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ON A MULTI-OBJECTIVE OPTIMIZATION PROBLEM
ARISING FROM PRODUCTION THEORY

Abstract. The paper presents a natural application of multi-objective
programming to household production and consumption theory. A contri-
bution to multi-objective programming theory is also included.

1. A multi-objective optimization problem. The following multi-
objective optimization problem will be considered and applied in the present
paper:

Given a k×n matrix A, an m×n matrix C and an m-vector b, we consider
the set of all k-vectors of the form Ax for some x ∈ Rn

+, satisfying the
constraint Cx = b; such x’s are called solutions of the problem P = (A,C, b).
The set of all solutions of P will be denoted by X(P ); it is a convex set.
We are specially interested in characterizing the existence of efficient and
weakly efficient solutions: a solution x∗ is called efficient whenever there
exists no x ∈ X(P ) for which Ax > Ax∗ (by y > z we always mean that
the respective coordinates of the vector z do not exceed those of y and the
vectors are different; y � z will mean that all respective coordinates of y
are larger than those of z); a solution x∗ is called weakly efficient whenever
there exists no x ∈ X(P ) for which Ax � Ax∗. Obviously, every efficient
solution is also weakly efficient.

Isermann has proven in [2] the following result, actually reducing the
problem of finding all efficient solutions to solving a class of linear maxi-
mization problems:

Theorem 1. A vector x∗ is an efficient solution of a problem P =
(A,C, b) if and only if there exists a vector w ∈ Rk

+, w � 0, such that
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w>Ax∗ ≥ w>Ax for all x ∈ X(P ) (i.e. x∗ maximizes w>Ax subject to the
constraint Cx = b).

An analogous result holds for weakly efficient solutions:
For any solution x, we denote by J(x) the set of those indices j among

1, . . . , k for which there exists no solution y such that Ay > Ax and (Ay)j >
(Ax)j .

Theorem 2. A vector x∗ is a weakly efficient solution of a problem
P = (A,C, b) if and only if there exists a vector w ∈ Rk

+, w 6= 0, such that
w>Ax∗ ≥ w>Ax for all solutions x while wj > 0 if and only if j ∈ J(x∗).

P r o o f. To prove the implication ⇒ suppose first that J(x∗) is empty;
then x∗ is not a weakly efficient solution (by the convexity of X(P )). Now
suppose that J(x∗) is not empty and w>Ax∗ ≥ w>Ax for all solutions x
but x∗ is not weakly efficient. Then there exists a solution x such that
Ax � Ax∗. But now we have w>Ax > w>Ax∗ (w has at least one positive
coordinate), which contradicts the hypothesis.

To prove ⇐, we apply Theorem 1 to the matrix AJ(x∗) composed of
those rows of A whose indices belong to J(x∗). We first show that x∗ is an
efficient solution of the problem (AJ(x∗), C, b).

If x∗ is efficient for P then J(x∗) = {1, . . . , k}, AJ(x∗) = A and the above
statement is obviously true. Now let x∗ be weakly efficient but not efficient
for P . For each l 6∈ J(x∗) there exists a solution yl such that (Ayl)j =
(Ax∗)j for j ∈ J(x∗), (Ayl)j ≥ (Ax∗)j for j 6∈ J(x∗) and (Ayl)l > (Ax∗)l.
The vector ỹ defined by ỹ := (k −m)−1

∑
l 6∈J(x∗) yl, where m denotes the

cardinality of J(x∗), is a solution such that (Aỹ)j = (Ax∗)j for j ∈ J(x∗)
and (Aỹ)j > (Ax∗)j otherwise.

Suppose that x∗ is not an efficient solution of the problem (AJ(x∗), C, b),
i.e. there exists a solution x such that AJ(x∗)x > AJ(x∗)x

∗. This means
that (Ax)j > (Ax∗)j for at least one j ∈ J(x∗) and (Ax)j ≥ (Ax∗)j for all
remaining j ∈ J(x∗). Let L denote the set of those j 6∈ J(x∗) for which
(Ax)j < (Ax∗)j . If L is empty then x is a solution of P such that Ax > Ax∗

and (Ax)j > (Ax∗)j for some j ∈ J(x∗), which contradicts the definition
of J(x∗). If L is not empty, we have for j ∈ L, (Ax)j < (Ax∗)j < (Aỹ)j .
Choose any number µ so that

1 > µ ≥ max
j∈L

{
(Ax∗)j − (Ax)j

(Aỹ)j − (Ax)j

}
.

Then z = µỹ + (1 − µ)x will be a solution of P such that Az > Ax∗ and
(Az)j > (Ax∗)j for some j ∈ J(x∗), which again contradicts the definition
of J(x∗).

According to Theorem 1, there exists a positive vector v ∈ Rm
+ such that

v>AJ(x∗)x
∗ ≥ v>AJ(x∗)x for all solutions x. We define a vector w ∈ Rk

+ as
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follows: wi := vi whenever i ∈ J(x∗) and wi := 0 otherwise. We have

w>Ax∗ = v>AJ(x∗)x
∗ ≥ v>AJ(x∗)x = w>Ax for all x ∈ X(P ),

which completes the proof.

One can also easily prove something more:

Proposition 3. If x∗ is a weakly efficient solution of the problem P =
(A,C, b) and w ∈ Rk

+ is such that w>Ax∗ ≥ w>Ax for all solutions x then
wj = 0 for all j 6∈ J(x∗).

2. A model of household production and consumption. The
model describes the behavior of infinitely many households classified into
n types. Each household of each type can choose among k kinds of activity.
The choice of a jth activity by a household of type i results in producing ri

j

units of the jth good, j = 1, . . . , k. Hence, we can characterize the produc-
tion possibilities of a household of type i by a vector ri = (ri

1, r
i
2, . . . , r

i
k) of

nonnegative numbers; ri
j ’s are interpreted here as coefficients of efficiency.

(For instance, ri
1 might be the output of an individual of type i if she decides

to produce shoes, ri
2 would be her output if driving a lorry, ri

k can be her
output if acting as a businesswoman.)

The model is completely determined by the vectors ri, i = 1, . . . , n, and
a distribution d = (d1, . . . , dn), in the (n− 1)-dimensional standard simplex
∆n, of the respective types in the population.

Once the agents decide which activity to undertake, a distribution of
households of type i, producing respective goods, is created: it is a vector
pi = (pi

1, p
i
2, . . . , p

i
k) in the standard simplex ∆k. Set p : = (p1, p2, . . . , pn).

The volume of the production of the jth good is then equal to Sj(p) =∑n
i=1 dir

i
jp

i
j ; the vector of total supply is

S(p) = (S1(p), . . . , Sk(p)).

This model has been constructed by Wieczorek in [3], where the author
was interested mainly in the existence and properties of competitive equilib-
ria. In the present paper we are rather interested in the distributions p∗

leading to supply vectors which are efficient [or weakly efficient] in the sense
of Pareto, i.e. p∗ such that there exists no other distribution p such that
S(p) > S(p∗) [respectively, S(p) � S(p∗)]. Usually such efficiency con-
cepts are regarded as measuring efficiency of the organization of a society.

We shall prove that p is efficient if and only if there exists a system
π = (π1, . . . , πk) of positive prices at which pi maximizes the total profit
(of all individuals) of type i, for each i (we speak of the total profit, but
it is achieved as a result of decentralized action of the players acting inde-
pendently and having only their own profit in mind). More precisely, we
have:
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Theorem 4. A distribution vector p = (p1, . . . , pn) is Pareto efficient if
and only if there exists a system π = (π1, . . . , πk) ∈ ∆k of positive prices at
which pi maximizes the total profit of type i, di

∑k
j=1 ri

jπjp
i
j , for each i.

P r o o f. Define
Q := {p ∈ Rnk

+ | p = (p1, . . . , pn), pi ∈ ∆k for i = 1, . . . , n}
= {p ∈ Rnk

+ | Cp = 1},
where 1 stands for the n-vector with all entries 1 while C is the n × nk
matrix defined by

cij =
{

1 for i = 1, . . . , n and (i− 1)k + 1 ≤ j ≤ ik;
0 for the remaining pairs (i, j).

Let A be the k × nk matrix defined by

aij =
{

dlr
l
i for i = 1, . . . , k and j = (l − 1)k + i (l = 1, . . . , n);

0 for the remaining (i, j).

So we have Ap = S(p) for each p; we have constructed the optimization
problem (A,C,1). According to Theorem 1, a distribution p is an efficient
solution of this problem if and only if there exists a vector w ∈ Rk

+, w � 0,
such that w>Ap ≥ w>Aq holds for all q ∈Q. We can normalize w and get
a vector π = (π1, . . . , πk) ∈ ∆k for which the above inequality also holds.
The proof will be complete if we show that π is a system of prices we are
looking for. This will be formulated as a separate lemma.

Lemma 5. A price vector π satisfies

π>Ap =
k∑

j=1

n∑
i=1

dir
i
jπjp

i
j = max

q∈Q
π>Aq

if and only if pi maximizes the total profit of the type i, di

∑k
j=1 ri

jπjp
i
j , for

each i = 1, . . . , n.

P r o o f. The implication ⇒ is obvious. If every element of the sum is
maximal then the sum is also maximal.

To prove ⇐, assume that π>Ap = maxq∈Q π>Aq and that there is
a type i whose total profit is not maximal. Then there exists a vector
s ∈ ∆k such that

∑k
j=1 dir

i
jπjp

i
j <

∑k
j=1 dir

i
jπjs

i
j . For the vector q =

(p1, . . . , pi−1, s, pi+1, . . . , pn) ∈ Q we have π>Aq > π>Ap, which contradicts
the hypothesis.

An analogue to Theorem 4 for weak efficiency is the following:

Theorem 6. A distribution vector p = (p1, . . . , pn) is weakly Pareto
efficient if and only if there exists a system (π1, . . . , πk) ∈ ∆k of prices at
which pi maximizes the total profit of type i, di

∑k
j=1 ri

jπjp
i
j , for each i, and
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such that , for j = 1, . . . , k, πj > 0 if and only if there exists no distribution
q such that S(q) > S(p) and (S(q))j > (S(p))j.

P r o o f. The proof is analogous to that of Theorem 4 except that we use
Theorem 2 instead of Theorem 1.

A consequence of Proposition 3 is the following:

Proposition 7. If a distribution vector p = (p1, . . . , pn) is weakly
Pareto efficient and (π1, . . . , πk) ∈ ∆k is any system of prices at which
pi maximizes the total profit of type i for each i then, for j = 1, . . . , k,
πj = 0 whenever there exists a distribution q such that S(q) > S(p) and
(S(q))j > (S(p))j.

The results in this section actually describe the process of decentralizing
economic behavior of a society: efficient (or weakly efficient) states of an
economy are rather obtained in a cooperative manner, an efficient state is
jointly elaborated by all agents; in contrast, states at which individuals are
maximizing their income have, a fortiori , noncooperative decentralized char-
acter. Such “decentralizing” results are known in many economic models
for a long time (see e.g. Hildenbrand [1], p. 232) although the mathematical
tools to get them may be entirely different from ours.
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