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ON NONSTATIONARY MOTION OF A FIXED MASS

OF A GENERAL VISCOUS COMPRESSIBLE HEAT

CONDUCTING CAPILLARY FLUID BOUNDED

BY A FREE BOUNDARY

Abstract. The motion of a fixed mass of a viscous compressible heat
conducting capillary fluid is examined. Assuming that the initial data are
sufficiently close to a constant state and the external force vanishes we prove
the existence of a global-in-time solution which is close to the constant state
for any moment of time. Moreover, we present an analogous result for the
case of a barotropic viscous compressible fluid.

1. Introduction. The aim of this paper is to prove the global existence
theorem for a free boundary problem for equations of a viscous compressible
heat conducting capillary fluid in the general case, i.e. without assuming
any conditions on the form of the internal energy.

In papers [13], [18], [19] the global existence theorem was proved under
the assumption of a special form of the internal energy ε = ε(̺, θ), where
̺ is the density of the fluid and θ is the temperature. More precisely, we
assumed

ε(̺, θ) = a0̺
α + h(̺, θ),

where a0 > 0, α > 0, h(̺, θ) ≥ h∗ ≥ 0 for ̺ ∈ [̺∗, ̺
∗], θ ∈ [θ∗, θ

∗]; a0, α, h
are constants, and

̺∗ = min
t∈[0,T ]

min
Ωt

̺(x, t), ̺∗ = max
t∈[0,T ]

max
Ωt

̺(x, t),

θ∗ = min
t∈[0,T ]

min
Ωt

θ(x, t), θ∗ = max
t∈[0,T ]

max
Ωt

θ(x, t),

T is the time of local existence of a solution.
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In this paper we consider the motion of a fluid in a bounded domain
Ωt ⊂ R

3 which depends on time t ∈ R+. The shape of the free boundary
St of Ωt is governed by surface tension. Let v = v(x, t) be the velocity of
the fluid, ̺ = ̺(x, t) the density, θ = θ(x, t) the temperature, f = f(x, t)
the external force per unit mass, r = r(x, t) the heat sources per unit mass,
θ = θ(x, t) the heat flow per unit surface, p = p(̺, θ) the pressure, µ and ν
the viscosity coefficients, κ the coefficient of heat conductivity, cv = cv(̺, θ)
the specific heat at constant volume and p0 the external (constant) pressure.
Then the motion of the fluid is described by the following system (see [1],
Chs. 2 and 5):

(1.1)

̺[vt + (v · ∇)v] +∇p− µ∆v − ν∇ div v = ̺f in Ω̃T ,

̺t + div(̺v) = 0 in Ω̃T ,

̺cv(θt + v · ∇θ) + θpθ div v − κ∆θ

−
µ

2

3∑

i,j=1

(vixj
+ vjxi

)2 − (ν − µ)(div v)2 = ̺r in Ω̃T ,

Tn− σHn = −p0n on S̃T ,

v · n = −ϕt/|∇ϕ| on S̃T ,

∂θ/∂n = θ on S̃T ,

v|t=0 = v0, ̺|t=0 = ̺0, θ|t=0 = θ0 in Ω,

where ϕ(x, t) = 0 describes St, n is the unit outward normal vector to

the boundary, Ω̃T =
⋃

t∈(0,T )Ωt × {t}, Ω0 = Ω is the initial domain, and

S̃T =
⋃

t∈(0,T ) St × {t}. Moreover, T = T(v, p) = {Tij}i,j=1,2,3 = {−pδij +

µ(vixj
+ vjxi

) + (ν − µ)δij div v}i,j=1,2,3 is the stress tensor and H is the
double mean curvature of St which is negative for convex domains and can
be expressed in the form

Hn = ∆(t)x, x = (x1, x2, x3),

where ∆(t) is the Laplace–Beltrami operator on St.

Let St be determined by

x = x(s1, s2, t), (s1, s2) ∈ U ⊂ R
2,

where U is an open set. Then

∆(t) = g−1/2 ∂

∂sα

(
g−1/2ĝαβ

∂

∂sβ

)
= g−1/2 ∂

∂sα

(
g1/2gαβ

∂

∂sβ

)
, α, β = 1, 2,

where the summation convention over the repeated indices is assumed, g =
det{gα,β}αβ=1,2, gαβ = xα · xβ (xα = ∂x/∂sα), {g

αβ} is the inverse matrix
to {gαβ} and {ĝαβ} is the matrix of algebraic complements of {gαβ}.
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Assume that the domain Ω is given. Then by (1.1)5, Ωt = {x ∈ R
3 : x =

x(ξ, t), ξ ∈ Ω}, where x = x(ξ, t) is the solution of the Cauchy problem

∂x

∂t
= v(x, t), x|t=0 = ξ ∈ Ω, ξ = (ξ1, ξ2, ξ3).

Hence, we obtain the following relation between the Eulerian x and the
Lagrangian ξ coordinates of the same fluid particle:

x = ξ +

t\
0

u(ξ, t′) dt′ ≡ Xu(ξ, t),

where u(ξ, t) = v(Xu(ξ, t), t). Moreover, by (1.1)5, St = {x : x = x(ξ, t), ξ ∈
S = ∂Ω}.

By the continuity equation (1.1)2 and the kinematic condition (1.1)5 the
total mass is conserved, i.e.

(1.2)
\
Ωt

̺(x, t) dx =
\
Ω

̺0(ξ) dξ =M,

where M is a given constant.
Moreover, in view of thermodynamic considerations assume

cv > 0, κ > 0, ν > 1
3µ > 0.

In this paper we prove the existence of a global-in-time solution of prob-
lem (1.1) near a constant state.

Assume that p̺ > 0, pθ > 0 for ̺, θ ∈ R+ and consider the equation

(1.3) p

(
M

4
3πR

3
e

, θe

)
= p0 +

2σ

Re
.

We assume that there exist Re > 0 and θe > 0 satisfying (1.3). Then we
introduce the following definition.

Definition 1.1. Let f = r = θ = 0. By a constant (equilibrium) state
we mean a solution (v, θ, ̺,Ωt) of problem (1.1) such that v = 0, θ = θe,
̺ = ̺e, Ωt = Ωe for t ≥ 0, where ̺e = M/

(
4
3πR

3
e

)
, Ωe is a ball of radius

Re, and Re > 0 and θe > 0 satisfy equation (1.3).

The methods used to prove the main result of the paper, Theorem 3.5, are
similar to those applied in [11], [14]–[19], [21]–[23] and [2]–[6]. To prove the
global existence theorem (Theorem 3.5) we use the local existence theorem
of [12], the differential inequality (3.5) which is similar to the differential
inequalities derived in [11], [16], [17] and [21]–[23] and the conservation laws
for energy, mass and momentum which are presented together with their
consequences in Section 2. Theorem 3.5 is proved without assuming any
conditions on the form of the internal energy ε = ε(̺, θ).

Theorem 3.7 is the global existence theorem for the case p0 = 0.
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In Section 4 we present the global existence theorem for the case of a
viscous compressible barotropic capillary fluid (Theorem 4.3).

In contrast to [22]–[25] we do not assume any conditions on the form
of the pressure p = p(̺). The case of a general p = p(̺) and σ = 0 was
examined in [21], where the global existence theorem was proved. On the
other hand papers [7]–[8] are devoted to the global motion of a viscous
compressible barotropic fluid in the case of a general p = p(̺), σ > 0 and
p0 = 0.

Papers [10]–[11] are concerned with the global motion of a viscous com-
pressible barotropic self-gravitating fluid in the case when p = A̺κ, where
A > 0 and κ > 1 are constants.

Finally, in [9], [12], [20] and [24] local existence theorems are proved,
while [2]–[6] are devoted to the motion of a viscous compressible heat-
conducting fluid both in the space R

3 and in a fixed domain.

Now, we present the notation used in the paper. We denote byW
l,1/2
2 (QT )

the anisotropic Sobolev–Slobodetskĭı spaces of functions defined in QT ,
where QT = ΩT = Ω × (0, T ) (Ω ⊂ R

3 is a domain, T < ∞ or T = ∞)

or QT = ST = S × (0, T ), S = ∂Ω. We define W
l,l/2
2 (ΩT ) as the space of

functions u such that

‖u‖
W

l,l/2
2

(ΩT )
=

[ ∑

|α|+2i≤[l]

‖Dα
ξ ∂

i
tu‖

2
L2(ΩT )

+
∑

|α|+2i=[l]

( T\
0

\
Ω

\
Ω

|Dα
ξ ∂

i
tu(ξ, t)−Dα

ξ′∂
i
tu(ξ

′, t)|2

|ξ − ξ′|3+2(l−[l])
dξ dξ′ dt

+
\
Ω

T\
0

T\
0

|Dα
ξ ∂

i
tu(ξ, t) −Dα

ξ ∂
i
t′u(ξ, t

′)|2

|t− t′|1+2(l/2−[l/2])
dt dt′ dξ

)]1/2
<∞,

where we use generalized derivatives, Dα
ξ = ∂α1

ξ1
∂α2

ξ2
∂α3

ξ3
, ∂

αj

ξj
= ∂αj/∂ξ

αj

j

(j = 1, 2, 3), α = (α1, α2, α3) is a multi-index, |α| = α1+α2+α3, ∂
i
t = ∂i/∂ti

and [l] is the integer part of l. In the case when l is an integer the second
term in the above formula must be omitted, and in the case of l/2 integer
also the last term is omitted.

The space W
l,l/2
2 (ST ) is defined similarly by using local charts and a

partition of unity.

By W l
2(Q), where l ∈ R+, Q = Ω,S, S1 (Ω ⊂ R

3 is a bounded domain;
S = ∂Ω, S1 is the unit sphere), we denote the usual Sobolev–Slobodetskĭı
spaces. To simplify notation we write

‖u‖l,Q = ‖u‖
W

l,l/2
2

(Q)
if Q = ΩT or Q = ST ,

‖u‖l,Q = ‖u‖W l
2
(Q) if Q = Ω or Q = S or Q = S1.
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Next, we introduce the spaces Γ l
k(Q) and Γ

l,l/2
k (Q) of functions u defined

on Q× (0, T ) (T <∞ or T = ∞, Q = Ω,S) such that

|u|l,k,Q ≡ ‖u‖Γ l
k
(Q) =

∑

i≤l−k

‖∂itu‖l−i,Q <∞

and

‖u‖
Γ

l,l/2

k
(Q)

=
∑

2i≤l−k

‖∂itu‖l−2i,Q <∞,

where l ∈ R+, k ≥ 0.

By u l,0,p,ΩT we denote the norm in the space Lp(0, T ;Γ
l,l/2
0 (Ω)) and by

C2,1
B (Q) (Q ⊂ R

3× [0,∞)) the space of functions such that Dα
x∂

i
tu ∈ C0

B(Q)
for |α|+2i ≤ 2 (where C0

B(Q) is the space of continuous bounded functions
on Q).

Finally, we introduce the seminorm

u κ,ST =

( T\
0

‖u‖20,S
t2κ

dt

)1/2

.

2. Conservation laws and their consequences. The following
lemma is proved in [15].

Lemma 2.1. For sufficiently regular solutions (v, θ, ̺) of problem (1.1)
we have

(2.1)
d

dt

[ \
Ωt

̺

(
v2

2
+ ε

)
dx+ p0|Ωt|+ σ|St|

]
− κ

\
St

θ ds

=
\
Ωt

̺f · v dx (conservation of energy),

where |Ωt| = volΩt, |St| is the surface area of St, and ε = ε(̺, θ) is the

internal energy per unit mass. Moreover ,

d

dt

\
Ωt

̺x dx =
\
Ωt

̺v dx

and
d

dt

\
Ωt

̺v · η dx =
\
Ωt

̺f · η dx,

where η = a+ b× x and a, b are arbitrary constant vectors.

Now, assume:

f = 0, θ ≥ 0,(2.2)

̺1 < ̺(x, t) < ̺2, θ1 < θ(x, t) < θ2 for all x ∈ Ωt and t ∈ [0, T ],(2.3)
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where T is the time of existence of a solution of problem (1.1); 0 < ̺1 < ̺2
and 0 < θ1 < θ2 are constants; and

(2.4) ε1 < ε(̺, θ) < ε2 for all ̺ ∈ (̺1, ̺2) and θ ∈ (θ1, θ2).

Integrating (2.1) with respect to t in an interval (0, t) (t ≤ T ) and using
(2.2)–(2.4) we get

(2.5)
ε1
̺α2

\
Ωt

̺β dx+
\
Ωt

̺v2

2
dx+ p0|Ωt|+ σ|St|

≤
\
Ω

̺0

(
v20
2

+ ε0

)
dξ + p0|Ω|+ σ|S|+ κ sup

t

t\
0

dt′
\

St′

θ(s, t′) ds ≡ d,

where β = α+1, α > 0 is a constant, ε0 = ε(̺0, θ0). Hence in the same way
as in Lemma 2 of [15] we obtain

Lemma 2.2. Under assumptions (2.2)–(2.4) the following estimate holds:
(
Mβε1
d̺α2

)1/(β−1)

≤ |Ωt| ≤
d

p0
.

Let Rt be the radius of a ball of volume |Ωt|. Then inequality (2.5) yields

(2.6)
ε1
̺α2

\
Ωt

̺β dx+p0|Ωt|+σc̃|Ωt|
2/3−d+

\
Ωt

̺
v2

2
dx+σ(|St|−4πR2

t ) ≤ 0,

where c̃ = (36π)1/3. Multiplying (2.6) by |Ωt|
β−1 and using (1.2) we have

(2.7) y(|Ωt|) +
ε1
̺α2

[
|Ωt|

β−1
\
Ωt

̺β dx−
( \

Ωt

̺ dx
)β]

+ |Ωt|
β−1

\
Ωt

̺
v2

2
dx+ σ|Ωt|

β−1(|St| − 4πR2
t ) ≤ 0,

where

y(x) = p0x
β + σc̃xβ−1/3 − dxβ−1 +

ε1
̺α2
Mβ .

Since the last three terms in (2.7) are non-negative we have y(|Ωt|) ≤ 0, so
we have to consider y = y(x) for x > 0 only.

To do this introduce (as in [15])

D = ν0(ν0 − 2µ3
0),

where

µ0 =
c̃σ(β − 1/3)

3p0β
, ν0 =

d(β − 1)

2p0β
.



Nonstationary motion of a general fluid 495

We have the following possibilities:

if ν0 ∈ (2µ3
0,∞) ≡ I1, then D > 0,(2.8)

if ν0 ∈ (µ3
0, 2µ

3
0] ≡ I2, then D ≤ 0,(2.9)

if ν0 ∈ (0, µ3
0] ≡ I3, then D < 0.(2.10)

For ν0 ∈ Ii, we define ϕi, i = 1, 2, 3, by

coshϕ1 ≡
ν0
µ3
0

− 1, where ν0 ∈ I1;(2.11)

cosϕ2 ≡
ν0
µ3
0

− 1, where ν0 ∈ I2;(2.12)

cosϕ3 ≡ 1−
ν0
µ3
0

, where ν0 ∈ I3.(2.13)

Next, set

(2.14) Φ1(µ0, ϕ1, p0, β, ε1, ̺2,M) =
p0µ

3β
0

β − 1

(
2 cosh

ϕ1

3
− 1

)3(β−1)

·

[
2

(
coshϕ1 + 1

)
−

β − 1

β − 1/3

(
2 cosh

ϕ1

3
− 1

)2]
−
ε1
̺α2
Mβ ,

(2.15) Φ2(µ0, ϕ2, p0, β, ε1, ̺2,M) =
p0µ

3β
0

β − 1

(
2 cos

ϕ1

3
− 1

)3(β−1)

·

[
2(cosϕ2 + 1)−

β − 1

β − 1/3

(
2 cos

ϕ2

3
− 1

)2]
−
ε1
̺α2
Mβ ,

(2.16) Φ3(µ0, ϕ3, p0, β, ε1, ̺2,M) =
p0µ

3β
0

β − 1

[
2 cos

(
π

3
−
ϕ3

3

)
− 1

]3(β−1)

·

{
2

(
1− cosϕ2

)
−

β − 1

β − 1/3

[
2 cos

(
π

3
−
ϕ3

3

)
− 1

]2}
−
ε1
̺α2
Mβ .

In the same way as Theorem 1 of [15] the following theorem can be
proved.

Theorem 2.3. Let conditions (2.2)–(2.4) be satisfied. Let δ0 ∈ (0, 1) be

given. Assume that the parameters µ0, ν0, p0, β, ε1, ̺2, M satisfy one of

the relations

(2.17)i ν0 ∈ Ii, 0 < Φi(µ0, ϕi, p0, β, ε1, ̺2,M) ≤ δ0,

i = 1, 2, 3, where Ii are defined in (2.8)–(2.10), and Φi are given by (2.14)–
(2.16). Then there exists a constant c1 independent of δ0 (it can depend on

the parameters) such that

(2.18) var
0≤t≤T

|Ωt| ≤ c1δ,

where δ2 = cδ0, c > 0 is a constant.
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Moreover , in the case (2.17)i we have

(2.19) | |Ωt| −Qi| ≤ c2δ, t ∈ [0, T ],

where Q1 = µ3
0(2 cosh(ϕ1/3) − 1)3, Q2 = µ3

0(2 cos(ϕ2/3) − 1)3 and Q3 =
µ3
0[2 cos(π/3 − ϕ3/3)− 1]3, and c2 > 0 is a constant independent of δ0.

Remark 2.4. It can be proved in the same way as in Lemma 4 of [15]
that for any δ0 sufficiently small and for any 1 ≤ i ≤ 3 there exist parameters
p0, µ0, ν0, β, ε1, ̺2, M such that relation (2.17)i is satisfied.

Now, consider the case p0 = 0. Instead of (2.7) we have in this case

y0(|Ωt|) +
ε1
̺α2

[
|Ωt|

β−1
\
Ωt

̺β dx−
( \

Ωt

̺ dx
)β]

+ |Ωt|
β−1

\
Ωt

̺
v2

2
dx+ σ|Ωt|

β−1(|St| − 4πR2
t ) ≤ 0,

where

y0(x) = σc̃xβ−1/3 − d0x
β−1 +

ε1
̺α2
Mβ ,

d0 =
\
Ω

̺0

(
v20
2

+ ε0

)
dξ + σ|S|+ κ sup

t

t\
0

dt′
\

St′

θ(s, t′) ds.

In this case the following theorem analogous to Theorem 2 of [15] holds:

Theorem 2.5. Let p0 = 0 and let assumptions (2.2)–(2.4) be satisfied.

Moreover , assume that
∣∣∣∣
\
Ω

̺0
v20
2
dξ +

\
Ω

̺0(ε(̺0, θ0)− ε(̺e, θe)) dξ + κ sup
t

t\
0

dt′
\

St′

θ(s, t′) ds

∣∣∣∣ ≤ δ0,\
Ω

|̺0 − ̺e| dξ ≤ δ0,

| |S| − |Se| | ≤ δ0,

(2.20) 0 <

[
2

3
(β − 1)3(β−1)/2(β − 1/3)−(3β−1)/2(c̃σ)−(3β−1)/2

· (c̃σ|Ωe|
1/3 + ̺eε(̺e, θe))

(3β−1)/2|Ωe|
(β−1)/2 −

ε1
̺α2
̺βe

]
|Ωe|

β ≤ δ0,

where δ0 > 0 is a sufficiently small constant , |Se| = 4πR2
e, and ̺e, Re, Ωe

are introduced in Definition 1.1. Then

var
0≤t≤T

|Ωt| ≤ c2δ,

where c2 > 0 is a constant independent of δ0, δ
2 = cδ0 and c > 0 is a

constant.
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Remark 2.6. There exist β, δ, ε1, ̺2, ̺e, θe, |Ωe| such that condition
(2.20) is satisfied. In fact, assuming

(2.21)
c̃σ|Ωe|

−1/3

β − 1
= ̺eε(̺e, θe)

we have

(2.22)

[
2

3
(β − 1)3(β−1)/2(β − 1/3)−(3β−1)/2(c̃σ)−3(β−1)/2

·

(
β

β − 1
c̃σ|Ωe|

−1/3

)(3β−1)/2

|Ωe|
(β−1)/2 −

ε1
̺α2
̺βe

]
|Ωe|

β

=

[
2

3
c̃σ

β(3β−1)/2

(β − 1)(β − 1/3)(3β−1)/2|Ωe|1/3
−
ε1
̺α2
̺βe

]
|Ωe|

β

=

[
2

3

(
β

β − 1/3

)(3β−1)/2

̺eε(̺e, θe)−
ε1
̺α2
̺βe

]
|Ωe|

β .

Taking β sufficiently close to 1 and choosing σ, ̺e, θe, |Ωe|, ε1, ̺2 satisfying
(2.21) and (2.22) we see that condition (2.20) also holds.

3. Global existence of solutions of problem (1.2). In [12] (see
also [19]) we proved the existence of a sufficiently smooth local solution of
problem (1.1). In order to show the global existence we assume the following
condition:

(A) Ωt is diffeomorphic to a ball, so St can be described by

(3.1) |x| = r = R(ω, t), ω ∈ S1,

where S1 is the unit sphere and we consider the motion near the constant
state (see Definition 1.1). Define

pσ = p− p0 −
2σ

R
, ̺σ = ̺− ̺e, ϑ0 = θ − θe.

Using the Taylor formula pσ can be written as (see [17], formula (3.2))

(3.2) pσ = p1̺σ + p2ϑ0,

where pi (i = 1, 2) are positive functions. Formula (3.2) yields

(3.3) ‖ϑ0‖
2
0,Ωt

≤ c3(‖pσ‖
2
0,Ωt

+ ‖̺σ‖
2
0,Ωt

).

Next, by the Poincaré inequality we have

‖̺σ‖
2
0,Ωt

≤ ‖̺− ̺Ωt
‖20,Ωt

+ ‖̺Ωt
− ̺e‖

2
0,Ωt

(3.4)

≤ c4‖̺σx‖
2
0,Ωt

+ ‖̺Ωt
− ̺e‖

2
0,Ωt

,

where ̺Ωt
= 1

|Ωt|

T
Ωt
̺ dx and c4 > 0 is a constant depending on Ωt.
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In the same way as the differential inequality (3.46) of [17] and by using
(3.3)–(3.4), the following inequality can be proved:

dϕ

dt
+ c0Φ ≤ c5P (X)X(1 +X3)

(
X + Φ+

t\
0

‖v‖24,Ωt′
dt′

)
(3.5)

+ c6F + c7ψ + c8‖H(·, 0) + 2/Re‖
4
2,S1

+ εc9(‖H(·, 0) + 2/Re‖
2
2,S1 + ‖R(·, t) −R(·, 0)‖24,S1 )

+ c10

(
‖R(·, t) −R(·, 0)‖24+1/2,S1

∥∥∥
t\
0

v dt′
∥∥∥
2

3,St

+ ‖R(·, t) −R(·, 0)‖23,S1

∥∥∥
t\
0

v dt′
∥∥∥
2

4,St

)
,

where
c11ϕ0(t) ≤ ϕ(t) ≤ c12ϕ0(t)

and

ϕ0(t) = |v|23,0,Ωt
+ |̺σ|

2
3,0,Ωt

+ |ϑ0|
2
3,0,Ωt

+
∥∥∥

t\
0

v dt′
∥∥∥
2

4,St

−
∥∥∥

t\
0

v dt′
∥∥∥
2

0,St

+ |v|23,1,St
+ ‖H(·, 0) + 2/Re‖

2
2,S1 ,

Φ(t) = |v|24,1,Ωt
+ |̺σ|

2
3,0,Ωt

+ |ϑ0|
2
4,1,Ωt

,

X(t) = |v|23,0,Ωt
+ |̺σ|

2
3,0,Ωt

+ |ϑ0|
2
3,0,Ωt

+

t\
0

‖v‖23,Ωt′
dt′,

ψ(t) = ‖v‖20,Ωt
+ ‖pσ‖

2
0,Ωt

+ ‖R(·, t)−R(·, 0)‖20,S1 + ‖̺Ωt
− ̺e‖

2
0,Ωt

,

F (t) = ‖rttt‖
2
0,R3 + |r|22,0,R3 + ‖r‖0,R3 + ‖θ‖24,1,R3 + ‖θ‖1,R3 ,

t ∈ [0, T ] (T is the time of local existence); 0 < c0 < 1 is a constant
depending on ̺1, ̺2, θ1, θ2, µ, ν and κ; ci > 0 (i = 5, . . . , 12) are constants

depending on ̺1, ̺2, θ1, θ2, T ,
TT
0
‖v‖23,Ωt′

dt′, ‖S‖4+1/2 and on the constants
from the imbedding lemmas and the Korn inequalities; ε > 0 is a small
parameter and P is a positive continuous increasing function.

In order to prove the global existence assume also

(3.6) sup
t∈[0,T ]

F (t) ≤ δ,

where δ > 0 is sufficiently small.

Next, introduce the spaces

N(t) = (v, ϑ0, ̺σ) : ϕ0(t) <∞},
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M(t) =
{
(v, ϑ0, ̺σ) : ϕ0(t) +

t\
0

Φ(t′) dt′ <∞
}
.

In [19] the following lemma is proved:

Lemma 3.1 (see [19], Lemma 5.1). Let the assumptions of Theorem 4.2
of [12] be satisfied. Let the initial data v0, ̺0, θ0, S of problem (1.1) be such

that (v, ϑ0, ̺σ) ∈ N(0) and S ∈W
4+1/2
2 . Let\

Ω

̺0v0(a+ b× ξ) dξ = 0,
\
Ω

̺0ξ dξ = 0,

for all constant vectors a, b. Let condition (A) be satisfied and let the initial

data v0, ̺0, θ0, S and the parameters p0, σ, d, β, κ, M , ε1, ̺2 (d, β, ε1 and

̺2 are defined in Section 2) be such that

ϕ(0) ≤ α1, ω(t) = sup
t′≤t

‖R(·, t′)−Re‖
2
0,S1 ≤ α2 for t ≤ T,

χ(0) = ‖H(·, 0) + 2/Re‖
2
2+1/2,S1 ≤ α3,

where α1, α2, α3 > 0 are sufficiently small constants, and T is the time

of local existence. Then the local solution of problem (1.1) is such that

(v, ϑ0, ̺σ) ∈ M(t) for t ≤ T and

ϕ(t) +

t\
0

Φ(t′) dt′ ≤ c14(ϕ(0) + χ(0) + ω(t) + sup
t∈[0,T ]

F (t))

≤ c14(α1 + α2 + α3 + δ).

Now, we prove

Lemma 3.2. Assume that there exists a local solution to problem (1.1)
which belongs to M(t) for t ≤ T . Let the assumptions of Lemma 3.1 and

Theorem 2.3 be satisfied. Moreover , if (2.17)i holds then assume that

(3.7) |Qi − |Ωe|| ≤ δ1,

where δ1 > 0 is sufficiently small and

(3.8)
\
Ω

̺0
v20
2
dξ +

\
Ω

̺0(ε(̺0, θ0)− ε1) dξ

+ p0(|Ω| −Qi + δ2) + σ[|S| − c̃(Qi − δ2)
2/3]

+ κ sup
t

t\
0

dt′
\

St′

θ(s, t′) ds ≤ δ3,

where t ≤ T , δ2 ∈ (0, 1/2] is a constant so small that Qi−δ2 > 0 and assume

that δ from (2.19) is so small that c2δ ≤ δ2. Then

(3.9) ψ(t) ≤ δ4 for t ≤ T,
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where δ4 = c15(δ + δ1 + δ3 + δ′α1), c15 > 0 is a constant depending on ̺1,
̺2, θ1, θ2, β, d; δ is the constant from estimate (2.18), α1 is the constant

from Lemma 3.1 and δ′ ∈ (0, 1) is a sufficiently small constant.

P r o o f. First, assumption (3.7) and estimate (2.19) yield

| |Ωt| − |Ωe| | ≤ c2δ + δ1.

Hence, by Lemma 2.2,

(3.10) ‖̺Ωt
− ̺e‖

2
0,Ωt

≤
̺2e
|Ωt|

(c2δ + δ1)
2 ≤ ̺2e

(
d̺α2
Mβε1

)1/(β−1)

(c2δ + δ1)
2.

Next, integrating (2.1) with respect to t in an interval (0, t) (t ≤ T ) we
get

(3.11)
\
Ωt

̺

(
v2

2
+ ε

)
dx+ p0|Ωt|+ σ|St|

≤
\
Ω

̺0

(
v2

2
+ ε(̺0, θ0)

)
dξ + p0|Ω|+ σ|S|+ κ sup

t

t\
0

dt′
\

St′

θ(s, t′) ds.

Now, let Rt be the radius of a ball of volume |Ωt|. Then by (2.19),

c̃(Qi − δ2)
2/3 ≤ 4πR2

t ≤ c̃(Qi + δ2)
2/3,

where c̃ = (36π)1/3. Hence

|St| − c̃(Qi − δ2)
2/3 = |St| − 4πR2

t + 4πR2
t(3.12)

− c̃(Qi − δ2)
2/3 ≥ 0 for t ≤ T.

Using (2.19), (2.3)–(2.4), (3.12) and assumption (3.8) in (3.11) we obtain\
Ωt

̺
v2

2
dx+

\
Ωt

̺(ε− ε1) dx+p0(|Ωt|−Qi+ δ2)+σ[|St|− c̃(Qi− δ2)
2/3] ≤ δ3.

Hence

(3.13) ‖v‖20,Ωt
≤

2

̺1
δ3.

Next, using the same argument as in the proof of Lemma 5.2 of [23] we
obtain the estimate

(3.14) ‖pσ‖
2
0,Ωt

≤ c16α1δ
′ + c(δ′)δ3,

where c16 > 0 is a constant, α1 is the constant from Lemma 3.1, δ′ ∈ (0, 1)
is a sufficiently small constant, and c(δ′) is a decreasing function of δ′.
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Finally, the estimate

(3.15) ‖R(ω, t)−Rt‖
2
1,S1 ≤ c17δ3 for t ∈ [0, T ]

follows from Lemma 2.4 of [23]. Hence by (3.15) and (2.18) we have

‖R(ω, t)−R(0, t)‖21,S1 ≤ ‖R(ω, t)−Rt‖
2
1,S1(3.16)

+ c18|Rt −R0|
2 + ‖R(0, t) −R0‖

2
1,S1

≤ c19δ3 + c20δ,

where R0 =
(

3
4π

|Ω|
)1/3

.

By (3.10), (3.13), (3.14) and (3.16) we get (3.9).

This completes the proof.

Remark 3.3. In the case ε = cvθ (cv > 0 is a constant), p = R̺θ (R > 0
is a constant) assumption (3.7) is satisfied if

(3.17) M |Ωe|
α

∣∣∣∣(β − 1)cvθ1

(
̺e
̺2

)α

−Rθe

∣∣∣∣ < c21δ5,

where c21 > 0 is a constant and δ5 > 0 is sufficiently small.

P r o o f. Consider Qi (where i = 1, 2, 3) and set x0 = Qi. Then the
equation determining x0 has the form (see equation (40) of [15])

(3.18) p0x
β
0 + c̃σ(β − 1/3)β−1x

β−1/3
0 − (β − 1)β−1 dxβ−1

0 = 0.

Moreover, from assumption (2.17)i it follows (see [15]) that

(3.19) 0 ≤ −y(x0) = −

(
p0x

β
0 + c̃σx

β−1/3
0 − dxβ−1

0 +
ε1
̺α2
Mβ

)
≤ δ0.

Applying (3.18) in (3.19) we get

(3.20) 0 ≤ p0x
β
0 +

2

3
c̃σx

β−1/3
0 − (β − 1)

ε1
̺α2
Mβ ≤ (β − 1)δ0.

In this case equation (1.3) takes the form

R̺eθe =
2σ

Re
+ p0.

Hence

(3.21) p0|Ωe|
β +

2

3
c̃σ|Ωe|

β−1/3 −R̺eθe|Ωe|
β = 0,

where we have used the fact that 2
(
4
3
π
)1/3

= 2
3
c̃.

In view of (3.20)–(3.21) we see that assumption (3.7) is satisfied if (3.17)
holds and δ0 is sufficiently small.

Now, Lemmas 3.1, 3.2 and inequality (3.5) imply
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Lemma 3.4 (see Lemma 5.4 of [19]). Let the assumptions of Lemmas

3.1–3.2 be satisfied. Moreover , assume

ϕ(0) ≤ α1, ‖H(·, 0) + 2/Re‖
2
2,S1 ≤ α.

Then for sufficiently small α1, α, δ, δ3 (where δ is the constant from as-

sumption (3.6) and δ3 is the constant from Lemma 3.2) we have

ϕ(t) ≤ α1 for t ≤ T.

Now, we formulate the main result of the paper.

Theorem 3.5. Let ν > 1
3
µ > 0, κ > 0, cv = εθ > 0, cv ∈ C2(R2

+),

ε ∈ C1(R2
+), p ∈ C3(R2

+), p̺ > 0, pθ > 0, f = 0, θ ≥ 0. Suppose the

assumptions of the local existence theorem (Theorem 4.2 of [12]) with r, θ ∈
C2,1

B (R3
+ × [0,∞)) are satisfied and the following compatibility conditions

hold :

Dα
ξ ∂

i
t(Tn− σHn+ p0n)|t=0,S = 0, |α| + i ≤ 2,

Dα
ξ ∂

i
t(n · ∇θ − θ)|t=0,S = 0, |α| + i ≤ 2.

Let (v, ϑ0, ̺σ) ∈ N(0) and

ϕ(0) ≤ α1,(3.22)

‖v0‖
2
4,Ω ≤ α1.(3.23)

Assume that

(3.24) l > 0 is a constant such that ̺e − l > 0, θe − l > 0 and

ε1 < ε(̺, θ) < ε2 for ̺ ∈ (̺1, ̺2), θ ∈ (θ1, θ2),

where ̺1 = ̺e − l, θ1 = θe − l, ̺2 = ̺e + l, θ2 = θe + l,

(3.25) F (t) ≤ δ for t ≥ 0,

F occurs in inequality (3.5), and

(3.26)
\
Ω

̺0 dξ =M,
\
Ω

̺0ξ dξ = 0,
\
Ω

̺0v0(a+ b× ξ) dξ = 0,

for all constant vectors a, b.

Moreover , let the parameters ν0, µ0, β, ε1, ̺2, M satisfy one of the

relations

(3.27)i ν0 ∈ Ii and 0 < Φi(µ0, ϕi, p0, β, ε1, ̺2,M) ≤ δ0,

i = 1, 2, 3, (where Ii are defined by (2.8)–(2.10) and Φi are defined by (2.14)–
(2.16)) and assume the following conditions:

(3.28) |Qi − |Ωe|| ≤ δ1
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and

(3.29)
\
Ω

̺0
v20
2
dξ +

\
Ω

̺0(ε(̺0, θ0)− ε1) dξ

+ p0(|Ωt| −Qi + δ2) + σ[|S| − c̃(Qi − δ2)
2/3]

+ κ sup
t

t\
0

dt′
\

St′

θ(s, t′) ds ≤ δ3 for ν0 ∈ Ii,

where δ2 ∈ (0, 1/2] is a constant so small that Qi − δ2 > 0.

Moreover , assume that Ω is diffeomorphic to a ball and let S be described

by |ξ| = R̃(ω), ω ∈ S1 (S1 is the unit sphere), where R̃ satisfies

(3.30) sup
S1

|∇R̃|2 + ‖R̃−Re‖
2
0,S1 ≤ α2,

and Re is the solution of equation (1.3).

Finally , assume that S ∈W
4+1/2
2 and it is very close to a sphere, so

(3.31) ‖H(·, 0) + 2/Re‖
2
2,S1 ≤ α3.

Then for sufficiently small constants αi (i = 1, 2, 3), δ0, δi (i = 1, 2, 3) and

δ there exists a global solution of problem (1.1) such that (v, ϑ0, ̺σ) ∈ M(t)

for t ∈ R+, St ∈W
4+1/2
2 for t ∈ R+ and

(3.32) ϕ(t) ≤ α1, ‖H(·, t) + 2/Re‖
2
2,S1 ≤ α3 for t ∈ R+.

P r o o f. Similarly to the case when σ = 0 (see [21]) the theorem is proved
step by step using the local existence in a fixed time interval.

By Remark 3.2 of [19] the local solution of problem (1.1) satisfies the
estimate

(3.33) ‖u‖24,ΩT + ‖ησ‖
2
3,ΩT + ησ

2
3,0,∞,ΩT + ‖γ0‖

2
4,ΩT

≤ ϕ1(T,K0)(‖v0‖
2
3,Ω + ‖̺σ0‖

2
3,Ω + ‖ϑ00‖

2
3,Ω

+ ‖k‖22,ΩT + ‖Γ‖23−1/2,ST + D2
ξ,tΓ

2
1/2,ST + ‖k(0)‖21,Ω

+ ‖H(·, 0) + 2/Re‖
2
2+1/2,S1)

≤ ϕ2(T,K0)(α1 + δ),

where ̺σ0 = ̺0 − ̺e, ϑ00 = θ0 − θe, u(ξ, t) = v(Xu(ξ, t), t), ησ(ξ, t) =
̺σ(Xu(ξ, t), t), γ0(ξ, t) = ϑ(Xu(ξ, t), t), k(ξ, t) = r(Xu(ξ, t), t), Γ (ξ, t) =
θ(Xu(ξ, t), t); ϕ1 and ϕ2 are continuous increasing functions of their argu-
ments, K0 is a constant such that K0 > c(‖̺0‖3,Ω + |̺0|∞,Ω + |1/̺0|∞,Ω +
‖v0‖3,Ω + ‖θ0‖3,Ω + ‖ut(0)‖1,Ω + ‖γ0t(0)‖1,Ω), c > 0 is a constant.
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Next, using (3.33) and assumption (3.22) we get

(3.34) ‖u(t)‖23,Ω + ‖ησ(t)‖
2
3,Ω + ‖γ0(t)‖

2
3,Ω

≤ c22(‖u‖
2
4,ΩT + ‖ησ‖

2
3,ΩT + ησ

2
3,0,∞,ΩT + ‖γ0‖

2
4,ΩT + ‖v0‖

2
3,Ω

+ ‖ϑ00‖
2
3,Ω + ‖̺σ0‖

2
3,Ω)

≤ c22(α1 + δ)ϕ2 + c22α1 ≤ ϕ3(T,K0)(α1 + δ),

where ϕ3 is a continuous increasing functions of its arguments.
Hence

(3.35) |u|2∞,ΩT + |ησ|
2
∞,ΩT + |γ0|

2
∞,ΩT ≤ (α1 + δ)c(Ω)ϕ3,

where c(Ω) > 0 is a constant from the imbedding lemma.
Assume now that α1 and δ are so small that

(3.36) [(α1 + δ)c(Ω)ϕ3]
1/2 < l

(where l is the constant from assumption (3.24)). Then by (3.35) we have

̺1 < ̺(x, t) < ̺2 for x ∈ Ωt, t ∈ [0, T ],(3.37)

θ1 < θ(x, t) < θ2 for x ∈ Ωt, t ∈ [0, T ],(3.38)

where ̺1, ̺2, θ1 and θ2 are defined in assumption (3.24).
Now notice that assumptions (3.22)–(3.23) and the boundary condition

T(v0, pσ(̺σ0, ϑ00))n0 = H(·, 0) + 2/Re

yield

(3.39) ‖H(·, 0) + 2/Re‖
2
2+1/2,S1 < c23α1,

where c23 > 0 is a constant depending on µ, ν and the constants from the
imbedding theorem (which depend on |Ω| and the shape of Ω).

Next, in the same way as in the proof of Theorem 5.5 of [19], using
assumptions (3.22)–(3.24), (3.27)i, (3.30), (3.31), inequalities (3.37), (3.38),
(3.33) and Lemma 2.4 of [23] we deduce

(3.40) ‖R(·, t)−Re‖
2
0,S1 ≤ α4 for t ≤ T,

where α4 → 0 as δ0 → 0 and δ3 → 0. Moreover, from assumptions (3.27)i,
(3.24), inequalities (3.37)–(3.38) and Theorem 2.3 it follows that

(3.41) var
0≤t≤T

|Ωt| ≤ c1δ,

where δ → 0 if δ0 → 0.
Thus, estimates (3.40)–(3.41) yield that the volume and the shape of Ωt

do not change much in [0, T ].
Now, the assumptions of the theorem, estimates (3.39)–(3.40), Lemmas

3.1–3.2 and 3.4 and boundary condition (1.1)4 yield

(3.42) ϕ(t) ≤ α1, ‖H(·, t) + 2/Re‖
2
2,S1 ≤ α3 for t ≤ T.
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Hence, by the local existence theorem (Th. 4.2 of [12]) and Remark 3.2 of
[19] we obtain the existence of a local solution of problem (1.1) in [T, 2T ]
satisfying the estimate

(3.43) ‖u‖24,ΩT×(T,2T ) + ‖ησ‖
2
3,ΩT×(T,2T ) + ησ

2
3,0,∞,ΩT×(T,2T )

+ ‖γ0‖
2
4,ΩT×(T,2T ) ≤ ϕ2(T,K0)(α1 + δ),

where ησ = η− ̺e, γ0 = Γ − θe, and u, η and Γ denote v, ̺ and θ written in
the Lagrangian coordinates ξ ∈ ΩT connected with the Eulerian coordinates
x by the relation

x = ξ +

t\
T

v(x, t′) dt′ = ξ +

t\
T

u(x, t′) dt′.

In view of (3.42), (3.43) and the inequality

‖u(t)‖23,ΩT
+ ‖ησ(t)‖

2
3,ΩT

+ ‖γ0(t)‖
2
3,ΩT

≤ c22(‖u‖
2
4,ΩT×(T,2T ) + ‖ησ‖

2
3,ΩT×(T,2T ) + ησ

2
3,0,∞,ΩT×(T,2T )

+ ‖γ0‖
2
4,ΩT×(T,2T ) + ‖u(T )‖23,ΩT

+ ‖ησ(T )‖
2
3,ΩT

+ ‖γ0(T )‖
2
3,ΩT

)

(where by estimate (3.40) the constant c22 is the same as in (3.34)), we have

(3.44) |u|2∞,ΩT×(T,2T ) + |ησ|
2
∞,ΩT×(T,2T ) + |γ0|

2
∞,ΩT×(T,2T )

≤ (α1 + δ)c(ΩT )ϕ3,

where c(ΩT ) > 0 is a constant from the imbedding lemma and by (3.40) the
estimate

[(α1 + δ)c(ΩT )ϕ3]
1/2 < l

holds (here l is the constant from assumption (3.24)).

Then by (3.44) we have

̺1 < ̺(x, t) < ̺2 for x ∈ Ωt, t ∈ [0, 2T ](3.45)

θ1 < θ(x, t) < θ2 for x ∈ Ωt, t ∈ [0, 2T ],(3.46)

where ̺1, ̺2, θ1 and θ2 are defined in assumption (3.24).

Finally, in the same way as in [19] (see the proof of Th. 5.5) by using
Lemma 5.3 of [19] we obtain the estimate

(3.47) ‖H(·, T ) + 2/Re‖
2
2+1/2,S1 < c23α1,

where c23 > 0 is the same constant as in (3.39).

Next, in view of (3.45), (3.46), (3.42) and assumptions (3.24), (3.27)i,
(3.30), (3.31) and Lemma 2.4 of [23] we get

(3.48) ‖R(·, t) −Re‖
2
0,S1 ≤ α4 for t ≤ 2T.
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Hence estimates (3.47), (3.48), the assumptions of the theorem and Lemmas
3.1, 3.2 and 3.4 yield

ϕ(t) ≤ α1, ‖H(·, t) + 2/Re‖
2
2,S1 ≤ α3 for t ≤ 2T.

Continuing in the same way we prove the global existence and estimates
(3.32).

This completes the proof.

Remark 3.6. In the case ε = cvθ (cv > 0 is a constant) and p = R̺θ
(R > 0 is a constant) instead of (3.28) we assume (3.17).

In the case p0 = 0 using Theorem 2.5 we obtain

Theorem 3.7. Let ν > 1
3µ > 0, κ > 0, cv = εθ > 0, cv ∈ C2(R2

+),

ε ∈ C1(R2
+), p ∈ C3(R2

+), p̺ > 0, pθ > 0, f = 0, θ ≥ 0. Suppose the

assumptions of the local existence theorem (Theorem 4.2 of [12]) with r, θ ∈
C2,1

B (R3 × [0,∞)) are satisfied and the following compatibility conditions

hold :

Dα
ξ ∂

i
t(Tn− σHn)|t=0,S = 0, |α| + i ≤ 2,

Dα
ξ ∂

i
t(n · ∇θ − θ)|t=0,S = 0, |α| + i ≤ 2.

Let (v, ϑ0, ̺σ) ∈ N(0) and assumptions (3.22), (3.23), (3.24)–(3.26), (3.28),
(3.30), (3.31) hold. Moreover , assume that

∣∣∣∣
\
Ω

̺0
v20
2
dξ+

\
Ω

̺0(ε(̺0, θ0)− ε(̺e, θe)) dξ+κ sup
t

t\
0

dt′
\

St′

θ(s, t′) ds

∣∣∣∣ ≤ δ0,\
Ω

|̺0 − ̺e| dξ ≤ δ0,

| |S| − |Se| | ≤ δ0,

0 <

[
2

3
(β − 1)3(β−1)/2(β − 1/3)−(3β−1)/2(c̃σ)−(3β−1)/2

· (c̃σ|Ωe|
1/3 + ̺eε(̺e, θe))

(3β−1)/2|Ωe|
(β−1)/2 −

ε1
̺α2
̺βe

]
|Ωe|

β ≤ δ0.

Then for sufficiently small constants αi (i = 1, 2, 3), δ0, δi (i = 1, 2, 3) and

δ there exists a global solution of problem (1.1) such that (v, ϑ0, ̺σ) ∈ M(t)

for t ∈ R+, St ∈W
4+1/2
2 for t ∈ R+ and

ϕ(t) ≤ α1, ‖H(·, t) + 2/Re‖
2
2,S1 ≤ α3 for t ∈ R+.

4. Global existence in the case of barotropic fluid. In this section
we consider the motion of a drop of a viscous compressible barotropic fluid
whose free boundary is governed by surface tension. The motion of such a
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drop is described by the following system of equations:

(4.1)

̺[vt + (v · ∇)v]− divT(v, p) = 0 in Ω̃T ,

̺t + div(̺v) = 0 in Ω̃T ,

Tn− σHn = −p0n on S̃T ,

v · n = −ϕt/|∇ϕ| on S̃T ,

̺|t=0 = ̺0, v|t=0 = v0, in Ω,

where p = p(̺).

Assume that p′(̺) > 0 for ̺ > 0 and consider the equation

(4.2) p

(
M

4
3
πR3

e

)
= p0 +

2σ

Re
.

We assume that (4.2) is solvable with respect to Re > 0 and introduce the
following definition.

Definition 4.1. By a constant (equilibrium) state we mean a solution
(v, ̺,Ωt) of problem (4.1) such that v = 0, ̺ = ̺e, Ωt = Ωe for t ≥ 0,
where ̺e = M/

(
4
3πR

3
e

)
, Ωe is a ball of radius Re and Re is a solution of

equation (4.2).

Similarly to the case of a heat conducting fluid, in this case inequality
(3.5) also holds (see Theorem 4.13 of [23]) with

c′ϕ0(t) ≤ ϕ(t) ≤ c′′ϕ0(t)

(where c′, c′′ > 0 are constants depending on ̺1, ̺2, p,Ωt and St for t ≤ T )
and

ϕ0(t) = |v|23,0,Ωt
+ |̺σ|

3
3,0,Ωt

+
∥∥∥

t\
0

v dt′
∥∥∥
2

4,St

−
∥∥∥

t\
0

v dt′
∥∥∥
2

0,St

+ |v|23,1,St
+ ‖H(·, 0) + 2/Re‖

2
2,S1 ,

Φ(t) = |v|24,1,Ωt
+ |̺σ|

2
3,0,Ωt

,

X(t) = |v|23,0,Ωt
+ |̺σ|

2
3,0,Ωt

++

t\
0

‖v‖23,Ωt′
dt′,

ψ(t) = ‖v‖20,Ωt
+ ‖pσ‖

2
0,Ωt

+ ‖R(·, t) −R(·, 0)‖20,S1 .

In this case we use the spaces

N(t) = {(v, ̺σ) : ϕ0(t) <∞},

M(t) =
{
(v, ̺σ) : ϕ0(t) +

t\
0

Φ(t′) dt′ <∞
}
.
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Now assume

(4.3) ̺1 < ̺(x, t) < ̺2 for all x ∈ Ωt and t ∈ [0, T ],

where T is the time of existence of a solution of problem (4.1); 0 < ̺1 < ̺2.
Moreover, set

|Ω1| =
M

̺2
, |Ω2| =

M

̺1
and |S1| = 4πR2

1,

where R1 is the radius of a ball of volume |Ω1|, i.e. |Ω1| =
4
3πR

3
1. Then by

(4.3) we have

(4.4) |Ω1| < |Ωt| < |Ω2| for t ∈ [0, T ].

Next, by (4.4),

|St| − |S1| = |St| − 4πR2
t + c̃(|Ωt|

2/3 − |Ω1|
2/3) > 0 for t ∈ [0, T ],

where c̃ = (36π)1/3.

In [23] (see Lemma 2.1) it is proved that sufficiently smooth solutions of
problem (4.1) satisfy

(4.5)
d

dt

[ \
Ωt

̺

(
v2

2
+ h(̺)

)
dx+ p0|Ωt|+ σ|St|

]

+
µ

2
E(v) + (ν − µ)‖div v‖20,Ωt

= 0,

where h(̺) =
T
(p(̺)/̺2) d̺ and E(v) =

T
Ωt

(vixj
+ vjxi

)2 dx. Identity (4.5)

is analogous to the energy conservation law (2.1).

In order to prove the global existence theorem we use (4.5) and Lem-
mas 5.1 and 5.4 of [23] which are similar to Lemmas 3.1 and 3.4. We also
use Lemma 5.3 of [23] and the following lemma analogous to Lemma 3.2.

Lemma 4.2. Assume that there exists a local solution of problem (4.1)
which belongs to M(t) for t ≤ T . Let the assumptions of Theorem 6.2 of

[24] be satisfied. Let the initial data v0, ̺0, S of problem (4.1) be such that

(v, ̺σ) ∈ N(0) and S ∈W
4+1/2
2 . Let assumptions (A), (3.22) with ϕ replaced

by ϕ and (4.3) be satisfied. Moreover , let

(4.6) h ∈ C1(R+),

(4.7) h1 < h(̺) < h2 for all ̺ ∈ (̺1, ̺2),

(4.8)
\
Ω

̺0
v20
2
dξ +

\
Ω

̺0(h(̺0)− h1) dξ + p0(|Ω| − |Ω1|) + σ(|S| − |S1|) ≤ δ0.

Then
ψ(t) ≤ δ for t ≤ T,

where δ = c(δ0 + δ′α1).
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P r o o f. Integrating (4.5) with respect to t in an interval (0, t) (t ≤ T )
we get

(4.9)
\
Ωt

̺
v2

2
dx+

\
Ωt

̺h(̺) dx + p0|Ωt|+ σ|St|

=
\
Ω

̺0
v20
2
dξ +

\
Ω

̺0h(̺0) dξ + p0|Ω|+ σ|S|.

Hence, in view of (4.3), (4.4), (4.7), (4.8) and (1.2), identity (4.9) yields\
Ωt

̺
v2

2
dx+

\
Ωt

̺(h(̺) − h1) dx+ p0(|Ωt| − |Ω1|) + σ(|St| − |S1|) ≤ δ0.

Therefore

‖v‖20,Ωt
≤

2

̺1
δ0.

The estimates for ‖pσ‖
2
0,Ωt

and ‖R(ω, t) − R(0, t)‖21,S1 are obtained in
the same way as in Lemma 3.2.

This completes the proof.

Now, using Lemmas 5.1, 5.3, 5.4 of [23] and Lemma 4.2 we get

Theorem 4.3. Let ν > 1
3µ > 0, p ∈ C3(R+) and p′ > 0 for ̺ > 0.

Let the assumptions of the local existence theorem (Theorem 6.2 of [24]) be

satisfied and assume the following compatibility condition holds:

Dα
ξ ∂

i
t(Tn− σHn+ p0n)|t=0,S = 0, |α|+ i ≤ 2.

Let (v, ̺σ) ∈ N(0) and

ϕ(0) ≤ α1, ‖v0‖
2
4,Ω ≤ α1.

Assume that

̺1 < h(̺) < ̺2 for any ̺ ∈ (̺1, ̺2),

where ̺1 = ̺e − l, ̺2 = ̺e + l, ̺e is introduced in Definition 1.1 and l > 0
is a constant such that ̺e − l > 0, and\

Ωt

̺0
v20
2
dξ +

\
Ωt

̺0(h(̺) − h1) dξ + p0(|Ωt| − |Ω1|) + σ(|St| − |S1|) ≤ δ0,\
Ω

̺0 dξ =M,
\
Ω

̺0ξ dξ = 0,
\
Ω

̺0v0(a+ b× ξ) dξ = 0,

for all constant vectors a, b. Moreover , assume that Ω is diffeomorphic to

a ball and let S be described by |ξ| = R̃(ω), ω ∈ S1 (S1 is the unit sphere),

where R̃ satisfies (3.30) with Re which is the solution of (4.2).

Finally , assume that S ∈W
4+1/2
2 and that condition (3.31) is satisfied.
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Then for sufficiently small constants αi (i = 1, 2, 3) and δ0 there exists

a global solution of problem (4.1) such that (v, ̺σ) ∈ M(t) for t ∈ R+,

S ∈W
4+1/2
2 for t ∈ R+ and

ϕ(t) ≤ α1, ‖H(·, t) + 2/Re‖
2
2,S1 ≤ α3 for t ∈ R+.

The proof is analogous to the proof of Theorem 3.5.
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[9] G. Str öhmer and W. M. Zaj a̧czkowsk i, Local existence of solutions of the
free boundary problem for the equations of compressible barotropic viscous self-

gravitating fluids, Appl. Math. (Warsaw), to appear.

[10] —, —, On the existence and properties of the rotationally symmetric equilibrium
states of compressible barotropic selt-gravitating fluids, Indiana Univ. Math. J. 46
(1997), 1181–1220.

[11] —, —, On stability of equilibrium solution for compressible barotropic viscous self–
gravitating fluid motions bounded by a free surface, to appear.

[12] E. Zadrzyń ska and W. M. Zaj a̧czkowsk i, On local motion of a general com-
pressible viscous heat conducting fluid bounded by a free surface, Ann. Polon. Math.
59 (1994), 133–170.

[13] —, —, On global motion of a compressible viscous heat conducting fluid bounded by
a free surface, Acta Appl. Math. 37 (1994), 221–231.

[14] —, —, Conservation laws in free boundary problems for viscous compressible heat
conducting fluids, Bull. Polish Acad. Sci. Tech. Sci. 42 (1994), 197–207.

[15] —, —, Conservation laws in free boundary problems for viscous compressible heat
conducting capillary fluids, ibid. 43 (1995), 423–444.



Nonstationary motion of a general fluid 511
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