J. KOTOWICZ (Białystok)

REGULARITY OF THE MULTIDIMENSIONAL SCALING FUNCTIONS: ESTIMATION OF THE L^{p}-SOBOLEV EXPONENT

Abstract. The relationship between the spectral properties of the transfer operator corresponding to a wavelet refinement equation and the L^{p}-Sobolev regularity of solution for the equation is established.

1. Introduction.Let us consider the d-dimensional refinement equation

$$
\begin{equation*}
f(x)=2^{d} \sum_{k \in \mathbb{Z}^{d}} c_{k} f(2 x-k) \tag{1}
\end{equation*}
$$

where $x \in \mathbb{R}^{d}$, and

$$
\begin{equation*}
\sum_{k \in \mathbb{Z}^{d}} c_{k}=1 \tag{2}
\end{equation*}
$$

Any solution φ of (1) is called a scaling function or refinable function.
One of the fundamental problems for the scaling function is to estimate its regularity. For the one-dimensional case with a finite number of nonzero coefficients $c_{k}, k \in \mathbb{Z}$, the estimations of Hölder exponent were derived in [13], $[4,5],[14]$, and the Sobolev and L^{p} regularity was studied in [7], [16], [2], [8], [10], [12], [9]. But only [10] and [2] concern the case with an infinite number of nonzero coefficients in (1).

For $d=2$ the L^{p} regularity for compactly supported scaling functions was studied in [11]. In this article we adopt the methods of [2] for deriving the estimation for the coefficient of L^{p}-Sobolev regularity in the case $d=2$. We establish a connection between the L^{p}-Sobolev exponent s_{p} and the spectral radius of the so called transfer operator corresponding to the equation (1).

[^0]Beginning from Lemma 2.7, for clarity, we confine ourselves to the case $d=2$.
2. The transfer operator. The following notations are used: $\Lambda=$ $\left\{\left(j_{1}, \ldots, j_{d}\right): j_{k} \in\{0,1\}, k=1, \ldots, d\right\}$. For any function $f \in L^{1}\left(\mathbb{R}^{d}\right)$ we consider the Fourier transform

$$
\widehat{f}(\xi)=\int_{\mathbb{R}^{d}} f(x) e^{i\langle x, \xi\rangle} d x
$$

and for any function from $L^{2}\left([-\pi, \pi]^{d}\right)$ we consider the nth Fourier coefficient

$$
f_{n}=\frac{1}{(2 \pi)^{d}} \int_{[-\pi, \pi]^{d}} f(x) e^{i\langle n, x\rangle} d x, \quad n \in \mathbb{Z}^{d}
$$

The L^{p}-Sobolev exponent s_{p} is defined by

$$
s_{p}=\sup \left\{s: \int_{\mathbb{R}^{d}}|\widehat{f}(x)|^{p}\left(1+\|x\|^{p}\right)^{s} d x<\infty\right\}
$$

Let \mathcal{P} denote the set of all continuous functions $f: \mathbb{R}^{d} \rightarrow \mathbb{C}, 2 \pi$-periodic with respect to each variable. Let $\omega \in \mathcal{P}$. Then the transfer operator $\mathcal{L}_{\omega}: \mathcal{P} \rightarrow \mathcal{P}$ associated with ω is defined by

$$
\begin{equation*}
\left(\mathcal{L}_{\omega} f\right)(x)=\sum_{e \in \Lambda} \omega\left(2^{-1} x+\pi e\right) f\left(2^{-1} x+\pi e\right) \tag{3}
\end{equation*}
$$

It is called the Perron-Frobenius operator.
The following lemmas concerning \mathcal{L}_{ω} will be important in our further considerations:

Lemma 2.1. Let $f, g \in \mathcal{P}$ and $k \in \mathbb{N}$. Then

$$
\begin{aligned}
\int_{[-\pi, \pi]^{d}} f(x)\left(\mathcal{L}_{\omega}^{k} g\right)(x) d x & =\int_{\left[-2^{k} \pi, 2^{k} \pi\right]^{d}} f(x)\left[\prod_{n=1}^{k} \omega\left(2^{-n} x\right)\right] g\left(2^{-k} x\right) d x \\
& =2^{d k} \int_{[-\pi, \pi]^{d}} f\left(2^{k} x\right)\left[\prod_{n=0}^{k-1} \omega\left(2^{n} x\right)\right] g(x) d x
\end{aligned}
$$

The proof is a straightforward generalization of the one-dimensional case (see [2]).

Lemma 2.2. Let $f \in \mathcal{P}$ and $n \in \mathbb{N}$. Then

$$
\begin{equation*}
\left(\mathcal{L}_{\omega}^{n} f\right)(x)=\sum_{m \in I_{n}}\left[\prod_{j=1}^{n} \omega\left(2^{-j}(x+2 \pi m)\right)\right] f\left(2^{-n}(x+2 \pi m)\right) \tag{4}
\end{equation*}
$$

where $I_{n}=\left\{m \in \mathbb{Z}^{d}: m_{i} \in\left\{-2^{n-1}+1, \ldots, 2^{n-1}\right\}, i=1, \ldots, d\right\}$.

Proof (by induction). The first step is obvious. Suppose that (4) holds for any $k \leq n$ and let

$$
I_{n}=\left\{m \in \mathbb{Z}^{d}: m_{i} \in\left\{-2^{n-1}+1, \ldots, 2^{n-1}\right\}, i=1, \ldots, d\right\}
$$

Then

$$
\begin{align*}
&\left(\mathcal{L}_{\omega}^{n+1} f\right)(x) \tag{5}\\
&= \sum_{e \in \Lambda} \omega\left(2^{-1} x+\pi e\right)\left(\mathcal{L}_{\omega}^{n} f\right)\left(2^{-1} x+\pi e\right) \\
&= \sum_{e \in \Lambda} \omega\left(2^{-1}(x+2 \pi e)\right) \sum_{m \in I_{n}}\left[\prod_{j=2}^{n+1} \omega\left(2^{-j}(x+2 \pi(e+2 m))\right)\right] \\
& \quad \times f\left(2^{-(n+1)}(x+2 \pi(e+2 m))\right) \\
&= \sum_{e \in \Lambda} \sum_{m \in I_{n}} \omega\left(2^{-1}(x+2 \pi(e+2 m))\left[\prod_{j=2}^{n+1} \omega\left(2^{-j}(x+2 \pi(e+2 m))\right)\right]\right. \\
& \times f\left(2^{-(n+1)}(x+2 \pi(e+2 m))\right) \\
&= \sum_{m \in I_{n+1}^{\prime}}\left[\prod_{j=1}^{n+1} \omega\left(2^{-j}(x+2 \pi m)\right)\right] f\left(2^{-(n+1)}(x+2 \pi m)\right)
\end{align*}
$$

where
(6)

$$
I_{n+1}^{\prime}=\left\{m \in \mathbb{Z}^{d}: m_{i} \in\left\{-2^{n}+2, \ldots, 2^{n}+1\right\}, i=1, \ldots, d\right\}
$$

Now consider the set
$I=\left\{m \in I_{n+1}^{\prime}:\right.$ there exists $i \in\{1, \ldots, d\}$ such that $\left.m_{i}=2^{n}+1\right\}$.
Then for each $m \in I$ such that

$$
m=\left(m_{1}, \ldots, m_{i-1}, 2^{n}+1, m_{i+1}, \ldots, m_{d}\right)
$$

by periodicity we have
$\omega\left(2^{-j}(x+2 \pi m)\right)=\omega\left(2^{-j}\left(x+2 \pi\left(m_{1}, \ldots, m_{i-1},-2^{n}+1, m_{i+1}, \ldots, m_{d}\right)\right)\right)$,
and similarly

$$
\begin{aligned}
& f\left(2^{-(n+1)}(x+2 \pi m)\right) \\
& \quad=f\left(2^{-(n+1)}\left(x+2 \pi\left(m_{1}, \ldots, m_{i-1},-2^{n}+1, m_{i+1}, \ldots, m_{d}\right)\right)\right)
\end{aligned}
$$

Hence from (5), (6) we obtain our inductive claim.
Remark 2.1. For any function $f \in \mathcal{P}$ and $n \in \mathbb{Z}^{d}$,

$$
\left(\mathcal{L}_{\omega} f\right)_{n}=2^{d} \sum_{k \in \mathbb{Z}^{d}} \omega_{2 n-k} f_{k}
$$

For $\mathbb{R} \ni \alpha>0$ the function space

$$
E_{\alpha}=\left\{f \in \mathcal{P}: f(x)=\sum_{n \in \mathbb{Z}^{d}} f_{n} e^{-i\langle n, x\rangle},\|f\|_{\alpha}^{2}=\sum_{n \in \mathbb{Z}^{d}}\left|f_{n}\right|^{2} e^{2\|n\| \alpha}<\infty\right\},
$$

is a Hilbert space of analytic functions (see Theorem A.4) with the inner product

$$
\langle f, g\rangle_{\alpha}=\sum_{n \in \mathbb{Z}^{d}} f_{n} \bar{g}_{n} e^{2 \alpha\|n\|} .
$$

For each function f from E_{α} we estimate

$$
\begin{aligned}
|f(x)| & \leq \sum_{n \in \mathbb{Z}^{d}}\left|f_{n}\right|=\sum_{n \in \mathbb{Z}^{d}} e^{-\|n\| \alpha}\left|f_{n}\right| e^{\|n\| \alpha} \\
& \leq\left(\sum_{n \in \mathbb{Z}^{d}} e^{-2\|n\| \alpha}\right)^{1 / 2}\left(\sum_{n \in \mathbb{Z}^{d}}\left|f_{n}\right|^{2} e^{2\|n\| \alpha}\right)^{1 / 2} .
\end{aligned}
$$

Hence we have proved:
Remark 2.2. We have $\|f\|_{L^{\infty}} \leq C_{\alpha}\|f\|_{\alpha}$ for $f \in E_{\alpha}$, where $C_{\alpha}=$ $\left(\sum_{n \in \mathbb{Z}^{d}} e^{-2 \alpha\|n\|}\right)^{1 / 2}$ is a universal constant.

Remark 2.3. Let $e_{n, \alpha}(x)=e^{-i\langle n, x\rangle} e^{-\alpha\|n\|}$, where $n \in \mathbb{Z}^{d}$. Then $\left\{e_{n, \alpha}\right\}$ is an orthonormal basis of E_{α}.

Lemma 2.3. Let $\omega \in \mathcal{P}$ and suppose that $\alpha \in(\gamma, 2 \gamma)$ and $\left|\omega_{n}\right| \leq C e^{-\gamma\|n\|}$ for some $C, \gamma>0$. Then:
(i) \mathcal{L}_{ω} maps E_{α} to E_{α}.
(ii) \mathcal{L}_{ω} is compact.
(iii) \mathcal{L}_{ω} is a trace-class operator.

Proof. (i) $\left\|\mathcal{L}_{\omega} f\right\|_{\alpha}^{2}$ can be estimated as follows:

$$
\begin{aligned}
\left\|\mathcal{L}_{\omega} f\right\|_{\alpha}^{2} & =2^{2 d} \sum_{n \in \mathbb{Z}^{d}}\left|\sum_{k \in \mathbb{Z}^{d}} \omega_{2 n-k} f_{k}\right|^{2} e^{2\|n\| \alpha} \\
& \leq 2^{2 d} \sum_{n \in \mathbb{Z}^{d}} \sum_{k \in \mathbb{Z}^{d}}\left|\omega_{2 n-k} e^{-\|k\| \alpha} f_{k} e^{\|k\| \alpha}\right|^{2} e^{2\|n\| \alpha} \\
& \leq 2^{2 d}\|f\|_{\alpha}^{2} \sum_{n \in \mathbb{Z}^{d}}\left[\sum_{k \in \mathbb{Z}^{d}}\left|\omega_{2 n-k}\right|^{2} e^{-2\|k\| \alpha}\right] e^{2\|n\| \alpha} \\
& \leq 2^{2 d}\|f\|_{\alpha}^{2} C^{2} \sum_{n \in \mathbb{Z}^{d}} \sum_{k \in \mathbb{Z}^{d}} e^{-2\|k\| \alpha} e^{2\|n\| \alpha} e^{2 \gamma\|2 n-k\| \alpha} \\
& \leq 2^{2 d}\|f\|_{\alpha}^{2} C^{2}\left[\sum_{n \in \mathbb{Z}^{d}} e^{-2\|n\|(2 \gamma-\alpha)}\right]\left[\sum_{k \in \mathbb{Z}^{d}} e^{-2\|k\|(\alpha-\gamma)}\right]<\infty .
\end{aligned}
$$

(ii) We must prove that $\mathcal{L}_{\omega}(K)$ is relatively compact, where $K=\{f \in$ $\left.E_{\alpha}:\|f\|_{\alpha} \leq 1\right\}$. One can immediately see that $\mathcal{L}_{\omega}(K)$ is a bounded subset in E_{α}.

Now let $\left(\varepsilon_{k}\right)_{k=1}^{\infty}$ be a basis of E_{α} such that:
(a) for each n from \mathbb{Z}^{d} there exists exactly one $k \in \mathbb{N}$ such that $e_{n, \alpha}$ $=\varepsilon_{k}$,
(b) for each k from \mathbb{N} there exists exactly one $n \in \mathbb{Z}^{d}$ such that $e_{n, \alpha}$ $=\varepsilon_{k}$,
(c) for each $n \in \mathbb{Z}^{d}$ and $k \in \mathbb{N}$ such that $e_{n, \alpha}=\varepsilon_{k}, \sum_{i=1}^{d}\left|n_{i}\right| \leq k$,
(d) for each $n, m \in \mathbb{Z}^{d}$ and $k, l \in \mathbb{N}$ such that $e_{n, \alpha}=\varepsilon_{k}, e_{m, \alpha}=\varepsilon_{l}$ the following condition holds: if $\sum_{i=1}^{d}\left|n_{i}\right|=\sum_{i=1}^{d}\left|m_{i}\right|$ then $k \leq l$; if $\sum_{i=1}^{d}\left|n_{i}\right|<\sum_{i=1}^{d}\left|m_{i}\right|$ then $k<l$.

Let $R_{k}: E_{\alpha} \rightarrow \operatorname{span}\left\{\varepsilon_{k+1}, \ldots\right\}$ and $f \in K$. Consider $n^{0} \in \mathbb{Z}^{d}, k_{1} \in \mathbb{N}$ such that $e_{n^{0}, \alpha}=\varepsilon_{k+1}$ and $k_{1}=\sum_{i=1}^{d}\left|n_{i}^{0}\right|$ and set $I\left(k_{1}\right)=\left\{m \in \mathbb{Z}^{d}\right.$: $\sum_{i=1}^{d}\left|m_{i}\right|=k_{1}$ and for all $l \in \mathbb{N}$ if $\varepsilon_{l}=e_{m, \alpha}$ then $\left.l<k+1\right\}$. Then
(7) $\left\|R_{k}\left(\mathcal{L}_{\omega} f\right)\right\|_{\alpha}$

$$
\begin{aligned}
& \leq\left\|\sum_{\|n\| \geq k_{1}}\left(\mathcal{L}_{\omega} f\right)_{n} e^{-i\langle n,\rangle}\right\|_{\alpha}+\left\|\sum_{n \in I\left(k_{1}\right)}\left(\mathcal{L}_{\omega} f\right)_{n} e^{-i\langle n,\rangle}\right\|_{\alpha} \\
& =\left(\sum_{\|n\| \geq k_{1}}\left|\left(\mathcal{L}_{\omega} f\right)_{n}\right|^{2} e^{2\|n\| \alpha}\right)^{1 / 2}+\left(\sum_{n \in I\left(k_{1}\right)}\left|\left(\mathcal{L}_{\omega} f\right)_{n}\right|^{2} e^{2\|n\| \alpha}\right)^{1 / 2} \\
& \leq \bar{C}\|f\|_{\alpha}\left(\left(\sum_{\|n\| \geq k_{1}} e^{-2\|n\|(2 \gamma-\alpha)}\right)^{1 / 2}+\left(\sum_{n \in I\left(k_{1}\right)} e^{-2\|n\|(2 \gamma-\alpha)}\right)^{1 / 2}\right),
\end{aligned}
$$

where the last inequality is obtained as in the proof of (i).
From (7) we see that

$$
\begin{aligned}
\sup _{f \in K} \| & R_{k}\left(\mathcal{L}_{\omega} f\right) \|_{\alpha} \\
& \leq \bar{C}\left(\left(\sum_{\|n\| \geq k_{1}} e^{-2\|n\|(2 \gamma-\alpha)}\right)^{1 / 2}+\left(\sum_{n \in I\left(k_{1}\right)} e^{-2\|n\|(2 \gamma-\alpha)}\right)^{1 / 2}\right) \rightarrow 0
\end{aligned}
$$

as $k \rightarrow \infty$. Hence applying Theorem A. 1 we get the assertion.
(iii) Let us estimate the expression $\left|\left\langle\mathcal{L}_{\omega} e_{n, \alpha}, e_{n, \alpha}\right\rangle_{\alpha}\right|$. After some calculations we see that

$$
\left|\left\langle\mathcal{L}_{\omega} e_{k, \alpha}, e_{n, \alpha}\right\rangle_{\alpha}\right| \leq 2^{d} C e^{-(\alpha-\gamma)\|k\|} e^{-(2 \gamma-\alpha)\|k\|} .
$$

Then

$$
\sum_{n, k \in \mathbb{Z}^{d}}\left|\left\langle\mathcal{L}_{\omega} e_{k, \alpha}, e_{n, \alpha}\right\rangle_{\alpha}\right|<\infty
$$

For any orthonormal basis $\left(\varphi_{i}\right)_{i \in \mathbb{Z}^{d}}$ of E_{α} we see that

$$
\begin{aligned}
\sum_{i \in \mathbb{Z}^{d}}\left|\left\langle\mathcal{L}_{\omega} \varphi_{i}, \varphi_{i}\right\rangle_{\alpha}\right| & \leq \sum_{k, l \in \mathbb{Z}^{d}}\left|\left\langle\mathcal{L}_{\omega} e_{k, \alpha}, e_{l, \alpha}\right\rangle_{\alpha}\right|\left[\sum_{i \in \mathbb{Z}^{d}}\left|\left\langle\varphi_{i}, e_{k, \alpha}\right\rangle_{\alpha}\right|\left|\left\langle e_{l, \alpha}, \varphi_{i}\right\rangle_{\alpha}\right|\right] \\
& \leq \sum_{k, l \in \mathbb{Z}^{d}}\left|\left\langle\mathcal{L}_{\omega} e_{k, \alpha}, e_{l, \alpha}\right\rangle_{\alpha}\right|
\end{aligned}
$$

which yields that \mathcal{L}_{ω} is a trace-class operator in E_{α} because of the following theorem:

Theorem (see [15, p. 219]). Let H be a separable complex Hilbert space and $T \in L(H)$ a bounded operator. Suppose that for any orthonormal base $\left\{\varphi_{i}\right\}_{i \geq 1}$ the series $\sum_{i=1}^{\infty}\left\langle T \varphi_{i}, \varphi_{i}\right\rangle$ is absolutely convergent. Then T is a trace-class operator.

This concludes the proof of Lemma 2.3.
The fact that \mathcal{L}_{ω} is a trace-class operator allows us to control the error of the spectral radius of \mathcal{L}_{ω} in E_{α} in numerical calculations (see [2]).

Lemma 2.4. Let $\omega \in \mathcal{P}$ and suppose that there exist $C, \gamma>0$ such that for each $n \in \mathbb{Z}^{d},\left|\omega_{n}\right| \leq C e^{-\gamma\|n\|}$. Then there exist $\gamma_{\varepsilon} \in(0, \gamma)$ and $C_{2}>0$ such that for the Fourier coefficients $\left(|\omega|^{2}\right)_{n}, n \in \mathbb{Z}^{d}$ we have

$$
\left(|\omega|^{2}\right)_{n} \leq C_{2} e^{-\gamma_{\varepsilon}\|n\|} .
$$

Proof. One can see that

$$
\left(|\omega|^{2}\right)(x)=\sum_{n, m \in \mathbb{Z}^{d}} \omega_{n} \bar{\omega}_{m} e^{-i\langle n-m, x\rangle},
$$

and hence

$$
\begin{aligned}
\left(|\omega|^{2}\right)_{k} & =\frac{1}{(2 \pi)^{d}} \sum_{n, m \in \mathbb{Z}^{d}} \omega_{n} \bar{\omega}_{m} \int_{[-\pi, \pi]^{d}} e^{-i\langle n-m+k, x\rangle} d x \\
& =\sum_{n, m \in \mathbb{Z}^{d}, m-n=k} \omega_{n} \bar{\omega}_{m}=\sum_{n \in \mathbb{Z}^{d}} \omega_{n} \bar{\omega}_{n+k} .
\end{aligned}
$$

Then for any ε, γ_{1} such that $0<2 \varepsilon<\gamma$ and $\gamma_{1}=\gamma-\varepsilon$,

$$
\begin{aligned}
\left|\left(|\omega|^{2}\right)_{k}\right| & \leq \sum_{n \in \mathbb{Z}^{d}}\left|\omega_{n} \| \bar{\omega}_{n+k}\right| \leq C^{2} \sum_{n \in \mathbb{Z}^{d}} e^{-\gamma\|n\|} e^{-\gamma\|n+k\|} \\
& =C^{2} \sum_{n \in \mathbb{Z}^{d}} e^{-\gamma_{1}(\|n\|+\|n+k\|)} e^{-\varepsilon(\|n\|+\|n+k\|)} \\
& \leq C^{2} \sum_{n \in \mathbb{Z}^{d}} e^{-\gamma_{1}\|k\|} e^{-\varepsilon(2\|n\|-\|k\|)} \leq C_{2} e^{-(\gamma-2 \varepsilon)\|k\|},
\end{aligned}
$$

where we used the inequalities $\|k\| \leq\|n\|+\|n+k\|,\|n\|-\|k\| \leq\|n+k\|$.

Iterating Lemma $2.4 l$ times we obtain:
Lemma 2.5. Let $\omega \in \mathcal{P}$ and suppose that $\left|\omega_{n}\right| \leq C e^{-\gamma\|n\|}$ for each $n \in \mathbb{Z}^{d}$ and some $C, \gamma>0$. Then for any $l \in \mathbb{N}$ there exist $C_{2 l}>0$ and $\gamma^{\prime} \in(0, \gamma)$ such that for each $n \in \mathbb{Z}^{d}$ the Fourier coefficients $\left(|\omega|^{2 l}\right)_{n}$ satisfy the estimate

$$
\left(|\omega|^{2 l}\right)_{n} \leq C_{2 l} e^{-\gamma^{\prime}\|n\|} .
$$

Lemma 2.6. Let ω satisfy the assumptions of Lemma 2.5 and $\omega \neq 0$ on $[0,2 \pi]^{d}$. Then for any $p \in \mathbb{N}$ there exist γ_{1} in $(0, \gamma)$ and $C_{p}>0$ such that the Fourier coefficients of $|\omega|^{p}$ satisfy the estimate

$$
\left(|\omega|^{p}\right)_{n} \leq C_{p} e^{-\gamma_{1}\|n\|}, \quad n \in \mathbb{Z}^{d}
$$

Proof. $|\omega|^{2}$ is an analytic function. We can extend $|\omega|^{2}$ to a function of a complex variable for $|\operatorname{Im} z|<\gamma$. Then there exists $\gamma_{1} \in(0, \gamma)$ such that $|\omega|^{2} \neq 0$ on $R_{\gamma_{1}}=\left\{z \in \mathbb{C}^{d}: e^{-\gamma_{1}} \leq\left|z_{k}\right| \leq e^{\gamma_{1}}\right.$ for $\left.k=1, \ldots, d\right\}$ and we can define on $R_{\gamma_{1}}$ an analytic function

$$
|\omega|^{p}=\exp \left(\frac{p}{2} \log |\omega|^{2}\right) .
$$

From the analyticity of $|\omega|^{p}$ and the form of $R_{\gamma_{1}}$ we get the assertion.
To proceed with our considerations we recall the Cohen condition (see [3]).

A set K is called congruent to $[-\pi, \pi]^{d}$ (modulo $2 \pi \mathbb{Z}^{d}$) if $|K|=(2 \pi)^{d}$ and for all $x \in[-\pi, \pi]^{d}$ there exists $x^{\prime} \in K$ such that $x-x^{\prime} \in 2 \pi \mathbb{Z}^{d}$. We say that a function ω satisfies the Cohen condition if there exists a compact set K congruent to $[-\pi, \pi]^{d}$ (modulo $2 \pi \mathbb{Z}^{d}$) such that it contains a neighbourhood of 0 and

$$
\inf _{j \geq 1, x \in K}\left|\omega\left(2^{-j} x\right)\right|>0
$$

We finish our preparatory considerations. From now on we assume $d=2$.
Lemma 2.7. Let $\omega \in \mathcal{P}$ be real-valued and satisfy the following conditions:
(i) there exist $C>0, \gamma>0$ such that for each $n \in \mathbb{Z}^{2},\left|\omega_{n}\right| \leq C e^{-\gamma\|n\|}$,
(ii) $\omega \geq 0, \omega(0)=1$,
(iii) ω satisfies the Cohen condition,
(iv) $\omega(s, r)>0$ when $r \in[0,2 \pi], s=0$ or $s=\pi$, and $\omega\left(2^{-n} \pi, r\right)>0$ for $r \in[0, \pi / 2]$ and $n \in \mathbb{N}$.

If $f \in E_{\alpha} \backslash\{0\}(\alpha \in(\gamma, 2 \gamma))$ is a real-valued function such that $f \geq 0$, then for each $x \in[-\pi, \pi]^{2}$ there exists $n \in \mathbb{N}$ such that $\left(\mathcal{L}_{\omega}^{n} f\right)(x)>0$.

Proof. Assume, on the contrary, that there exist a function $0 \leq f \in E_{\alpha}$ and $x^{0} \in \mathbb{R}^{2}$ such that $\left(\mathcal{L}_{\omega}^{n} f\right)\left(x^{0}\right)=0$ for any $n \geq 1$. We can assume that $x^{0}=0$, because if $x^{0} \neq 0$ then by Lemma 2.2 for any $p \geq 0$ we can write

$$
\begin{align*}
0 & =\left(\mathcal{L}_{\omega}^{n+p} f\right)\left(x^{0}\right) \tag{8}\\
& =\sum_{m \in I_{n}}\left[\prod_{j=1}^{n} \omega\left(2^{-j}\left(x^{0}+2 m \pi\right)\right)\right]\left(\mathcal{L}_{\omega}^{p} f\right)\left(2^{-n}\left(x^{0}+2 m \pi\right)\right)
\end{align*}
$$

where $I_{n}=\left\{\left(m_{1}, m_{2}\right): m_{j} \in\left[-2^{n-1}+1,2^{n-1}\right] \cap \mathbb{Z}, j=1,2\right\}$.
By the Cohen condition there exist $c>0$ and a set K congruent to $[-\pi, \pi]^{2}$ such that $\omega\left(2^{-j} x\right) \geq c \chi_{K}(x)$ for any $x \in \mathbb{R}^{2}, j \geq 1$. By (8),

$$
\begin{equation*}
0=\left(\mathcal{L}_{\omega}^{n+p} f\right)\left(x^{0}\right) \geq c^{n} \sum_{m \in I_{n}} \chi_{K}\left(x^{0}+2 m \pi\right)\left(\mathcal{L}_{\omega}^{p} f\right)\left(2^{-n}\left(x^{0}+2 m \pi\right)\right) \tag{9}
\end{equation*}
$$

There exist $m^{0} \in \mathbb{Z}^{2}$ and $\bar{x} \in K$ such that $x^{0}+2 \pi m^{0}=\bar{x}$. Now if $2^{n-1}>$ $\left|\overline{m_{i}^{0}}\right|, i=1,2$, then by (9),

$$
0=\left(\mathcal{L}_{\omega}^{n+p} f\right)\left(x^{0}\right) \geq c^{n}\left(\mathcal{L}_{\omega}^{p} f\right)\left(2^{-n} \bar{x}\right)
$$

Hence by analyticity $\mathcal{L}_{\omega}^{p} f$ vanishes on the line $\{y=t \bar{x}\} \subseteq \mathbb{R}^{2}, p \geq 0$.
The next steps of the proof are as follows. First we show that

$$
\begin{equation*}
\left(\mathcal{L}_{\omega}^{p} f\right)\left(\pi, \frac{l}{2^{j}} \pi\right)=0 \tag{10}
\end{equation*}
$$

for any $p \geq 0$ and $l \in\left\{0,1, \ldots, 2^{j}\right\}, j \geq 1$. Then we deduce that

$$
\begin{equation*}
f\left(r\left(\pi, \frac{l}{2^{j}} \pi\right)\right)=0 \tag{11}
\end{equation*}
$$

for each $r \in \mathbb{R}$. Hence we conclude that $f \equiv 0$ by analyticity.
To prove (10) let us take into account (8). For $x^{0}=0$ and $n \geq j-1$ we derive

$$
\begin{equation*}
0=\left(\mathcal{L}_{\omega}^{n+p} f\right)(0) \geq\left[\prod_{k=1}^{n} \omega\left(2^{-k} 2 m \pi\right)\right]\left(\mathcal{L}_{\omega}^{p} f\right)\left(\pi, \frac{l}{2^{j}} \pi\right) \geq 0 \tag{12}
\end{equation*}
$$

where $m=\left(2^{n-1}, 2^{n-j-1} l\right), l \in\left\{0,1, \ldots, 2^{j}\right\}$. If $k \in\{1, \ldots, n-1\}$ then

$$
\omega\left(2^{-k} 2 \pi\left(2^{n-1}, 2^{n-j-1} l\right)\right)=\omega\left(2 \pi, 2^{n-k-j} l \pi\right)=\omega\left(0,2^{n-k-j} l \pi\right)>0
$$

and for $k=n$,

$$
\omega\left(2^{-k} 2 \pi\left(2^{n-1}, 2^{n-j-1} l\right)\right)=\omega\left(\pi, \frac{l}{2^{j}} \pi\right)>0
$$

Hence by (12) we obtain (10).
To prove (11) it is necessary to show that the function f vanishes on the line $r\left(\pi, \frac{l}{2^{j}} \pi\right), r \in \mathbb{R}$, or equivalently that it vanishes at infinitely many points having a point of accumulation. Once more rewrite (8) for $p=0$ and
$x=\left(\pi, \frac{l}{2^{j}} \pi\right):$

$$
\begin{aligned}
0= & \left(\mathcal{L}_{\omega}^{n} f\right)\left(\pi, \frac{l}{2^{j}} \pi\right) \\
= & \sum_{m \in I_{n}}\left[\prod_{p=1}^{n} \omega\left(2^{-p}\left(\left(\pi, \frac{l}{2^{j}} \pi\right)+2 m \pi\right)\right)\right] \\
& \times f\left(2^{-n}\left(\left(\pi, \frac{l}{2^{j}} \pi\right)+2 m \pi\right)\right)
\end{aligned}
$$

Then inserting $m=0$ we observe that

$$
\begin{equation*}
0=\left(\mathcal{L}_{\omega}^{n} f\right)\left(\pi, \frac{l}{2^{j}} \pi\right) \geq \prod_{p=1}^{n} \omega\left(2^{-p}\left(\pi, \frac{l}{2^{j}} \pi\right)\right) f\left(2^{-n}\left(\pi, \frac{l}{2^{j}} \pi\right)\right) \geq 0 \tag{13}
\end{equation*}
$$

where the last inequality follows from (iv). Then by (13),

$$
f\left(2^{-n}\left(\pi, \frac{l}{2^{j}} \pi\right)\right)=0
$$

for any n and hence we obtain (11). The set $\left\{\frac{l}{2^{j}} \pi: j \geq 1, l=0,1, \ldots, 2^{j}\right\}$ is dense in $[0, \pi]$ hence f vanishes on the triangle with vertices $(0,0),(\pi, 0)$, (π, π). So $f \equiv 0$ and we obtain a contradiction.

From the proof it is clear that (iv) can be replaced by another condition given in the following:

REMARK 2.4. $\omega(s, r)>0$ whenever $s \in[0,2 \pi], r=0$ or $r=\pi$, and $\omega\left(r, 2^{-n} \pi\right)>0$ for $r \in[0, \pi / 2]$ and $n \in \mathbb{N}$.

Let us remark that the second part of (iv) (i.e. $\omega\left(2^{-n} \pi, r\right)>0$ for $r \in[0, \pi / 2], n \in \mathbb{N}$) concerns only a finite number of $n \in \mathbb{N}, n \in\left\{1, \ldots, k_{0}\right\}$, where $k_{0} \geq 1$ is such that the square $\left[0,2^{-k_{0}} \pi\right]^{2} \subseteq 2^{-1} K, K$ being the compact set from the Cohen condition. We recall that for $x \in 2^{-1} K, w(x)>0$.

It seems that the assumption (iv) in Lemma 2.7 is excessively strong, and it is an open problem how to relax it.

In the case $d=1$ assumptions (i)-(iii) suffice for proving the assertion of Lemma 2.7 (see [2]).
3. Regularity of the refinable function. An operator $T \in L(X)$, where X is a Banach space, is called positive with respect to the cone $K \subset$ X if $T(K) \subset K$. If Int $K \neq \emptyset$ we say that T is strictly positive when $T(K \backslash\{0\}) \subseteq \operatorname{Int} K$. We use $r(T)$ for the spectral radius of T and $B(x, r)$ for the ball with center at x and radius r.

Define

$$
E_{\alpha, \mathbb{R}}=\left\{f \in E_{\alpha}: f(x) \in \mathbb{R} \text { for all } x \in \mathbb{R}^{d}\right\}
$$

Then

$$
E_{\alpha}=E_{\alpha, \mathbb{R}}+i E_{\alpha, \mathbb{R}} .
$$

For $E_{\alpha, \mathbb{R}}$ and E_{α} the sets

$$
E_{\alpha, \mathbb{R}}^{+}=\left\{f \in E_{\alpha, \mathbb{R}}: f \geq 0\right\} \quad \text { and } \quad E_{\alpha}^{+}=E_{\alpha, \mathbb{R}}^{+}+i E_{\alpha, \mathbb{R}}^{+}
$$

are cones.

(i) $B\left(f, a_{f} /\left(2 C_{\alpha}\right)\right) \subset E_{\alpha, \mathbb{R}}^{+}$, where $\min \left\{f(x): x \in[-\pi, \pi]^{d}\right\}>a_{f}>0$ and C_{α} is as in Remark 2.2.
(ii) For each $g \in E_{\alpha, \mathbb{R}}$ we have $g>0$ whenever $g \in B\left(f, a_{f} /\left(2 C_{\alpha}\right)\right)$.

Proof. Let $a_{f}>0$ be such that $f>a_{f}$ and assume $g \in B\left(f, a_{f} /\left(2 C_{\alpha}\right)\right)$.
Then

$$
g(x) \geq f(x)-|f(x)-g(x)| \geq a_{f}-\|f-g\|_{L^{\infty}} \geq a_{f}-C_{\alpha}\|f-g\|_{\alpha}>0 .
$$

As a direct consequence of this lemma we get the following
REMARK 3.1. $E_{\alpha, \mathbb{R}}^{+}$and E_{α}^{+}are cones with nonempty interior.
Let f be an integrable and normalized solution of the equation (1), i.e. $\int_{\mathbb{R}^{d}} f(x) d x=1$. Applying the Fourier transform to (1) one obtains

$$
\begin{equation*}
\widehat{f}(x)=m\left(2^{-1} x\right) \widehat{f}\left(2^{-1} x\right), \tag{14}
\end{equation*}
$$

where $m(x)=\sum_{n \in \mathbb{Z}^{2}} c_{n} e^{i\langle n, x\rangle}$.
From now on we assume that the function m can be factored as

$$
\begin{equation*}
m(x)=\left(\frac{1+e^{i x_{1}}}{2}\right)^{N}\left(\frac{1+e^{i x_{2}}}{2}\right)^{M} q(x), \tag{15}
\end{equation*}
$$

where $N, M \in \mathbb{N} \cup\{0\}$ and q is a $2 \pi \mathbb{Z}^{2}$-periodic function such that the Fourier coefficients q_{n} satisfy the estimate

$$
\begin{equation*}
\left|q_{n}\right| \leq C e^{-\gamma\|n\|} \tag{16}
\end{equation*}
$$

for some $C, \gamma>0$.
We can rewrite (15) as

$$
m(x)=q(x) \sum_{k \in I} 2^{-(N+M)}\binom{N}{k_{1}}\binom{M}{k_{2}} e^{i\langle k, x\rangle},
$$

where $I=\left\{k \in \mathbb{Z}^{2}: k_{1}=0,1, \ldots, N, k_{2}=0,1, \ldots, M\right\}$. Then the Fourier coefficients of m can be estimated as follows:

$$
c_{n}=m_{n}=\sum_{k \in I} 2^{-(N+M)}\binom{N}{k_{1}}\binom{M}{k_{2}} q_{n+k},
$$

and applying (16) we obtain

$$
\left|m_{n}\right| \leq 2^{-(N+M)} C e^{-\gamma\|n\|} \sum_{k \in I}\binom{N}{k_{1}}\binom{M}{k_{2}} e^{\gamma\|k\|},
$$

hence

$$
\begin{equation*}
\left|m_{n}\right| \leq \bar{C} e^{-\gamma\|n\|} \quad \text { for any } n \in \mathbb{Z}^{2} . \tag{17}
\end{equation*}
$$

One sees that $\prod_{j=1}^{\infty} m\left(2^{-j} x\right)$ and $\prod_{j=1}^{\infty} q\left(2^{-j} x\right)$ are uniformly convergent on each compact subset K of \mathbb{R}^{2}, since using (2) and (17) it follows that

$$
\begin{align*}
|q(x)| & =|m(x)| \leq 1+|m(x)-1|=1+\left|\sum_{n \in \mathbb{Z}^{2}} c_{n} e^{i\langle n, x\rangle}-\sum_{n \in \mathbb{Z}^{2}} c_{n}\right| \tag{18}\\
& \left.\leq 1+2 \sum_{n \in \mathbb{Z}^{2}}\left|c_{n}\right|\left|\sin \frac{1}{2}\langle n, x\rangle\right| \leq 1+2 \sum_{n \in \mathbb{Z}^{2}} \bar{C} e^{-2 \gamma\|n\| \mid} \frac{1}{2}\langle n, x\rangle \right\rvert\, \\
& \leq 1+\bar{C} \sum_{n \in \mathbb{Z}^{2}} e^{-2 \gamma\|n\|}\|n\| \cdot\|x\| \leq 1+C_{1}\|x\| .
\end{align*}
$$

Lemma 3.2. Assume that m, q satisfy (15), (16) and one of the following conditions:

1. $p>0$ and $q \neq 0$ on $[-\pi, \pi]^{2}$,
2. $p \in 2 \mathbb{N}, m$ satisfy the Cohen condition and $|q|$ satisfies the condition (iv) of Lemma 2.7.

Let $\mathcal{L}_{|q|^{p}}$ be the transfer operator associated with the function $|q|^{p}$ and r_{p} be the spectral radius of this operator on E_{α} for any $\alpha \in(\gamma, 2 \gamma)$. Then:
(i) r_{p} is an eigenvalue of $\mathcal{L}_{|q|^{p}}$,
(ii) the eigenfunction corresponding to r_{p} is strictly positive (i.e. is in E_{α}^{+},
(iii) $r_{p}>1$.

Proof. For $\lambda>\left\|\mathcal{L}_{|q|^{p}}\right\|$ consider the operator

$$
\begin{equation*}
T=\sum_{k=1}^{\infty} \lambda^{-k} \mathcal{L}_{|q|^{p}}^{k} \quad \text { acting on } E_{\alpha} . \tag{19}
\end{equation*}
$$

T is compact and by Lemma 2.7 it is strongly positive. Then by Theorem A. 3 its spectral radius $r(T)>0$ is an eigenvalue of T. Moreover, the corresponding eigenfunction F is in $\operatorname{Int} E_{\alpha}^{+}$. Recall that for $\lambda>\left\|\mathcal{L}_{|q|^{p}}\right\|$ the resolvent $R\left(\lambda, \mathcal{L}_{|q|^{p}}\right)$ equals $\sum_{k=0}^{\infty} \lambda^{-(k+1)} \mathcal{L}_{|q|^{p}}^{k}$. So we can write

$$
\begin{equation*}
I+T=\lambda R\left(\lambda, \mathcal{L}_{|q|^{p}}\right) . \tag{20}
\end{equation*}
$$

Because also F is an eigenfunction of $I+T$ corresponding to the eigenvalue $1+r(T)$, from (20) we derive

$$
\lambda R\left(\lambda, \mathcal{L}_{|q|^{p}}\right) F=(1+r(T)) F .
$$

This immediately gives $\lambda F=(1+r(T))\left(\lambda I-\mathcal{L}_{|q|^{p}}\right) F$ and therefore $\mathcal{L}_{|q|^{p}} F=$ $\kappa F, \kappa \equiv \frac{\lambda}{1+r(T)} r(T)>0$. So $r_{p} \geq \kappa>0$ where r_{p} is the spectral radius of $\mathcal{L}_{|q|^{p}}$. Now the Krein-Rutman Theorem (see Theorem A.2) applied to $\mathcal{L}_{|q|^{p}}$ shows that r_{p} is an eigenvalue of $\mathcal{L}_{|q|^{p}}$ and the corresponding eigenfunction G is in E_{α}^{+}. By (19), G is also an eigenfunction for T and

$$
T G=\left(\sum_{k=1}^{\infty}\left(\frac{r_{p}}{\lambda}\right)^{k}\right) G \in \operatorname{Int} E_{\alpha}^{+} .
$$

Hence we obtain (i), (ii).
Now write

$$
r_{p} F(0)=\left(\mathcal{L}_{|q|^{p}} F\right)(0)=F(0)+\sum_{e \in \Lambda^{\prime}}|q(\pi e)|^{p} F(\pi e), \quad \Lambda^{\prime}=\Lambda \backslash\{(0,0)\} .
$$

The assumption imposed on q guarantees that $|q(0, \pi)|>0$. Hence the sum on the right hand side of the latter formula is positive. Thus $r_{p}>1$ and the proof is finished.

Let

$$
E_{\alpha}^{\prime}=\left\{g: g(x)=\left|\sin \left(2^{-1} x_{1}\right)\right|^{N p}\left|\sin \left(2^{-1} x_{2}\right)\right|^{M p} f(x) \text { and } f \in E_{\alpha}\right\},
$$

and for any $g \in E_{\alpha}^{\prime}$ the norm of g is identified with the norm of the corresponding f in E_{α}.

Lemma 3.3. Let $\mathcal{L}_{|q|^{p}}$ (resp. $\left.\mathcal{L}_{|m|^{p}}^{\prime}\right)$ be the transfer operator associated with $|q|^{p}\left(\right.$ resp. $\left.|m|^{p}\right)$. For any $\alpha \in(\gamma, 2 \gamma), \mathcal{L}_{|m|^{p}}^{\prime}$ is a trace-class operator on the space E_{α}^{\prime}. Moreover, if f is a continuous eigenfunction of $\mathcal{L}_{|q|^{p}}$ with eigenvalue λ then $g(x)=\left|\sin \left(2^{-1} x_{1}\right)\right|^{N p}\left|\sin \left(2^{-1} x_{2}\right)\right|^{M p} f(x)$ is a continuous eigenfunction of $\mathcal{L}_{|m|^{p}}^{\prime}$ with eigenvalue $2^{-(N+M) p} \lambda$.

Proof. As in the one-dimensional case (see [2]), it is enough to show

$$
\begin{aligned}
\left(\mathcal{L}_{|m|^{p}}^{\prime} g\right)(2 x)= & \sum_{e \in \Lambda}|m(x+\pi e)|^{p} g(x+\pi e) \\
= & \left|\sin \left(\frac{x_{1}}{2}\right) \cos \left(\frac{x_{1}}{2}\right)\right|^{N p}\left|\sin \left(\frac{x_{2}}{2}\right) \cos \left(\frac{x_{2}}{2}\right)\right|^{M p} \\
& \times \sum_{e \in \Lambda}|q(x+\pi e)|^{p} f(x+\pi e) \\
= & 2^{-(N+M) p}\left|\sin x_{1}\right|^{N p}\left|\sin x_{2}\right|^{M p}\left(\mathcal{L}_{|q|^{p}} f\right)(2 x) .
\end{aligned}
$$

Theorem 1. Assume that m, q satisfy (15), (16) and one of the conditions of Lemma 3.2. Let $\mathcal{L}_{|q|^{p}}$ be the transfer operator associated with the function $|q|^{p}$ and r_{p} be the spectral radius of this operator on E_{α} for any
$\alpha \in(\gamma, 2 \gamma)$. Then the L^{p}-Sobolev exponent of the scaling function f satisfies

$$
\begin{equation*}
s_{p}=N+M-\frac{1}{p} \log _{2} r_{p} \tag{21}
\end{equation*}
$$

Proof. Applying (14) and (15) we see that
(22) $|\widehat{f}(x)|=\left[\prod_{k=1}^{\infty}\left|\cos ^{N}\left(2^{-k-1} x_{1}\right)\right|\right]\left[\prod_{k=1}^{\infty}\left|\cos ^{M}\left(2^{-k-1} x_{2}\right)\right|\right] \prod_{k=1}^{\infty}\left|q\left(2^{-k} x\right)\right|$

$$
=\left|\frac{2 \sin \left(2^{-1} x_{1}\right)}{x_{1}}\right|^{N}\left|\frac{2 \sin \left(2^{-1} x_{2}\right)}{x_{2}}\right|^{M} \prod_{k=1}^{\infty}\left|q\left(2^{-k} x\right)\right|
$$

For all $x \in\left[-2^{n} \pi, 2^{n} \pi\right]^{2}$ we obtain

$$
\begin{equation*}
\left|\prod_{k=1}^{\infty} q\left(2^{-k} x\right)\right|^{p} \leq C_{p} \prod_{k=1}^{n}\left|q\left(2^{-k} x\right)\right|^{p} \tag{23}
\end{equation*}
$$

where $C_{p}=\sup \left\{\left|\prod_{k=1}^{\infty} q\left(2^{-k} x\right)\right|^{p}: x \in[-\pi, \pi]^{2}\right\}$ and C_{p} is finite by (18).
Using (23) we obtain

$$
\begin{align*}
& \int_{\left[-2^{n} \pi, 2^{n} \pi\right]^{2}}\left|\prod_{k=1}^{\infty} q\left(2^{-k} x\right)\right|^{p} d x \tag{24}\\
& \leq C_{p} \int_{\left[-2^{n} \pi, 2^{n} \pi\right]^{2}} \prod_{k=1}^{n}\left|q\left(2^{-k} x\right)\right|^{p} d x \\
& \leq C_{p} \int_{[-\pi, \pi]^{2}}\left(\mathcal{L}_{|q|^{p}}\right)^{n} 1(x) d x \quad \text { by Lemma } 2.1 \\
& \leq(2 \pi)^{2} C_{p}\left\langle\left(\mathcal{L}_{|q|^{p}}\right)^{n} 1,1\right\rangle_{\alpha} \leq(2 \pi)^{2} C_{p}\left\|\mathcal{L}_{|q|^{p}}^{n}\right\|
\end{align*}
$$

For each $\varepsilon>0$ and $n \geq n_{0}(\varepsilon) \geq 1$ we have

$$
\left|\left\|\mathcal{L}_{|q|^{p}}^{n}\right\|^{1 / n}-r_{p}\right|<\varepsilon
$$

Hence applying (24) we see that
(25)

$$
\begin{aligned}
& \int_{\left[-2^{n} \pi, 2^{n} \pi\right]^{2}}\left|\prod_{k=1}^{\infty} q\left(2^{-k} x\right)\right|^{p} d x \\
& \leq \begin{cases}(2 \pi)^{2} C_{p}\left(r_{p}+\varepsilon\right)^{n} & \text { for } n \geq n_{0}(\varepsilon) \geq 1 \\
(2 \pi)^{2} C_{p}\left\|\mathcal{L}_{|q|^{p}}\right\|^{n} & \text { for } 1 \leq n<n_{0}(\varepsilon)\end{cases}
\end{aligned}
$$

Consider the family of sets $A_{0}=[-\pi, \pi]^{2}, A_{j}=\left[-2^{j} \pi, 2^{j} \pi\right]^{2} \backslash\left[-2^{j-1} \pi\right.$, $\left.2^{j-1} \pi\right]^{2}$ for $j \geq 1$. Then using (22) and (25) we estimate

$$
\int_{\mathbb{R}^{2}}|\widehat{f}(x)|^{p}\left(1+\|x\|^{p}\right)^{s} d x
$$

$$
=\int_{[-\pi, \pi]^{2}}|\widehat{f}(x)|^{p}\left(1+\|x\|^{p}\right)^{s} d x+\sum_{j=1}^{\infty} \int_{x \in A_{j}}|\widehat{f}(x)|^{p}\left(1+\|x\|^{p}\right)^{s} d x
$$

$$
\begin{align*}
& \leq C_{1}+C \sum_{j=1}^{\infty} 2^{j p(s-N-M)} C_{p} \int_{x \in A_{j}} \prod_{k=1}^{j}\left|q\left(2^{-k} x\right)\right|^{p} d x \quad \text { by }(22),(23) \tag{23}\\
& \leq C_{1}+C_{2}\left(\sum_{j=1}^{n_{0}-1} 2^{j p(s-N-M)}\left\|\mathcal{L}_{|q|^{p}}\right\|^{j}+\sum_{j=n_{0}}^{\infty} 2^{j p(s-N-M)}\left(r_{p}+\varepsilon\right)^{j}\right) \\
& \leq C_{3}+C_{2} \sum_{j=n_{0}}^{\infty} 2^{j\left(p(s-N-M)+\log _{2}\left(r_{p}+\varepsilon\right)\right)} .
\end{align*}
$$

Then for any s such that $j\left(p(s-N-M)+\log _{2} r_{p}\right)<0$ the series is convergent and hence the L^{p}-Sobolev exponent s_{p} is greater than or equal to $N+M-$ $\frac{1}{p} \log _{2} r_{p}$.

Let $K \subseteq \mathbb{R}^{2}$ be a compact set congruent to $[-\pi, \pi]^{2}$ modulo $2 \pi \mathbb{Z}^{2}$ from the Cohen condition. Define

$$
I_{n}=\int_{x \in 2^{n} K}\|x\|^{(N+M) p}|\widehat{f}(x)|^{p} d x
$$

and

$$
\varrho=\inf \left\{\left|\prod_{k=1}^{\infty} m\left(2^{-k} x\right)\right|^{p}: x \in K\right\} .
$$

Then $\varrho>0$ by the Cohen condition.
Let F be a strictly positive eigenfunction of $\mathcal{L}_{|q|^{p}}$ (see Lemma 3.2) corresponding to r_{p}. Define

$$
\begin{gathered}
S=\sup \left\{|F(x)|: x \in[-\pi, \pi]^{2}\right\}, \\
g(x)=\left|\sin \left(2^{-1} x_{1}\right)\right|^{N p}\left|\sin \left(2^{-1} x_{2}\right)\right|^{M p} F(x), \quad G=\int_{[-\pi, \pi]^{2}} g(x) d x .
\end{gathered}
$$

We can estimate I_{n} as follows:

$$
\begin{aligned}
I_{n}= & \int_{x \in 2^{n} K}\|x\|^{(N+M) p}\left[\prod_{k=1}^{n}\left|m\left(2^{-k} x\right)\right|\right]^{p}\left[\prod_{k=1}^{\infty}\left|m\left(2^{-(k+n)} x\right)\right|\right]^{p} d x \\
\geq & \varrho \int_{x \in 2^{n} K}\left|x_{1}\right|^{N p}\left|x_{2}\right|^{M p}\left[\prod_{k=1}^{n}\left|m\left(2^{-k} x\right)\right|\right]^{p} d x \\
\geq & \varrho 2^{(N+M) p(n+1)} \int_{x \in 2^{n} K}\left|\sin \left(2^{-(n+1)} x_{1}\right)\right|^{N p}\left|\sin \left(2^{-(n+1)} x_{2}\right)\right|^{M p} \\
& \times\left[\left.\prod_{k=1}^{n}\left|m\left(2^{-k} x\right)\right|\right|^{p} d x\right. \\
\geq & S^{-1} \varrho 2^{(N+M) p(n+1)}\left|\int_{x \in 2^{n} K} g\left(2^{-n} x\right)\left[\prod_{k=1}^{n}\left|m\left(2^{-k} x\right)\right|\right]^{p} d x\right|
\end{aligned}
$$

$$
\begin{aligned}
& \geq S^{-1} \varrho 2^{(N+M) p(n+1)}\left|\int_{x \in\left[-2^{n} \pi, 2^{n} \pi\right]^{2}} g\left(2^{-n} x\right)\left[\prod_{k=1}^{n}\left|m\left(2^{-k} x\right)\right|\right]^{p} d x\right| \\
& =S^{-1} \varrho 2^{(N+M) p(n+1)}\left|\int_{x \in[-\pi, \pi]^{2}}\left(\mathcal{L}_{|m|^{p}}^{\prime}\right)^{n} g(x) d x\right| \quad \text { by Lemma } 2.1 \\
& =|G| \varrho S^{-1} 2^{(N+M) p}\left(r_{p}\right)^{n} \quad \text { by Lemma } 3.3 \\
& =C\left(r_{p}\right)^{n} .
\end{aligned}
$$

Since K is compact there exists a finite L such that $K \subseteq\left[-2^{L} \pi, 2^{L} \pi\right]^{2}$.
Hence

$$
\begin{equation*}
\bar{I}_{n}=\int_{\left[-2^{n} \pi, 2^{n} \pi\right]^{2}}\|x\|^{(N+M) p}|\widehat{f}(x)|^{p} d x \geq I_{n-L} \geq \bar{C}\left(r_{p}\right)^{n} \tag{26}
\end{equation*}
$$

Put

$$
J_{n}=\bar{I}_{n}-\bar{I}_{n-1}=\int_{A_{n}}\|x\|^{(N+M) p}|\widehat{f}(x)|^{p} d x
$$

Now we prove that $r_{p}>0$ and (26) gives

$$
\begin{align*}
& \text { for each } C>0 \text { and } \varepsilon>0 \text { we have } J_{n} \geq C\left(r_{p} / 2^{\varepsilon}\right)^{n} \tag{27}\\
& \text { for infinitely many } n \geq 1 .
\end{align*}
$$

In fact, suppose not. Then there exist $n_{0} \geq 1, C_{0}>0$, and $\varepsilon_{0}>0$ such that $J_{n}<C_{0}\left(r_{p} / 2^{\varepsilon_{0}}\right)^{n}$ for each $n \geq n_{0}$. For $n>n_{0}$ this yields

$$
\begin{align*}
0 & <\bar{C} \leq\left(r_{p}\right)^{-n} \bar{I}_{n}=\left(r_{p}\right)^{-n}\left(\bar{I}_{n_{0}}+\sum_{k=n_{0}+1}^{n} J_{k}\right) \tag{28}\\
& <\left(r_{p}\right)^{-n} \bar{I}_{n_{0}}+C_{0}\left(r_{p}\right)^{-n} \sum_{k=n_{0}+1}^{n}\left(\frac{r_{p}}{2^{\varepsilon_{0}}}\right)^{n} .
\end{align*}
$$

It is clear that for $r_{p} / 2^{\varepsilon_{0}} \leq 1$ the right hand side tends to zero as n tends to infinity. Now we show that the same holds for $r_{p} / 2^{\varepsilon_{0}}>1$. Actually, in this case we have

$$
\begin{aligned}
\left(r_{p}\right)^{-n} \sum_{k=n_{0}+1}^{n}\left(\frac{r_{p}}{2^{\varepsilon_{0}}}\right)^{n} & \leq\left(r_{p}\right)^{-n} \int_{n_{0}}^{n}\left(\frac{r_{p}}{2^{\varepsilon_{0}}}\right)^{x} d x \\
& =\frac{\left(r_{p}\right)^{-n}}{\ln \frac{r_{p}}{2^{\varepsilon_{0}}}}\left[\left(\frac{r_{p}}{2^{\varepsilon_{0}}}\right)^{n}-\left(\frac{r_{p}}{2^{\varepsilon_{0}}}\right)^{n_{0}}\right],
\end{aligned}
$$

which gives the claim.
We thus get a contradiction, and therefore (27) is valid.
Let us write (27) in the form

$$
\begin{equation*}
\int_{A_{n}}\|x\|^{(N+M) p-\log _{2} r_{p}+\varepsilon}|\widehat{f}(x)|^{p} d x \geq C_{1}>0 \tag{29}
\end{equation*}
$$

for infinitely many $n \geq 1$. Now for

$$
\int_{\mathbb{R}^{2}}\left(1+\|x\|^{p}\right)^{s}|\widehat{f}(x)|^{p} d x \geq \sum_{n=0}^{\infty} \int_{A_{n}}\|x\|^{p s}|\widehat{f}(x)|^{p} d x
$$

using (29) we see that when $s>N=M-\frac{1}{p} \log _{2} r_{p}+\frac{\varepsilon}{p}$, the integral $\int_{\mathbb{R}^{2}}\left(1+\|x\|^{p}\right)^{s}|\widehat{f}(x)|^{p} d x$ is divergent. Since $\varepsilon>0$ can be chosen arbitrarily small we infer $s_{p} \leq N+M-\frac{1}{p} \log _{2} r_{p}$. This concludes the proof of Theorem 1 .

From the first part of the proof we get
Remark 3.2. If we impose on m, q only (15), (16), and the spectral radius r_{p} of $\mathcal{L}_{|q|^{p}}$ is greater than zero then

$$
s_{p} \geq N+M-\frac{1}{p} \log _{2} r_{p} \quad \text { for } p \in 2 \mathbb{N} .
$$

4. Appendix. Let us recall three theorems which were used in the article:

Theorem A. 1 (Proposition 7.4 of [6]). Let X be a Banach space with a basis. Then $B \subseteq X$ is relatively compact if and only if B is bounded and $\sup \left\{\left|R_{n} x\right|: x \in B\right\} \rightarrow 0$ as $n \rightarrow \infty$, where $R_{n}: X \rightarrow \operatorname{span}\left\{\varepsilon_{n+1}, \ldots\right\}$ are projections and $\left(\varepsilon_{i}\right)_{i=1}^{\infty}$ is a basis of X.

Theorem A. 2 (Theorem 19.2 of [6]). Let X be a Banach space, $K \subset X$ a total cone, and $T \in L(X)$ compact positive with $r(T)>0$. Then $r(T)$ is an eigenvalue of T with positive eigenvector.

Theorem A. 3 (Theorem 19.3 of [6]). Let X be a Banach space, $K \subset X$ a cone with $\operatorname{Int} K \neq \emptyset$, and $T \in L(X)$ compact and strongly positive (i.e. $T(K \backslash\{0\}) \subseteq \operatorname{Int} K)$. Then:
(a) $r(T)>0, r(T)$ is a simple eigenvalue with an eigenvector $v \in \operatorname{Int} K$ and there is no other eigenvalue with a positive eigenvector.
(b) $|\lambda|<r(T)$ for all eigenvalues $\lambda \neq r(T)$.
(c) For $y>0$, the equation $\lambda x-T x=y$ has a unique solution $x \in \operatorname{Int} K$ if $\lambda>r(T)$ and no solution in K if $\lambda \leq r(T)$. The equation $r(T) x-T x=-y$ also has no solution in K.
(d) If $S \in L(X)$ and $S x \geq T x$ on K then $r(S) \geq r(T)$, while $r(S)>$ $r(T)$ if $S x-T x \in \operatorname{Int} K$ for $x>0$.

The next theorem is a generalization of a well-known theorem for functions of one variable (see [1]):

Theorem A.4. Let $f \in \mathcal{P}$, and suppose that $f(x)=\sum_{n \in \mathbb{Z}^{d}} f_{n} e^{-i\langle n, x\rangle}$ for each $x \in \mathbb{R}^{d}$. Then the following conditions are equivalent:
(i) for some $C, \gamma>0$ and each $n \in \mathbb{Z}^{d}$ we have $\left|f_{n}\right| \leq C e^{-\gamma\|n\|}$,
(ii) f is an analytic function.

Acknowledgements. The author is grateful to Professor Andrzej Lada for his support and many useful comments.

References

[1] N. K. Bari, Trigonometric Series, Fizmatgiz, 1961 (in Russian).
[2] A. Cohen and I. Daubechies, A new technique to estimate the regularity of refinable functions, Rev. Mat. Iberoamericana 12 (1996), 527-591.
[3] A. Cohen and R. D. Ryan, Wavelets and Multiscale Signal Processing, Appl. Math. Math. Comput. 11, Chapman \& Hall, 1995.
[4] I. Daubechies and J. Lagarias, Two-scale difference equation I. Existence and global regularity of solutions, SIAM J. Math. Anal. 22 (1991), 1388-1410.
[5] —, 一, Two-scale difference equation II. Local regularity, infinite products of matrices, and fractals, ibid. 23 (1992), 1031-1079.
[6] K. Deimling, Nonlinear Functional Analysis, Springer, 1985.
[7] T. Eriola, Sobolev characterization of solution of dilation equations, SIAM J. Math. Anal. 23 (1992), 1015-1030.
[8] C. Heil and D. Colella, Sobolev regularity for refinement equations via ergodic theory, in: C. K. Chui and L. L. Schumaker (eds.), Approximation Theory VIII, Vol. 2, World Sci., 1995, 151-158.
[9] P. N. Heller and R. O. Wells Jr., The spectral theory of multiresolution operators and applications, in: Wavelets: Theory, Algorithms, and Applications, C. K. Chui, L. Montefusco and L. Puccio (eds.), Wavelets 5, Academic Press, 1994, 13-31.
[10] L. Hervé, Construction et régularité des fonctions d'échelle, SIAM J. Math. Anal. 26 (1995), 1361-1385.
[11] J. Kotowicz, On existence of a compactly supported L^{p} solution for two-dimensional two-scale dilation equations, Appl. Math. (Warsaw) 24 (1997), 325-334.
[12] K. S. Lau and J. Wang, Characterization of L^{p}-solutions for the two-scale dilation equations, SIAM J. Math. Anal. 26 (1995), 1018-1048.
[13] C. A. Micchelli and H. Prautzsch, Uniform refinement of curves, Linear Algebra Appl. 114/115 (1989), 841-870.
[14] O. Rioul, Simple regularity criteria for subdivision schemes, SIAM J. Math. Anal. 23 (1992), 1544-1576.
[15] N. A. Sadovnichil̆, Theory of Operators, Moscow Univ. Press, 1979 (in Russian).
[16] L. Villemoes, Energy moments in time and frequency for 2 -scale dilation equation solutions and wavelets, SIAM J. Math. Anal. 23 (1992), 1519-1543.

Jarosław Kotowicz
Institute of Mathematics
University of Białystok
Akademicka 2
15-267 Białystok, Poland
E-mail: kotowicz@math.uwb.edu.pl

Received on 18.11.1997;
revised version on 6.3.1998

[^0]: 1991 Mathematics Subject Classification: 39B32, 42C15, 47B65.
 Key words and phrases: refinement equation, scaling functions, transfer operator, spectral radius, L^{p}-Sobolev exponent.

