ,CQ/q) < Ct—d/(i?mq) fO’f‘ tE (O,T]

Proof. (i) & (i). et g € R, T > 0, £ € (0,7 and u € &. Combining
(3.11) with (3.10), (3.9) and Young's inequality we get

Sy = ||| Gt 2,)ulw) dy| Vo(e) do

md Rd
< &7 | (] a(Kot,z ~ (o)l dy) 04(e) do
e [
<Ky | | a(Kat,z — p)iu(y)]? dydelz) dz
e R
< 0§ lu()0,(y) dy,
R

with the constant C being independent of v and ¢ € (0,T]. This implies
that the extension, or restriction, of S to LY is a Cp-semigroup. In this
paper we shall use the same letter to designate the semigroup on L9 and its
extension or restriction to L. To prove that S is holomorphic on L we take
the isometry j, : L3 — L2 given by jy(u) = ully/q Set; S(t) = FeSH);
Clearly, S = {g(t)} is a Cg-semigroup on L9, and its generator A is equal
to ngjg“l. Tt is easy to see that A is a uniformly elliptic operator with
coefficients from C{°(R?). Thus 3 is holomorphic on L9, and consequently
S is holomorphic on L§ for it is unitarily equivalent to S.

(it} & (iv). Fix T € {0,00), q € [2,00) and ¢ € R. Part (iii) is proven in
[18] and [34]. Since S(¢), t > 0, are given by continuous kernels, it is easy
to see that S(#)u, ¢t > 0, are continuous functions for any w € L. Thus it is
enough to show that there is a constant C' such that

sup [S(1)u(@)|8,/g(a) < OF /™D ul
=€l
To do this note that using (3.10), and then Hélder’s inequality and {3.9) we
geb

for u € L.

S| < (K5 | g(Kat, @~ y)uly)l dy)q
Rﬁi
< &5 (§ gttt - ule)" ).
R :
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- 2
< K 7(§ o(Kat 2 = )0 opalu0)| /28, )
R

< K3 ulfs | 6 (Kat,z - y)9_o(y) dy
T

< C1|U]igtmd/(2m)ﬁ—g($)

1

which gives the desired conclusion. w

Recall that H,, is the Cameron-Martin space of a spatially W homoge-
neous Wiener process with a spectral measure u. Note that if u € L2 and
£ € Hy, then as a consequence of Lemma 2.1 we have uf € &'. Sincfe the
semigroup S generated by A is also a semigroup on &,

(3.12) Kt uw)é=50t)(uf) fort>0,uell teH,

is a well defined element of &'. 'We shall show that in fact K{t,u)¢ belongs
to Lf, and for £ = yu we have

K(tu)(€)(@) = | Gz, ) ) () duy).
e
THEOREM 3.1. Let (H.1) be fulfilled, and let K be given by (3.12). Then
forallu € LY andt > 0, K(t,u) € R(H,, ). Moreover, for any T € (0,00)
there is a constant C' such that for oll u € LY and t € (0,7,

(3.13)

- L
B (& ull e, 29y 505“\L3(1+Zf il 1/3")).
=1

COROLLARY 3.1. Let the assumptions of Theorem 3.1 be fulfilled, let K
be given by (3.12), and let ayw be given by (1.5). Then for everya > aw/(2m)
and T € {0, 00) there is a constant C' such that for allw € LY and t € (0,T],

1K (&, w)llrer, pay < Clulpat=*.

We have divided the proof of the theorem into two lemmas.

LeMMA 8.2. Assume that (H.1) holds. Then for any T € (0,00) there 4s
a constant ¢ such that for allv € LY andt € (0,77,

; A 2 e/2 - -—Iﬁ 1-1/p:
Rgd ( MSdI[G(t,:B,-)u] ()2 dps(y)) " Dy(e)do < Clulzy (1+;t L))
Proof Fori=0,1,...,n we write

L= § (] Gt e, i )P ()" 9,(0) o
B Re
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Using (3.10), Jensen’s inequality and then (3.9), we get

Ip < (uo(R))%/* Sd sup [[G (e, WI*Fo(a) do
< (#U(Rd))mmﬂd(&dx tg(Kat,x — 2)|u(2) !dz) dy(z) dz
< (uo(Rd)Wzi;f Sd Sd 9(Kot,z — 2)[u(z)|? dz 0, () dz
<a &u(z)l%(zﬂ;czﬂz = Crjully,

R

where C4 is independent of u and ¢ € [0, T).

Let i € {1,...,n}. Using Holder’s inequality we get

, q/2
L= | (S HG(t,m:-)nl“(y)lz—dd“ ~(y) dmLi(y)) B, (z) do
JILS

my,.

d M, L
q/2

Aps; /
dIIlLZ.

LPi(L;,my,)

x (1 16,2, 0 )PP dinz, o)

J

(2p7
)q/ ’ }199(50) dz.

Using first the Hausdorff-Young inequality and then (3.10), we get

( S lG(t, z, Ju] (@)|*FF dmy, (y))ll(-?p:)

i

<G ( S ( S |Gt z, 2 + v)ulz + v)| dng- (v)) (2p7)" dmLi(z)) 1/{2pt)*
Li L
= CQ(S ( S K3 lg(Kat,m — 2z —w)
L; Lf'
X |u(z + )| dmLHv))zpe/(piH} dmLi(z)) (pi+1)/(2p:)
< Oz{ S ( S K7 g(Kat, x — 2z — v)|u(z + v) |22/ (e+1) dmy - (v)

Ly L

L+

%

( S Ky g(Kzt T —z—%) dmL.L (?j))%a (p=+1)—1) dmLi(z)}{mﬂ)/(zpi)A
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Since
| Kyg(Kat,z —y —v) dmyy (v)
Lt

< Oy E Kz_l(Kzt)_di/(zm) exp{—lfulgm/(gm‘l)}d,u < C4t"'iz/(2m)’

]Rd—di
we have
iqlpq —1)
I, < Oyt 3 H

- it (pi+1)/(2p;
x | ( | K g(0at, o = Dl e a2) T ) g
R lﬂici

_ 11(131—1)
< Ot i S S g(Kst, z — z)|u(z)|? dzd,(z) dz
liad R
dy atpi~
< Gt~ T ‘U|L“ — CpttER(1-1/p0) |u|"q,

which gives the desired conclusion. m

LeMMA 3.3. Let (H.1) hold and let K be given by (3.12). Then for all

ue Ll t>0andé= 'lZZI € H,, the identity (3.13) holds and K(t,u) €
('H,u, ?). Moreover, for any T € (0, 00) there is a constant C independent
of u € L'? and t € (0, T} such that

K (2, u)”qR(HP,Lg) <C S (S [[G(t, 2, Yu]™(
Rd R{I

)P du(w)" 8,(a) do

Proof. To show (3.13) we take ¢ € S. Then
V1160 2,0 w) $(y) duly) ¢(z) d=

Ted R

= { | § @) ¥ WG, 2, 2)u(2) Y(y) dp(y) ¢(z) do
e et e

=11 G(t, 2, 2)ulz)Pu(z) o(w) dr dz

e T
= | K(t,w)(p)(@)e(z) dz,
Re
which proves (3.13).
Let 59 = 9p. Then 7 is an isometry between Ly =
Clearly K (t,u) € R(M,, LY) iff K(t,u)j € R(Ls), L

B (2, u)l| e, 22)

Ly (R, ) and H,,.
). Moreover,

= | K (¢, u)illrer L9
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Observe now that by (3.13) we have

(K(tv U)J)":b(m) = <[G(t3$> ')’Lb]/\, 'l/))L(s)'
Thus by Proposition 2.1 there is a constant € such that

q/2
1Bt w)il ey <€ § (§ GG 2l WP duty)) 84(w) do,

Re Rd

and the proof is complete. a

4. Proof of Theorem 1.1. In the proof of the first part we use the
Banach contraction principle. As in [31] and [5] we use the factorization
identity from {10] to obtain some maximal estimates for stochastic convo-
lution in the supremum norm in C([0,T7]; Lg). In the second part we use
smoothness properties of the semigroup 5 in much the same way as in [34].
However, as we integrate in L-spaces we are able to show the space-time
continuity of a solution for an elliptic operator A of an arbitrary order.

Proof of (i). Let F and B be given by (0.3), and let B(t,u)(z) =
b(t,z,u(x)) for z € B? and a function u : RY — R. First observe that
F(s,-) and g(t, ), £ 2 0, map L7 into L. Moreover, for any T € {0, o),
there is a constant Cy such that for all ¢ € [0, 7] and u,v € L2,

|E(t,w) = F(t,0)|zg + | B(t,u) — Blt, v)|1g < Chlu—v|pa,
Pt w1y + 1Bt u)lag < Co(1+ [ulrg)-
From the assumptions of the thearem there is a constant a such that

(4.15) W <l
2m

Thus there is an o € (0,1/2) such that 2o+ e < 1. Let p € [2,00) be
such that p > o~ *. Recall that the spaces K& (L9), T > 0, were introduced
in Section 1. Let T' € (0, 00). Observe that 1f Z e Kj (L‘?) then for any
t € [0,T] the processes

_Jo if 5 ¢ [0,¢],
!ptz(s) = {S(t — 3)3(332(3)) 1E§ c [O, ﬂ;

(4.14)

and

_fo if s & [0,4],
T2 (s) = { (t—s)"=S(t — s)B(s, Z(s)) if s € [0,8],

belong to £2(0,00; R(H,, L3)). Indeed, they are predictable, and for s €
0,],

W2 (s) = K(t - s, B(s, Z(s))), T2, (s) = (t — 8)"*K(t — 5, B(s, Z(s))),
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where K is given by (3.12). Thus, by Theorem 3.1, FE(s),02,(s) €
R(Hy, 114) and for s € [T1,1],

d:mL
|2 Z ()| mm, 10y < CalB(s, Z(s IL4(1+Z(z&—~s)H (1- zfpa))

< C3(1+|Z(s)|ra)(t ~ s)™ ﬂ/g,
and consequently
1270 () | rr,e 23y S Call +12(8)|ga)(t — )72/,

Thus, for any T > 0,

T
IES (187 (s )HR('H#,L“) + 22 (s )H%{(H”,Lg))ds < co.

0

2

For Z € Ki(L

J(Z)(t) =} 5(t — 5)B(s, Z(5)) dW(3),

|
0
(4.16) Ja{Z)(t) = {(t — s)7*S(t — 5)B(s, Z(s)) dV(s),
0
|

Finally, for Y € L?(0,T; LY) and t € [0,T] we set

(4.17) Jely (g = BT

S (t— )18t — 5)Y (s} ds.

0

Using Burkholder’s inequality from Theorem 2.1 one can easily show that
Jo(Z) € LP(2 x [0,T]; LE)  for Z € Kr(L]).

Since 5 is a Cy-semigroup on LY and o > p~! one can easily show that

(4.18) Jot & L(I2(0,T; 1g), O((0, 71 LE)).
Now employing the factorization identity J = J*1.J, from [10] (see also [5],

[11], or [31]), we sce that J maps K5(L4) into K5.(L3} for any T'. Moreover,
there is a constant C'(T) such that C’(T) J0asT ,L 0 and for all Z,Y €

K:Tl;Tzv
(4.19) 117(2) = Tz qzny < CONZ = Ylixzzz)

It is a simple matter to show that the estimate (4.19) holds true if we replace
Jbyl.
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Set LP = LP({2, o, B; L2). For z € LP and Z € K& (L}) we set

t

T(z, 2)(t) = S(t)s + | S(t - 5)F (s, Z(s)) ds + | S(t ~ 5)B(s, Z(s)) dW(s)
0 0

= S()z + I(Z)(®) + J(Z)(H).

Then J is a continuous mapping from £P x KF(L%) into KF.(L9) for any T.
Moreover, for any sufficiently small T > 0 there is a constant C' < 1 such
that for all z € £7 and Z,Y € KT.(LY),

N7 (2, 2) — T (2, Y)llkz.czgy < ClIZ — Yz g

Therefore, the Banach fixed point theorem yields the existence and unique-
ness of a solution to (0.1) from the class X% (L4) for T small enough. The
continuous dependence of the solution on the initial data follows from the
well known fact that the fixed point depends continunously on the parame-
ter (see e.g. [5], [11], [20], or [33]). It is a simple matter to show that this
solution can be extended to a solution on any interval. Since this holds for
every p > a1, the solution belongs to X(LZ). The Feller property of {X,},
¢ € LY, follows from the continuous dependence of X¢ on ¢. m

Proof of (ii). Recall that ¢ € [2, 00) satisfies ¢ > 2d(2m — aw) ™. Note
that there are a satisfying (4.15) and o € (0, 1) such that

d
{4.20) a—1—2—>dl and 2a+4+0<1,

Mg
Let { € LI N Cyyq- Then, by Theorem 1.1{i), there exists a unique solution
X¢ to (0.1) from the class K(L2). What is left to show is that X belongs
to K(L&NCyyg)- By the definition of a solution we have

Xe(t) = S@)C+ X ) (E) + T(Xe)(E),

where I and J are defined by (4.16). Since ¢ € LI N C,/q, and since 5 is a
Cy-semigroup on L and C,q, we have S(-)¢ € C([0,00); LINC,/,)- Taking
Lemma 3.1{iv) and (4.14) into account, one can show that I(X¢) € X(L{N
Cpsq)- To show that J(X.) € K(LINC,,,) we use again the factorization J S
Jo=1J,. We have proved (see the proof of Theorern 1.1(1)) that Jo(X¢) €
IP(2 % [0,T]; L§) for all T > 0, p > 2. Thus, it is enough to show that

-1
(421) Jo e L(IA(0,T; L), C([0,T); Cppg))  forp > (cx - ﬁ) .
To do this observe that, by Lemma 3.1(iv) and Hélder’s inequality, we have

i
smowr o
ots S é(t~5) HIS(E = Mlzza.c, 2 (8)|zs ds

W E(t)e
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i
<G~
0

8)* D) Z(5)| g ds

i . T

o (S (t — g)(e~1-d/@ma)p" ds) M (S 1Z(s)2, ds)

0 Q

Hence J*7* is a bounded operator from L?(0,T; L?) into L (0, T;C, ) as
from (4.20) we have (¢ —1—d/(2mg))p* > —1. The L*.space above can be
replaced by the space of continuous functions as the map ¢ — J*1Z(#) is
continuous for every Z from the dense subset C§°([0, T; L) of L?(0, T; L)
(see [10] for more details). Thus we have shown (4.21), which completes the
proof. =

1/p

5. Proof of Theorem 1.2. The proof makes use of the concept of
the subdifferential of a norm. This technique was used by Da Prato and
Zabezyk [11] for equations with a constant diffusion term, and then extended
by Peszat [31] to equations with a bounded diffusion term. In the proof of
the first part of the theorem we follow [31]. Roughly speaking, assuming
that the coefficients are locally Lipschitz we obtain the existence of a local
solution. To prove the global existence we take the norm in L} as a Lyapunov
function. In the proofs of the second and third parts we employ the regularity
properties of the semigroup generated by A

DEFINITION 5.1. Let (E,| - |g) be a Banach space, let E* be the dual
space, and let (-, -}z g» be the canonical bilinear form on E x E*. Let € € E.
The subdifferential dle|g of |e|g is the subset of E* defined as follows:

3!6|E = {6* e B (6 e*)E B = IBiE and ]e*|E* = 1}
Let ¢ > 2, and ¢ € R. Then, identifying (LI}* with Lg , we obtain
Olufry = {lul; q|u|q 2u} for w # 0 (see [11] for more details). The motiva-

tion for 1ntroducmg the notion of subdifferential is the following well known
lemma. For its proof we refer the reader to [11], Proposition D.4, or [37],
Lerama 3.1.

LeEMMA 5.1. Let y : [0,T] — B be differentioble at some to € (0,7)-
Then the function t — |y(t)| g is differentiable on the right and on the left
at ty and

|-

dt
"'""l’y to)lz = inf{(y' (to), ¥, ) BB~ : Vs, € Oly(to)|5}-

In the proof of the theorem we need the fol]owmg two deterministic
lemmas.

—|ulto)|z = sup{(v'(to), vi, )&, 5~ : Y5, € Oly(to)lz},
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LEMMA 5.2. Let g € R and g > 2. Let A be a second order uniformly el-
liptic operator with coefficients from C°(R%). If we treat A as the generator
of o semigroup on LY, then there is a constant C such that

(5.22) (A“’u*)Lg,Lg* < Clulgs  foru € Dom A, u* € 8lujza.

Proof. Using the isomorphism j, : L§ — LY from the proof of Lemma
3.1 we can assume that g = 0. Since S is dense in L} and invariant with
respect to S, it is a core for A (see [13], Theorem 1.9). Thus it is enough to
find a constant C such that (5.22) holds for every w € &, with g = (.

Agsume first that A is in divergence form, i.e.

19 a
i,5=1
Then (see e.g. [30], Theorem 3.6 in Chapter 7} A generates a contraction
semigroup on L¢, and so by the Lumer—Phillips theorem (see e.g. 130], Chap-
ter 1) it satisfies (5.22) with € = 0. Although Theorem 3.6 from [30] deals
only with the case of a bounded domain we note that the same proof works
for R as well.

Note that in the general case A can be written as a sum of an elliptic
operator in divergence form and of a first order operator. Thus it is enough
to show that {5.22) holds for an arbitrary first order operator 4y, = a-V+¢
with a € Cg°(R?%;R?) and ¢ € OF°. Obviously, we can assume that ¢ = 0.
Since the function z — |z/9%z is C! on R, the function u* is also O for
any u € §. Integrating by parts, we obtain

(Aru, v} = ((a - V)u,u*)
= — {{(diva(z))u(z)u*(z)
]Rd
— (g = Llul|u(z)|**ulz)(a(z) V)u(z)} de

- S (diva{@))u(z)u*(z) dz — (g — 1){Agu, u™).
el

Hence

. 1, g v ..
(Ao, u) = = ful3? § div a(a)lufe)]"ds,
e
which, as diva is a bounded function, gives the required inequality. m

LEMMA 5.3. Let ¢, ¢ and A be as in Lemma 5.2, and let V' be a Banach
space continuously imbedded into LY. Let T € (0,00), and let F' : [0,T] x
L{ — L be a measurable mapping. Assume that there are constants C > 0
and r > 1 such that

(F(t,u—l—v),u*)Lg,LZ* S O+ vl +lufrs)  for t€{0,T], ueDom A, veV,

icm

SPDE’s driven by a homogeneous Wiener process 281

and
\F(tu)le < C(1+ |uly,)
Let y,% € C{[0,T); V) be such that
t

y(t) = S{OW(0) + | S(t — )F(s,y(s) +4(s))ds for t € [0,T).
0

forte0,T,ueV,

Then
¢

w1z < e ([9(0) rg +C{(1+ ()52 ds) ot € [0,7],
0

Proof Note that F(.,y + ) € L=(0,T;L%) and y = y; + 12, where
1(8) = S{t)y(0) and

() = | S{t - 8)F(s,u(s) +9(s)) ds.
0

By [25], Chapter 4, Section 9, y» € W5H4(0,T; L) N L9(0, T; Dom A). Hence,
as S is holomorphic, we have

d

(0 = Auld) + F (&, y(0) + 4 (2))
Therefore, by Lemma 5.1, for almost all t € (0,7] and for every ¥ €
Oly(t)| Ly we have

for almost all £ € (0, 7.

a” *
S ly®lzg < (Ay(e) + Fly(0) + B0 g 10
and, consequently, by Lemma 5.2 we have
WOy < CA+ WO + (E)lz3)-

Hence, by Gronwall’s inequality,

1
5oy < @ (juO)]zg +C {0+ () ds),
0
which is the desired estimate. m

Proof of Theovem 1.8(i). Fix a o € R, and let ¢ € C§°(R) be a function
such that 0 < ¢ < 1, é(y) = 0 for |y} > 2 and ¢(y) = 1 for |y| < 1. For
n € N we set

Fulte, ) = fm,p)dnry), t=0zeRiyeR

Note that for all n € N and ¢ € [2, o0} we have (fr,b) € Lip(e,¢). Let n € N,
t >0, and let u,s) : R? — R. Write

FO tu) (@) = fult, o, u(z) = £t 5, u(x))¢(n u(@))-
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Let ¢ € L,. By Theorem 1.1(i), for every n there is a unique solution X ) ¢
KC(L,) to the stochastic equation

i

(5.23) XM@Y = S+ {5t~ ) F™ (s, X (s)) ds
0
-+ ﬁ 5(t — 8)B(s, X™(s)) dW(s).
0
Let

gl (g) = § 5{t — 8)B(s, X™ ()} dW(s),
0

YU = S(t)¢ + [ S (¢ — )P (5, X (5)) ds.

0
Note that Y = X — @™ Our first goal is to show that

(5.24) sup ||f££7(n)m,c;(L;q) <oo forallT >0 andp,q € [2,00).

We can do this using the arguments from the proof of Theoremn 1.1. Namely,
we fix a g € [2,00), and for o satisfying (4.15) we take an & € (0,1) such
that 2o +a < 1. Let p € [2,00) be such that p > o~ L. Let

i
wm2)() = { (6~ 5)*B(s, X™ (s)) dW(s)
0
and let J*~! be given by (4.17). Then &™) = Je-1g(ma) and taking into
account (4.18), we only have to show that
T
supEj B2 ()P dE < oo
n H
0

(5.25)

(5.26)

By Corollary 3.1 we have
1(t=5)~*8 (t~5)B(5, X ()) | ren,, 1y < calt—2)""2fb(s, -, X)) 1
and hence, as b is bounded by an element of L%, there is a constant ¢z such
that
II(t — s)_"‘S’(t — 3)B(s, X(”)(s))HR(HMLg) <ct—8)"*%? forallneN,
Using now the Burkholder inequality from Theorem 2.1 we obtain (5.26).
Now as X (™ (") ¢ K(L,), we have Y(™) ¢ K(Lg).

Our next step is to prove that

(5.27) sup HIY(”)IH,C;(L:;) <oo forall T > 0andp, g€ 2 c0),
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and consequently

(5.28) sup [[|X ™z zgy < 00 for all T >0 and p,q € [2, o0).

B
o
To show (5.27) note that Y(") ig the mild solution to the problem

Ay (n}

5 =AY+ P Y™ gty v = ¢

Now fix T € (0,00) and ¢ € [2,00). Then there is a coustant ¢ such that
foralln € N, ¢ € [0,T], u,v € Ly7N L, u* € B|u/g one has
(F(’n‘) (t=u + U)vu*>9 < 0(1 + [UILZ + ]U|TL;‘1 + |U}Lg)-

Indeed, take u € LY and v € L77. Clearly we can assume that v # 0. Then,
as 5|U1Lg = {u* = \u|1qu1u|q‘2u}, and since 0 < ¢ < 1, we have
(FP) (4, u + v), u*)Lg,Lg.
= lulzg? | £t 2, u(z) + v(=)
el
x ¢p(ntu(z) + n " u(z)) ju(@) |7 u(z), (z) dz
< Lufl3? § (@) + [o(@)] + (@) + [u(@)) (@)D, (e) de.
[k

Using Hélder's inequality, we get the desired estimate. Combining this with
Lemma 5.3, we get

(529) YO (8)]ps

t
2+ §(FP )y + 10 ()5 ds), € (0,7

o .
where C is a constant depending on T, g and ¢, and independent of n.
Clearly, (5.29) and (5.24) give (5.27), and (5.27) and (5.24) give (5.28).

Now we are going to show that for all T € (0,00) and p,g > 2, X ("} is a

Cauchy sequence in K%.(L7) and its limit is the unique solution to (0.1). To
do this we fix T', ¢, and p. Let | < n, and let u,v € L,. Then

[FM (4, u) — FO(E,0) |y € 1 + B,

50(1+|¢

where
1/q
i = (§ 1£(6,3,u(5)) — 7t,2,0(0)) 199~ 0(a)) 94 (2) o)
Re |

1/q
< (] Z90 + @l ™ + ol@)] ) u(o) — (@), w) dz)
Ré
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< ( S qu(l + |u($)l7‘—1 + |’U(33)‘T_1)2q|u(m) _ 'U(m)lqﬁg(:v) dzz') 1/(2¢)

]Ed
% |a __9‘1/2
4
< Crffu— vl + 1+|u\‘*i:;r )+ |i;:1>>1”4‘”| ol
|u__v‘1/2

r 4
< Ga(l+ |u|4‘§(q 2+l ﬁr-ln + lulpze + |olyzaulzy + |vlzg)

1/2

x |U_U|Lga

and, since ¢ is Lipschitz continuous,

= (] 1#(, 2, 0@l u(a)) — o1 0(a)) [#0,(x) d)

Rd
< Gy (| 900() + [o(@)")? I~ ula) - 17 0(a)| 9,(w) dz) "
R

< Cal 7 (1ol + o355 PO (uf25, + o] 25,020

LZq Lﬁqr

gcgr%1+wjgr+mu%+wwﬁd

the constants C; being independent of u, v, [, and n. Thus, there is a constant
Cg such that for all t € [0,T], u,v € Ly, and [ < 7,

WW@M—F@@WW
4 —~1 T
< Col1+ Jul =) + ol + ol + ul3a + o35, + lullg + o)

‘1/2)‘

L3
x (171 4 u —

Consequently, since S is a Cy-semigroup on L], we have

O = YOy = O 7 (s, X)) - FO (s, XO(0)
3
< G {Im () + X M(s) - XD (s)[Zy) ds,
where 0
Tm1)(s) = 11X (&) 3020 + X O )[40 + X O 5
FIXO ) e + X Ofs) |7 +1X )L + XD (8)12,.
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Hence

™ =Y Oliyagy =T s [¥0s) ~Y Ola)f

q
s€[0,4] La

< CoE( sup I(n,1)(s))?(1-

t
1 ey — Wy t/2 P
+ XV (8) - X d
s€[0,7] gl () (sl 3)

t

< ColE( sup I(n,l)(s))zpﬂi(l’l + S |x(M () — xB(s ) L/2 ds)
s [0,T] 0

Note that from (5.28) we have

supB( sup I(n,1)(s))?P
n,l 35[0,‘]"]

< 00,
Thus

] 2p
vt — Y”)Hlig(%) < C].DE(I_J' + 1 x™ () - X(i)(s)&/; ds)

[ I S =

P
< 01115(1_2 + 1 xm(s) - X(”(s)|Lg ds) ,

and consequently there is a constant Cha such that for all ¢ € [0,
I <n,

T) and

XO|lyny ds).

Let o satisfy (4.15), and let o € (0,1) be such that 2a +a < 1. Let g €
2, 00), and let ¥} be given by (5.25). Then for any p € [2,00) such that
(o — Dp* > —1 we have

t
(530) Y™ =Y Ollepag) < O (172 + {1 -
5}

H'gf(n) _ mlH)cg'(Lg) - Hlch—-l(g,(ma) ““WU'”))Hhcf(LZ)
. s » 1/p
_ Sinar {]F‘ sup ‘ (s~ T)amls(s - T)(g,(n,u)(.r) — wtha)(f)) dr ]
w sgfo. g T
s , p1l/p
< Chy [E sup (S (s — 7Yt (1) = w7 g dT) }
EE[O,\'?] 0
T t 1/p
< 013(5 pla~1)p" df) (]E‘ M(n,a) () = (e (3)|23 ds) .
0 0
Since (o — 1)p* > —1, we have

t 1/17
1909~ #Ollcpag) < Cue (B 127(5) ~ I O)E ds)
o
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Using Burkholder's inequality and then Theorem 3.1 and the Lipschitz con-
tinuity of the diffusion term B, we obtain

B (s) - 00(s)]E,

X0 (r})) aW(r)

2

= ]E’ S (5 ~7)"%S({s — T)(B(T,X(n)(T)) -

s i
< Cuaf (s = )7 XN r) - XDy ar)

0
Thus

t 1/
[l @™ — W”Hlx:(ﬁ) < Cla (ES [ped(g) — el ()P, ds) ?
0

B({ (s — 7) 20| x ) 1)

0

|HX(n) _ l)m]cp(m (§ (5~ T)‘“zﬂf—a, dT)p/2 ds)l/p,
0

< Cls( _.X(;)(T)Jig d‘f‘)p/zds) 1/p

< 017(

O e 0 (D e

and consequently

t
(5.31) |zt — T rza) < Cua S | X% — X(l)Hlch(Lg) ds
0

Combining (5.31) with (5.30), we obtain
t
X — XBxer(zay < Cro (1”2 + |l xt — X0 erizay ds).
0

Applying Gronwall's inequality we obtain
X — X Ol zay < Crol ~2eC97.

Therefore, {X (™} is a Cauchy sequence in K2 7(LE), for any p, ¢, T and ¢.

Hence there is an X € (L,) such that
(5:32)  lim X = X lixnzgy =0 for p,g € [2,00) and T € [0, 00).

Now we can show that X is a solution to (0.1). To do this it is enough
to show that for all p, ¢ € [2,00) and T € (0, oc)

1

(5.33) Jm (Y =Yl 2y = 0
and
(5.34) Jim (126 — e g = 0,
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where
L i
Y®e) = {8t — ) F™ (5, X (s))ds, Y(t) = [ S(t~ 5)F(s, X(s)) ds,
0 [¢]
and
&
(@) = {8t — £)B(s, X ™ (5)) dW(s),
0
t
W(t) = | S(t - 5)B(s, X(s)) dW(5).
0

Hix p,g € [2,00) and T'. Then using the calculation from the proof of (5.30)
we obtain
T
Y™ = Yz gy < Cra (71_2 + LI = Xz ey df)=
0
and taking into account (5.32) we get (5.33). Now let o € (0,1) and let
p € [2,00) be such that 2a+ ¢ < 1 and (o — 1)p* > —1. Then, using the
calculation from the proof of (5.31), we obtain
T
HM’( lpl“;gﬂ (L = <O S HIX( X]”)cP(L"
and consequently (5.34).
To show uniqueness, it is enough to observe that for any solution X to
(0.1) from the class K{L,), formulae (5.33) and (5.34) hold true. Finally, the
Markov property of {X,} follows from the fact that X¢(t +3) = X)(;Z @ (s),

where X () ig the solution to the equation with the coefficients f (s, z,u) =
Flt+s,@,u) and b (s, @, w) = b(t + 5,7, u).

Proof of Theorem 1.2(#). Let ¢ € C". Since CT C L, the first part of
the theorem yields the oxistence and uniqueness of a solution X from the
class K(L,). Let

y
L(t) = { 8(t — 5)F(s, X¢(s)) ds,
0

Li(#) = 5(2)¢,

Io(t) = \ (¢t - &) B(s, X¢(s)) dW(s).

O b= e

The proof of (i) will be completed as soon as we show that [; € ]C(C."'i’),
i=1,2,3. Since S is a Cg-semigroup on each Cg-space (see Lemma 3.1(iii}),
we have I; € K(CT). To show that I € K(C) note that

F(, Xe() € LP(2, 7,5 L= (0,T; L)) forall T > 0, p,q € [2,00).
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Now using Lemma 3.1(iv), we easily get I» € K(C,/,). Since this holds for
every ¢ € [2,00) and since C, C Cy for ¢ < x, we get the desired conclusion.
To show that I3 € K(CT) we use the argument from the proof of Theorem
1.1(ii). Namely, first we take a satisfying {4.15) and then o € (0,1) such
that 2a 4 @ < 1. Then, since & is bounded by an element of L,, the process
Jo{X,) given by (4.16) satisfies

Jo(X¢) € IP(0,F, B LM (0,T; L)) for all p,g, h € [2,00), T > 0.

Finally, the factorization I3 = J*71J,(X), where J*~* is given by (4.17),
and Lemma 2.1(iv) yield I3 € K(C,/,) for g sufficiently large, and conse-
quently I3 € K(Ct), which completes the proof. =

Proof of Theorem 1.2(iii). Since (f,b) € BDis(g,r) for every g < 0,
Theorem 1.2(1) gives the existence of a solution X € K(L,) for every p < 0.
Using the method from the proof of Theorem 1.2(ii) we get the desired
regularity of X,. It is worth pointing out that in this part we need the
fact that (f,b) € BDis(p,r) for every g < 0. Indeed, we have to show that
X¢ € K(C,) for all p < 0, and for this we employ the boundedness of S(t)
acting from LI into C,. To do this we need to have the solution in any
L7, -space. m

6. Proof of Theorem 1.3. Let p € R and let {f,b) € Dis{p, r). Asin the
proof of Theorem 1.2 we take a function ¢ € C§°(R) such that 0 < ¢ < 1,
#(y) = 0 for |y] > 2 and ¢(y) =1 for |y| < 1. For n € N we set

fult.zy) = f(t,z,y)d(n"y) fort>0,z R, yeR

Clearly, for all n € N and ¢ € [2,00) we have (f,,b) € Lip(e, g). Thus by
Theorem 1.1(i), for every ¢ € L, and n € N there is a unique solution
X ¢ KK(L,) to the stochastic equation
t
XM(t) = S+ [ St — )M (5, XM () ds
0
i

+18(t~ 8)B(s, X(s5)) dW (),
0
where

(6.35) F™(t,u)(@) = folt,z,ulz).
To finish the proof we only have to show that

(6.36) sup | X ™[z zay < 00 forall T > 0 and p, g € [2,00). |

Indeed, having proved (6.36), one can use the techniques and calculations
from the proof of Theorem 1.2, and show that {X(™} is a Cauchy sequence
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in every Ki.(L%)-space, and that its limit has the desired regularity and
satisfies (0.1).

To show (6.36) we fix g and o, and we treat A as the generator of a
Cp-semigroup on 4. By Lemma 5.2 there is a constant ¢ such that

(A = CTDu, '“*)Lg,bg* <0 forueDomA, u* € dlulys.

Replacing f in (0.1) by f + CI we may assume that (Au,u*)Lg’LZ* < 0 for
all v € Dom 4, u* € 9| r1- Thus, by the Lumer-Phillips theorem A is the
generator of a contraction semigroup on L3. Let A > 0. Then A is from the
resolvent set of A, and its Yosida approximation 4y = AA(M — 4)~Lis a
bounded operator. Let 5, be the semigroup generated by Ay. Then, since S
is a contraction semigroup (see [30], Lemima 3.4, p. 10), the Lumer-Phillips
theorem gives (A;\u,u*)Lg,Lg* <Oforall A>0,ue LY, u* € dJu|ps. Hence,

as u* = {}uﬁ?[u\q‘zu} for u # 0, we have

(6.37) {lul?"?u, Ayu), <0 forall A>0andue L,

where (), stands for the bilinear mapping on Lg* % L%. Consider the
equation

¢
Y (E) = Sa ()¢ + | Salt ~ 8)F (5, Y () ds

0

(6.38)

+ {85t~ ) B(s, Y™ (s)) dW(s),
0

where F(") ig given by (6.35). Note that the coeficients of (6.38) are Lip-
schitz continuous. Moreover (see Theorem 3.1), B(s, Y;f“)(s)) is a y-radon-

ifying cperator from H,, into L% and for every T > 0 there is a constant ¢
such that

(6'39) HB(S:H)”R(HWLE) < Cl(l + |U’|Lg)1 s € [OaT]v CAS LS-

Thus there is a unique solution YA(”) to (6.38) from the class X{L,). More-
over, Y™ is a strong solution to (6.38), that is,

V) = ¢ | AnK o) + P, Y{(0) di o+ B, ¥ (0) (o)
0 0

Let p > ¢. Applying It&’s formula to the function ¥ (u) = |”|}Z,g (see Theorem
A.2 and Remark A.1 in Appendix A), we obtain

i
R < 10+l 65 IR @Y s), AV (5)) o ds
4]
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SIY,\(")( (Y ()21 s), £ s, Y (5))) o ds
pp—1)¢ (n)
- n -2 e
+ B2 ™ ()5 718 (s, Y (5l 2 B
0
: (n)
+p§ 1V ()220 (¥, ()2 (), Bls, Y2 (8)) AW (5)) .

Note that from {6.37) we have

SIY“‘)( (VM ()7 2K M (s), AT (5)) g ds < 0.
1]
Fix T' > 0. Then using (1.6) for 2 = 0 we obtain
(ul =2, F) (8, 0)), < | Llo() + [u(z)]) [u(z)|*~ 0, (2) do
e
< Lol sgulfg" + lulfy)-

Combining this with (6.39), we get

1 _
1221 B (s, )l B, 1y

- plp—1
< ool I ol g g+ [uffy) + 22

plulZ {2, P 5,0 + 222

(L + Julfq)?

<afl+ Iulig)i

with ¢y being independent of n, A and . Hence
t

+{ea(1+ ¥ (s) 5o)ds

0

YR, < IR,

¢
+p {11 (s)

0
Applying Burkholder’s inequality for real martingales, we obtain

E sup |Y(n
=€[0,1]

Y™ ()12 (5), B(s, YA (5)) AW (5)),.

LQ

t
<3012 +3E([ea1 + (7 ()2, ds)
0

+ caﬁs Y ()R () P v (6) 2 (1 4 V{7 (8)129)2 ds.
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Cousequently, there is a constant ¢; independent of n and A such that for
t € [0,T] we have

E sup [¥{"(s)|3
a€[0,8]

t
f t 1+ e { 1Y (s)[35 ds
0

Applying Gronwall’s inequality we obtain
E sup [Y{(s)2 < ca(lC]PB + 1)e%7,
s 1Y) 3 < a0l +1)
Since, by Proposition B.1 from Appendix B,

E sup |Y(”)(‘)|‘ZP <11msup]E sup |¥i™ (5))%8

93
5€[0,T Amoo s€[0,T] Ls

we have (6.36), which is the desired conclusion. m

7. Stochastic integration in Banach spaces. In this section
(H,{,)m)and (E,|-|g) are real separable Hilbert and Banach spaces, re-
spectively, and {ex} is a fixed orthonormal basis of H. By II; and II,, n4; we
dencte the orthogonal projections onto the spaces spanned by {e;,..., e/}

and {en, ..., enq1}. Let Bo(H) denote the class of all subsets U of H having
the form
(7.40) U={veH:({v,h),...,{v,h,)) € Up}

for a certain n, an orthonormal system hsg,..., -, in H, and Uy € B(R™).
Denote by 7 the standard Gaussian cylindrical distribution on H, that Is,
Y(U) = (27)~"/2 Sus exp{~—|z|?/2} dz for U given by (7.40). If dim H = oo,
then v is only finitely additive.

DEerINITION 7.1. A bounded linear operator K : H — E is called -
radonifying iff the image v o K~ of v under K has an extension to a o-
additive measure vg on F.

The set of all y-radonifying operators from H into £ is denoted by
R(H, E}. Note that if K € R(H, E), then vx is a centered Gaussian Borel
measure on . Thus by the Fernique-Landau-Shepp theorem {4 le|% vic (de)
< 0o. We endow R(H, B) with the norm

1/2
K i, 2) (S lef% dye( )) -
B .
The following result was proven partly by Neidhardt [28] and partly by

Baxendale [2].

THEOREM T7.1. (i) R(H,E) with the norm | -

”R(H,E) is a seporable
Banach space. !
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(i) For eny K € R(H,E), we have ||KIL,| riar,m) <
KT, — KHR(H,E) — 0 as n — oo.

| K| 2,5y and

We need the following result which is well known to the specialists on
Gaussian measures. It can be seen as a special case of a result due to Linde-
Pietsch (see Lemma 5.6, Chapter VI of the monograph [40]).

PROPOSITION 7.1. Let {8, }32, be a system of independent standard nor-
mal real-valued random variables, and let K € L{H, B). Then the following
two conditions are equivalent.

(i) K € R(H, E).
(ii) The series 3 5., BuKer converges in L2, F, P, E).
Moreouer, if K € R(H, E) then || K| gig,m = (B Y poy BrKer %) 2.
Let W be a cylindrical Wiener process on a Hilbert space H, defined on

a filtered probability space U = (£2, F, (F;),P). Let V be a Banach space,
and denote by LP(0,00;V) the space of all measurable, adapted V-valued

processes o such that ]Egg lo(t)]5 dt < oo for T < oo. Clearly, £P(0,00;V)
is a Fréchet space with a natural system of seminorms. Denote by £g the
class of all o € L2(0, 00; R(H, E)) such that

')
=Y o (W)X, ty0a) )

J=1

for some 7,1 €N, 0 <ty < ... <tpy1 < co and o5 € L*(2, Fy,, P, R(H, E)).
For o € £0 and t € [0, 00} we put

=33 w

j=1 k=1

J+1 /\f W(tj /\t))e;cajek.

So far we have defined the stochastic integral TW (o) for processes o ¢
Ly. In general Z cannot be extended continuously to the whole £2(0, co;

R(H, E)). This requires some additional assumptions on the Banach space E.

DEFINITION 7.3. A Banach space E is of M-type 2, or 2-smoothable, iff
there is a constant C > 0 such that for any finite E-valued martingale { My}
one has

sng|Mk|2E <CY E[Mg - M|
k

For the proof of the theorem below we refer the reader to {28}, or [5],
Theorem 2.3.

THEOREM 7.2. Assume that E is an M-type 2 Banach space. Then Ly
is a dense subspace of L2(0,00; R(H, E)), and for every t € [0,00) there
erists a unique exiension of IV to a linear bounded operator acting from
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L2(0,00; R(H, E)) into L*(2, F1, P, E). Moreover, there ezists C > 0 such
that for any T > 0 and o € £L2(0, oo-R(H E)) one has

RIZY (0% < CES
a

)5, -

We denote the value of the extension of 7}V at o € £2(0, 00; R(H, E)) by
S o(s) dW (s). The above theorem constitutes the first step in the theory of
Banach space valued stochastic It integrals. The next one is the Burkholder
type inequality. Pisier [36] stated that the Burkholder inequality is valid in
any 2-smoothable Banach space. This was later proven by Dettweiler in [15],
Theorems 2.4 and 3.3. An independent proof of a weaker result, i.e. that the
Burkholder inequality is valid for any UMD type 2 Banach space, is given
in [5], Theorem 2.4.

THEOREM T.3. Assume that E is an M-type 2 Banach space. Then for
every o € L2(0,00; R(H, E)), S o{s)dW(s),t > 0, is an E-valued square in-
tegrable martingele with continuous modification and zero mean. Moreover,
for every p € (2, 00) there is a constant C independent of T' and o such that

E sup |§o(s)dW(s)|; SO]E.(?||U(S)H2R(H’E)ds)p/2.

0StST i

In the present paper we integrate R(M,, F)-valued processes, where H,
is the reproducing kernel Hilbert space of a homogeneous Wiener process,
and K is an Li-space. To do this we need the following fact (see [36]).

PROPOSITION 7.2. Let (O, B, 8) be o measurable space, and let q € [2, 00).
Then L9{O, B, #) is an M-type 2 Banach space.

Appendix A. Qur aim here is to state [t6’s lemma. We do this first for
an [td process with values in an abstract M-type 2 Banach space E and for
a Fréchet differentiable mapping ¥ : [0,7] x £ — R. For the convenience
of the reader we repeat the relevant material from [28] without proof, thus
malking our exposition self-contained. Then we derive It6's lemma for an
Li-valued process, and for ¥ = | - \ig, where p > g.

We need to introduce some notation. Let (H,{-,-)x) and (E,|- |g) be
real separable Hilbert and Banach spaces, and let 4 be a standard Gaussian
distribution on H (see Section 7). Let K € R{H,E) and let yx =yo K1
For any Banach space V' and any bounded bilinear map L: Ex E — V we
define

trgl = S L(z, ) dyx ().

B
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Denote by Ly(F, V) the space of all bounded bilinear operators acting
from F into V. Then by the Fernique-Landau-Shepp thecrem try is a
bounded linear operator from Ly(E, V') into V. Moreover,

(A1) |trx Llv < | L2y [ K w29

for all K € R(H,E), L € Ly(E, V).
Let W be a cylindrical Wiener process on H. Let us denote by C2(E) the

class of all twice Fréchet differentiable functions ¥ : F — R with bounded
derivatives. The following theorem is proven in [28].

THEOREM A.1. Assume that E is an M-type 2 Banach space. Let ¥ €
CE(E). Let a € £*(0,00; F) and ¢ € L2{0,00; R(H, E)). Let

3 £
&(t) = £(0) + [ a(s)ds + {o(s) dW (s), t>0.
0 o}
Then for all t > 0,
t i

T(E(8) = T(£(0)) + [ ' (¢(s))a(s) ds + | W' (€(s))o(s) AW (s)
0 4]

i

Stro-(_g)LpH(E(S)) ds.
0

+

B =

Let ¢ € R and ¢ € LY. Let u € L. Note that [u|9"%u € LT = (L))",
Below, (-, ), denotes the duality form on (L9)* x L.
THEOREM A.2. Let g € R, g € [2,00), and p > q. Assume that
k4

() = E(0) + {a(s) ds + [a(s)aW(s), ¢e[0,T),
0

0
with a € £7(0,00; L) and o € LP(0, o0; R(H, L2)). Then for all t > 0,
¢

€12, = EO)E, -+ ()25 %(2(5)/-26(s), a(s)) s
0

+ 0§ 1€() 55 (1)1 (), o (s) AW (s),
0

1
+ 5 étrg(s)lp”(f(s)) ds.

Proof. Note that the function ¥ : L 3 f |f|§g € R is of class C%(E)

and for v,v1, v € LY we have ¥' (u)v = p|u[i§q(|u|q“2u,v)g and
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(8.2) 2" (w)(er,02) = pla — DZ3® | [u@)* o1 (@)ua(e)3,(z) do

R
+plo— q)ulfy™ | u(@)| T 2u(z)ur (2)9,(z) do
Rd
x S lu{2)|T 2u(z)vae(2)d,(z) dz.

]]{d
Let n € C§°(R) with () = 1 for z € [0,1}. Set ¥, (u) = n(n™ ¥ {(w))¥(u)
forn € N, u € LY. Applying to ¥, Itd's formula from Theorem A.1 and then
letting m — oo, we obtain the desired conclusion. m

REMARK A.1. Let @(u) = ‘“lig' Then, combining (A.1) with (A.2), we
obtain

(A3) b0 0" (u) < p(p - Dluffz 2 lo 1k o)

Appendix B. Assume that H is a separable Hilbert space, and F is of
M-type 2. Suppose that A is the generator of a Cy contraction semigroup
{S(t)}tzg in E. Let

Ay = 2N - A7 = A0~ AT AL A0,
be the Yosida approximation of A. Recall {see e.g. [30]} that A, A > 0,
are bounded generators of Oy contraction semigroups {Sx(¢)}i>0 in E. Fur-
thermore, S){t)z — S(¢)z as A — co for all z € F, uniformly in ¢ on each
bounded interval. In what follows we adopt the convention that A, = 4
and S = S.

Let A = (2, F, {Fi}10,P) be a filtered probability space, and let W be
an (Fy)-adapted cylindrical Wiener process on H. Let V' be a Banach space.
Denote by Z7(V) the space of all predictable processes u such that

z l/p
el = (B @l dt) " < oo.
i

Let F: [0,00) x B — E and B: [0,00) x E — R(H, E). Assume that for

each T' > 0 there is a constant L such that for all w,v € F and ¢ € [0,T7,

(F (e, 0)ls + 1B lngzy < L1+ fuls),
\F(t,u) — F{t,v)|g + ||B(t,u) — B(t,'v)HR(H,E) < L]u— ’U|E.

The existence and uniqueness part of the result below is quite standard.
However, its proof is essential for the second part of the theorem.

THEOREM B.1. Let p € (2,00). Then for all ¢ € LP(R2, 7, P E) and
A € (0, 00|, there is a unique mild solution Yx € LF(0, 00; E) to the problem

(B.1) ¥y = (A\Y5 + F(t, i) dt + B(t,Y)) dW, . \0)=¢.



296 Z. Brzesniak and S, Peszat

Moreaver,

{B.2) Alim Yy —Yoollz,g =0  for every T > 0.
—00

Proof. It follows from Young's inequality that for u € Zp(F) the process
Iyu defined by
¢
Lu(t) = | Sa(t — s)u(s) ds,
0

t e [0,7],

helongs to Zy(E) and

(B.3) I hullre < Tlullr,e.

Furthermore, employing the Young and Burkholder inequalities (for the lat-
ter sese Theorem 6.3), we infer that for v € Zp(R(H, E)}) the process Jyu
defined by

t

Jhult) = SS)\(L‘ — syu(s) dW(s),

0
belongs to Zp(E), and there is a constant ¢; independent of u and A such
that

te 0,77,

(B.4) [Sullr,z < e T2 |ullz mem,5) -
Note that
(B.5) F(,u)e Zp(B) and B(,u)e Zp(E) forue Zr.

For u € Zp(E) we define v = Jr(u) by

(B.6) v(t) = Sa()¢ + | Sut — 8)F(s,uls)) ds
0

t
+ (| Sa{t — ) B(s,u(s)) dW (s).

0
From (B.3} to (B.5), Jr,» is a Lipschitz mapping from Zp(E) into Zp(E)
with Lipschitz constant x(T"} independent of A. Furthermore, it is easy to see
that for T small enough, x(T) < 1. This proves the existence and uniqueness
of a mild solution to (B.1) on a small time interval. Since the length of this
interval does not depend on the initial value, the solution can be prolonged
uniquely to the whole half line [0, co).

Observe that for all T > 0 and u € Zp,

(B.7) )\llngo |l Inu — Iou|lz,g =0

and

(B-S) lim ||J)"M - Joou“T,E =0.
A—oo

icm

SPDE%s driven by & homogeneous Wiener process 297

This is because by Young’s and Fubini’s theorems
T
11w = Tooullf g < T2 {EI((S5 (2 — ) — S(t — 8))u(s) |5 ds dt.
00
Since

{SA(t —s)~S(t—s))u(s)% -0 as.on{0<s<t<T},

a simple application of Lebesgue's dominated convergence theorem vields
(B.7}. By Burkholder’s inequality and Fubini’s theorem there is a constant
¢a such that

T

13w — Jaotllf 5 < T2 [\ BI(Sh(t — 5) — S(t - s))u(s) [} ds dt.

00
Thus (B.8) follows, and (B.3) is a consequence of the continuous dependence
of fixed points on the parameter A {see [20] for more details). =

ProroOSITION B.1. In the framework of Theorem B.1 we have

(B.9) BV, |§°°(0,T;E) < S];p B|Y, |Z£°°(0,T;E)'

Proof. Take g:» 1. Applying Theorem B.1 for § = pg, we obtain
(B.10) ElYeolLra(or.m) < sgp]E|Y>\|iM(o’T;E) < T slip B3 f oo (0,7,m)-

Hence, since the L°°-norm is the limit of L%-norms, Fatou's lemma and
(B.10) give

BYoo eoo,2) < W I EIYo [F e 0,7,y < L inf T2 sup EYAl oo, 7,2

< Sup E{YA |7 oo (0,7,

which is the desired conclusion. a
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