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BEHAVIOUR OF GLOBAL SOLUTIONS

FOR A SYSTEM OF REACTION-DIFFUSION

EQUATIONS FROM COMBUSTION THEORY

Abstract. We are concerned with the boundedness and large time be-
haviour of the solution for a system of reaction-diffusion equations mod-
elling complex consecutive reactions on a bounded domain under homoge-
neous Neumann boundary conditions. Using the techniques of E. Conway,
D. Hoff and J. Smoller [3] we also show that the bounded solution converges
to a constant function as t → ∞. Finally, we investigate the rate of this
convergence.

1. Introduction. In this paper we investigate the asymptotic behaviour
of global solutions for the following reaction-diffusion system:

(1.1)
∂Y1

∂t
= d0∆Y1 − d1Y1Y2f1(T ), x ∈ Ω, t > 0,

(1.2)
∂Y2

∂t
= d2∆Y2 + d3Y1Y2f1(T )

− d4Y2f2(T )− d5Y2 − d6Y
2
2 , x ∈ Ω, t > 0,

(1.3)
∂T

∂t
= d7∆T + d8Y1Y2f1(T )

+ d9Y2f2(T ) + d10Y2 + d11Y
2
2 , x ∈ Ω, t > 0,

(1.4)
∂Y1

∂ν
=

∂Y2

∂ν
=

∂T

∂ν
= 0, x ∈ ∂Ω, t > 0,

(1.5) (Y1, Y2, T )(x, 0) = (Y10, Y20, T0)(x), x ∈ Ω,

1991 Mathematics Subject Classification: 35K57, 35B40, 35B45.
Key words and phrases: reaction-diffusion equations, boundedness, global existence,

large time behaviour.

[133]



134 S. Badraoui

where Ω is a bounded domain in R
n with boundary ∂Ω, such that ∂Ω is

a Cm hypersurface separating Ω from R
n/Ω (m ≥ 1), dj (j = 0, 1, . . . , 11)

are positive constants, fi (i = 1, 2) are given by the Arrhenius law

fi(T ) = Bi exp(−Ei/T ),

where Bi, Ei are constants, and Ei denotes the activation energy.
This system of reaction-diffusion equations arises as a model of chain

branching and chain breaking kinetics of reactions with complex chemistry.
Here Y1 is the concentration of fuel, Y2 is the concentration of radicals, and
T is the dimensionless temperature. Y1, Y2 and T depend on x and t where
(x, t) ∈ Ω × R

+.
Under suitable conditions (see (CD) in Section 3), it is expected that

(1.1)–(1.5) has a unique global solution (Y1, Y2, T ) and this solution tends
to an equilibrium state uniformly in x as t → ∞.

We will show that (Y1(t), Y2(t), T (t)) approaches an equilibrium state
(0, 0, T∞) in Cµ(Ω)3 as t → ∞ for every µ ∈ [0, 2), where T∞ is a con-
stant, and we will consider the rate of this convergence, by means of in-
tegral equations, fractional powers of operators, Poincaré’s inequality and
some imbedding theorems.

2. Preliminary results. We state some results needed in the sequel.

Lemma 2.1. Let (E, ‖ · ‖E) and (F, ‖ · ‖F ) be two real Banach spaces

with continuous inclusion E ⊂ F . Let A be a linear operator generating a

strongly continuous semigroup G(t) in E such that :

(i) G(t)E ⊂ F for all t > 0,
(ii) there exists θ ∈ [0, 1) such that ‖G(t)ϕ‖F ≤ ct−θ‖ϕ‖E for all t > 0.

Moreover , let p > 1/(1 − θ), f ∈ Lp
loc(R

+, E) and supt≥0 ‖f‖Lp(t,t+1;E)

< ∞. Let u be a mild solution on R
+ of

du

dt
= Au(t) + f(t).

If u ∈ L∞(0,∞;E), then u(t) ∈ F for all t > 0 and u ∈ CB(δ,∞;F )
for all δ > 0, where CB(δ,∞;F ) is the space of all continuous functions

u : (δ,∞) → F such that sup{‖u(t)‖F : t ≥ δ} < ∞.

For the proof, see [4].

Lemma 2.2. Let G(t) be the semigroup generated by the operator d∆
in Lp(Ω). Then for all 1 ≤ p < q ≤ ∞ and all ϕ ∈ Lp(Ω) we have

G(t)ϕ ∈ Lq(Ω) and

‖G(t)ϕ‖q ≤ c(p, q)t−(n/2)(1/p−1/q)‖ϕ‖p.

For the proof, see [2].
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3. Global existence and positivity. Throughout this paper, the
following assumptions are in force:

(CD) (i) dj (j = 0, 1, . . . , 11) are positive constants,

(ii) Y10, Y20 and T0 are nonnegative measurable functions such that
0 ≤ Y10(x), Y20(x), T0(x) ≤ M0 for almost every x ∈ Ω, for
some positive constant M0.

Theorem 3.1. Assume (CD). Then there exists a unique nonnegative

global solution (Y1, Y2, T ) for (1.1)–(1.5) which is smooth in Ω × (0,∞).

P r o o f. For each 1 < p < ∞ and j ∈ {1, 2, 3} define the linear operator
Aj,p on Lp(Ω) by

(3.1)
D(Aj,p) = {u ∈ W 2,p(Ω) : (∂u/∂ν)|∂Ω = 0},

A1,pu = d0∆u, A2,pu = d2∆u, A3,pu = d7∆u,

where W 2,p(Ω) is the usual Sobolev space. It is well known that Aj,p gen-
erates a compact, analytic contraction semigroup Gj,p(t), t ≥ 0, of bounded
linear operators on Lp(Ω) (see, e.g., Amann [2]).

For the local existence we write (1.1)–(1.3) as a system of integral equa-
tions via the variation of constants formula. For simplicity we set

F1(Y1, Y2, T )(t)(·) = − d1Y1(t)Y2(t)f1(T (t))(·),

F2(Y1, Y2, T )(t)(·) = (d3Y1(t)Y2(t)f1(T (t))− d4Y2(t)f2(T (t))

− d5Y2(t)− d6Y
2
2 (t))(·),

F3(Y1, Y2, T )(t)(·) = (d8Y1(t)Y2(t)f1(T (t)) + d9Y2(t)f2(T (t))

+ d10Y2(y) + d11Y
2
2 (t))(·),

for x ∈ Ω, t > 0; we then have

Y1(t) = G1,p(t)Y10 +

t\
0

G1,p(t− τ)F1(Y1(τ), Y2(τ), T (τ)) dτ,(3.2)

Y2(t) = G2,p(t)Y20 +

t\
0

G2,p(t− τ)F2(Y1(τ), Y2(τ), T (τ)) dτ,(3.3)

T (t) = G3,p(t)T0 +

t\
0

G3,p(t− τ)F3(Y1(τ), Y2(τ), T (τ)) dτ.(3.4)

For each α > 0 define the operator Bj,p = I −Aj,p. Then the fractional
powers B−α

j,p = (I−Aj,p)
−α exist and are injective, bounded linear operators

on Lp(Ω) (see Pazy [8]). Let Bα
j,p = (B−α

j,p )
−1 and Xα

j,p = D(Bα
j,p), the

domain of Bα
j,p. Then Xα

j,p is a Banach space with the graph norm ‖u‖α =

‖Bα
j,pw‖p, and for α > β ≥ 0, Xα

j,p is a dense subspace of Xβ
p with the
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inclusion Xα
j,p ⊂ Xβ

j,p compact (we use the convention X0
p = Lp(Ω)). Also

if 0 ≤ α < 1 we have

(3.5) Xα
j,p ⊂ Cµ(Ω) for every 0 ≤ µ < mα− n/p.

Note that this inclusion is valid even if p = 1 (see Henry [5], p. 39).
In addition, Gj,p and Bα

j,p have the properties summarised in the follow-
ing lemma.

Lemma 3.2. The operators Gp and Bα
p satisfy

(i) Gj,p(t) : L
p(Ω) → Xα

j,p for all t > 0,
(ii) Gj,p(t)B

α
j,pu = Bα

j,pGj,p(t)u for every u ∈ Xα
j,p,

(iii) ‖Gj,p(t)u‖α ≤ C1(α)t
−αe−t‖u‖p for every t > 0 and u ∈ Lp(Ω),

(iv) ‖(Gj,p(t)− I)u‖p ≤ C2(α)t
α‖u‖α for 0 < α ≤ 1 and u ∈ Xα

j,p.

The proof can be found in Pazy [8].

Select 0 < α < 1 and p > 1 so that (3.5) holds, and use the tech-
niques of Pazy [8] to show that there exists a unique noncontinuable solution
(Y1, Y2, T ) to (3.2)–(3.4) for Y10 ∈ Xα

1,p, Y20 ∈ Xα
2,p and T0 ∈ Xα

3,p. The
solution satisfies

Y1 ∈ C([0, δ];Xα
1,p) ∩ C1((0, δ);Lp(Ω)),

Y2 ∈ C([0, δ];Xα
2,p) ∩ C1((0, δ);Lp(Ω)),

T ∈ C([0, δ];Xα
3,p) ∩ C1((0, δ);Lp(Ω)),

for some δ > 0; and we have ‖Y1(t)‖∞ + ‖Y2(t)‖∞ + ‖T (t)‖∞ → ∞ as
t → tmax if tmax < ∞.

Suppose now that (Y10, Y20, T0) ∈ L∞(Ω)3 and let {Y k
10}

∞
k=1 be a se-

quence in Xα
1,p, {Y

k
20}

∞
k=1 a sequence in Xα

2,p and {T k
0 }

∞
k=1 a sequence in

Xα
3,p such that Y k

10, Y
k
20, T

k
0 ≥ 0 and ‖Y k

10−Y10‖p → 0, ‖Y k
20−Y20‖p → 0 and

‖T k
0 − T0‖p → 0 as t → ∞. Using the equation (3.2) and the properties of

A1,p stated in Lemma 3.2, it follows for α ≤ β < 1 that

‖Y k
1 ‖β ≤ Cβt

−β‖Y k
10‖p +

t\
0

Cβ(t− τ)−β‖F1(Y
k
1 (τ), Y k

1 (τ), Y k
1 (τ))‖p dτ

for all t ∈ [0, tkmax), where tkmax is the maximal time of existence for the
system (1.1)–(1.5) with initial conditions 0 ≤ (Y k

10, Y
k
20, T

k
0 ) ∈ Xα

1,p ×Xα
2,p ×

Xα
3,p. From these estimates one can deduce the existence of a Cβ such that

max{‖Y k
1 (t)‖β , ‖Y

k
2 (t)‖β , ‖T

k(t)‖β} ≤ Cβt
−β

for all t ∈ [0, δ], k ≥ 1; thus {(Y k
1 (t), Y k

2 (t), T k(t))}∞k=1 is contained in

a bounded subset of Xβ
1,p × Xβ

2,p × Xβ
3,p for each t ∈ (0, δ]. So by the

compact imbedding of Xβ
j,p in Xα

j,p (j = 1, 2, 3) for α < β < 1, we see that
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for each t ∈ (0, δ] the sequences {Y k
1 (t)}∞k=1, {Y

k
2 (t)}∞k=1 and {T k(t)}∞k=1

contain convergent subsequences {Y k,i
1 (t)}∞i=1, {Y

k,i
2 (t)}∞i=1 and {T k,i(t)}∞i=1

in Xα
1,p,X

α
2,p and Xα

3,p respectively.

Now define

Y1(t) = lim
i→∞

Y k,i
1 (t), Y2(t) = lim

i→∞
Y k,i
2 (t), T (t) = lim

i→∞
T k,i(t)

for each t ∈ [0, δ]. Then (Y1(t), Y2(t), T (t)) satisfies (3.2)–(3.4) for each t ∈
[0, δ]. Replacing [0, tmax) with [δ, tmax) and (Y10, Y20, T0) by (Y1(δ), Y2(δ),
T (δ)) and using the results already established when (Y10, Y20, T0) ∈ Xα

1,p ×
Xα

2,p×Xα
3,p, we find that there is a unique, classical noncontinuable solution

(Y1(t), Y2(t), T (t)) on Ω × [0, tmax), for every (Y10, Y20, T0) ∈ (L∞(Ω))3.

Since F1(0, Y2, T ) ≥ 0, F2(Y1, 0, T ) ≥ 0 and F3(Y1, Y2, 0) ≥ 0 it follows
that Y1(t), Y2(t) and T (t) have nonnegative values on Ω (see [10]), and by
the maximum principle we have

(3.6) ‖Y1(t)‖∞ ≤ ‖Y10‖∞ for all t ∈ [0, tmax).

Multiplying (1.2) by Y p−1
2 and integrating the result over Ω × (0, t) we

obtain
1

n

d

dt

\
Ω

Y p
2 dx ≤ c

\
Ω

Y p
2 dx,

where c = d3‖Y10‖∞‖f1(T (t))‖∞, hence\
Ω

Y p
2 dx ≤ |Ω| ‖Y20‖∞enpt for all t < tmax.

We can then deduce

(3.7) ‖Y2(t)‖∞ ≤ ect‖Y20‖∞ for all t < tmax.

From the expression of F3(Y1, Y2, T ) and (3.7) we can find two positive
numbers c1 and c2 such that

(3.8) ‖F3(Y1(T ), Y2(T ), T (t))‖∞ ≤ ect(c1 + c2e
ct) for all t < tmax,

where c1 = B1d8‖Y10‖∞ + d9B2 + d10 and c2 = d11‖Y20‖∞.

From (3.4) and (3.8) we obtain

‖T (t)‖∞ ≤ ‖T0‖∞ +

t\
0

ecτ (c1 + c2e
cτ ) dτ,

from which we have

(3.9) ‖T (t)‖∞ ≤ ‖T0‖∞ +
c1
c
(ect − 1) +

c2
2c

(e2ct − 1) for all t < tmax.

Inequalities (3.6), (3.7) and (3.9) contradict the fact that tmax < ∞, hence
tmax = ∞.
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4. Boundedness of the solution. In fact, the solution obtained in
Theorem 3.1 is uniformly bounded over Ω × (0,∞).

Theorem 4.1. Assume (CD). Then there exists a positive number M

such that

(4.1)

(4.2)

0 ≤ Y1(x, t) ≤ ‖Y10‖∞ for x ∈ Ω, t ≥ 0,

0 ≤ Y2(x, t), T (x, t) ≤ M for x ∈ Ω, t ≥ 0.

P r o o f. The function Y1 is uniformly bounded by ‖Y10‖∞ by the maxi-
mum principle.

Let B(x, t) = d3Y1(x, t)f1(T (x, t))−d4f2(T (x, t))−d5−d6Y2(x, t). Then
we can write

∂Y2

∂t
= d2∆Y2 +B(x, t)Y2

withB(x, t) ≤ a (for example a = d3‖Y10‖B1) andB(x, t) is locally Lipschitz
in (x, t). Moreover, Y2 ∈ L∞(R+, L1(Ω)). In fact, integrating (1.1) over
Ω × (0, t) we obtain

(4.3)
\
Ω

Y1(x, t) dx =
\
Ω

Y10(x) dx − d1

t\
0

\
Ω

Y1(x, τ)Y2(x, τ)f1(T (x, τ)) dx dτ,

which implies

(4.4)

t\
0

\
Ω

(Y1Y2f1(T ))(x, τ) dx dτ ≤
|Ω|

d1
‖Y10‖∞ for all t ≥ 0,

where |Ω| is the Lebesgue measure of Ω. Similarly, we get

(4.5)
\
Ω

Y2(x, t) dx

≤
\
Ω

Y20(x) dx+ d3

t\
0

\
Ω

(Y1Y2f1(T ))(x, τ) dx dτ for all t ≥ 0.

From (4.4) and (4.5) we obtain

(4.6) ‖Y2(t)‖1 ≤ |Ω|

(

‖Y20‖∞ +
d3
d1

‖Y10‖∞

)

for all t ≥ 0.

An application of the result of Alikakos ([1], §3) shows that Y2(t) is uniformly
bounded over Ω × (0,∞):

(4.7) ‖Y2(t)‖∞ ≤ K for all t ≥ 0,

for some K > 0.
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Now, integrating (1.3) over Ω × (0, t) we obtain\
Ω

T (x, t) dx =
\
Ω

T0(x) dx + d8

t\
0

\
Ω

(Y1Y2f1(T ))(x, τ) dx dτ(4.8)

+ d9

t\
0

\
Ω

(Y2f2(T ))(x, τ) dx dτ

+ d10

t\
0

\
Ω

Y2(x, τ) dx dτ + d11

t\
0

\
Ω

Y 2
2 (x, τ) dx dτ.

Integrating (1.2) over Ω × (0, t) we obtain

(4.9)
\
Ω

Y2(x, t) dx + d4

t\
0

\
Ω

(Y2f2)(x, τ) dx dτ + d5

t\
0

\
Ω

Y2(x, τ) dx dτ

+ d6

t\
0

\
Ω

Y 2
2 (x, τ) dx dτ = d3

t\
0

\
Ω

(Y1Y2)(x, τ) dx dτ +
\
Ω

Y20(x) dx,

from which we deduce that

(4.10)

∞\
0

\
Ω

(Y2f2)(x, τ) dx dτ < ∞ and

∞\
0

\
Ω

Y 2
2 (x, τ) dx dτ < ∞.

From (4.4)–(4.7) and (4.10) in (4.8) we obtain

(4.11)
\
Ω

T (x, t) dx ≤ C for all t ≥ 0,

i.e., T ∈ L∞(R+, L1(Ω)).
To prove that T ∈ L∞(R+, L∞(Ω)) we distinguish two cases. We define

Sp(t) ≡ G3,p(t).

Case 1: n = 1, i.e., Ω = (a, b) ⊂ R. In this case we take E := L1(Ω)
and F = C(Ω). Then Lemma 2.2 shows that

(4.12) ‖S1(t)ϕ‖∞ ≤ ct−1/2‖ϕ‖1 for all ϕ ∈ L1(Ω).

Take α = 3/4; from Lemma 2.2 and (3.5) we have S1(t)L
1(Ω) ⊂ C(Ω).

Applying Lemma 2.1, we conclude that T ∈ CB(δ,∞;C(Ω)) for all δ > 0,
hence from the result concerning the local existence we obtain

‖T (t)‖∞ ≤ C for all t ≥ 0.

Case 2: n ≥ 2. Let q1 = 1, qr = n/(n− r) and E = Lqr (Ω), F =
Lqr+1(Ω) for r∈{1, . . . , n−1}. We have T ∈CB(R

+, Lq1(Ω)), Sq1(t)L
q1(Ω)⊂

Lq2(Ω) and ‖Sq1(t)ϕ‖q2 ≤ ct−1/2‖ϕ‖q1 . Application of Lemma 2.1 gives
T ∈ CB(R

+, Lq2(Ω)). Next we take E = Lq2(Ω) and F = Lq3(Ω) to ob-
tain T ∈ CB(R

+, Lq3(Ω)). Continuing this process we finally have T ∈
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CB(R
+, Ln(Ω)). In the last iteration we take E = Ln(Ω) and F = C(Ω).

As Sn(t)L
n(Ω)⊂Xα

3,n and ‖Sn(t)ϕ‖∞ ≤ ct−1/2‖ϕ‖n for all ϕ∈Ln(Ω) and

T ∈CB(R
+, Ln(Ω)), from Lemma 2.1 we conclude that T ∈CB(R

+;C(Ω)).

5. Asymptotic behaviour. First, let us establish a preparatory
lemma. Consider the problem

(P)

{

∂u/∂t+Au = ϕ(t),
u(0) = u0,

where −A generates an analytic semigroup G(t) in a Banach space (X, ‖ · ‖)
with Re σ(A) > a > 0. We have the following lemma.

Lemma 5.1. Let X be a Banach space. If ϕ ∈ L∞(R+,X) and the

problem (P) has a bounded global solution u ∈ L∞(R+,X) then for all 0 <
α < 1 we have

(A) supt≥δ ‖A
αu(t)‖ ≤ C(α, δ) for any δ > 0, and

(B) the function t 7→ Aαu(t) is Hölder continuous from [δ,∞) to X for

any δ > 0.

P r o o f. The solution u of (P) satisfies the integral equation

u(t) = G(t)u0 +

t\
0

G(t− τ)ϕ(τ) dτ, t > 0.

Applying Aα to both sides yields

‖Aαu(t)‖ ≤ ‖AαG(t)u0‖+

t\
0

‖AαG(t− τ)ϕ(τ)‖ dτ.

From this and Lemma 3.2, we obtain

‖Aαu(t)‖p ≤ C1(α)t
−αe−at‖u0‖+

t\
0

C1(α)(t − τ)−αe−a(t−τ)‖ϕ(τ)‖ dτ

≤ C1(α)‖u0‖+ C1(α)MΓ (1 − α)aα−1.

Here Γ is the gamma function of Euler. Hence ‖Aαu(t)‖ is uniformly
bounded on [δ,∞) for any δ > 0.

To prove (B), we have

‖Aαu(t+ h)−Aαu(t)‖ ≤ ‖(G(h) − I)AαG(t)u0‖

+

t+h\
t

‖AαG(t+ h− τ)ϕ(τ)‖ dτ

+

t\
0

‖(G(h) − I)AαG(t− τ)ϕ(τ)‖ dτ.
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Set
I1 = ‖(G(h) − I)AαG(t)u0‖,

I2 =

t+h\
t

‖AαG(t+ h− τ)ϕ(τ)‖ dτ,

I3 =

t\
0

‖(G(h) − I)AαG(t− τ)ϕ(τ)‖ dτ.

From the inequalities of Lemma 3.2, there exist two constants C1(α), C2(α)
such that

I1 ≤ C1(α+ β)C2(α)t
−1e−at‖u0‖h

β ,

I2 ≤ MC1(α)h
1−α,

I3 ≤ MC1(α+ β)C2(β)Γ (1 − α− β)aα+β−1hβ ,

where M = supt≥0 ‖ϕ(t)‖p for every 0 < β < 1. Taking β < 1− α, we then
have for all t ≥ δ,

‖Aαu(t+ h)−Aαu(t)‖ ≤ C(α, ‖u0‖)max{hβ , h1−α}.

Remark. As a consequence of this lemma, the function t 7→ Aαu(t) is
uniformly continuous.

The following proposition is also useful in the sequel.

Proposition 5.2. For any δ > 0, the family {Y1(t) : t ≥ δ} is relatively

compact in C(Ω).

P r o o f. We have ∂Y1/∂t = d0∆Y1+F1(Y1, Y2, T ) where F1(Y1, Y2, T ) =
−d1Y1Y2f1(T ). There is a positive constant N such that ‖F1(Y1, Y2, T )‖∞ ≤
N for all t ≥ 0. Let 0 < ε < 1 and t > ε. Then we can write Y1(t) =
G1,∞(ε)Y1(t−ε)+[Y1(t)−G1,∞(ε)Y1(t−ε)], where G1,∞(t) is the semigroup
generated by d0∆ with homogeneous Neumann boundary conditions in the
Banach space C(Ω). We set

Y1ε(t) = G1,∞(ε)Y1(t− ε) and Y1ε(t) = Y1(t)−G1,∞(ε)Y1(t− ε).

Then {Y1ε(t) : t ≥ δ} is relatively compact in C(Ω) since {Y1(t− ε) : t ≥ δ}
is bounded and G1,∞(δ) is a compact operator. Also,

‖Y1ε(t)‖∞ =
∥

∥

∥

t\
t−ε

G1,∞(t− s)F1(Y1, Y2, T )(s) ds
∥

∥

∥

∞
≤ εN,

therefore {Y1(t) : t ≥ 1} is totally bounded, hence {Y1(t) : t ≥ 1} is relatively
compact in C(Ω). As {Y1(t) : δ ≤ t ≤ 1} is compact in C(Ω), it follows
that {Y1(t) : t ≥ δ} is relatively compact in C(Ω). The same holds true for
{Y2(t) : t ≥ δ} and {T (t) : t ≥ δ}.
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Theorem 5.3. Under the assumptions (CD) we have

(5.1) lim
t→∞

‖Y1(t)‖∞ = 0, lim
t→∞

‖Y2(t)‖∞ = 0

and there exists a positive constant T∞ such that

(5.2) lim
t→∞

‖T (t)− T∞‖∞ = 0.

P r o o f. From (1.1) we have

(5.3)
d

dt

\
Ω

Y1(x, t) dx = −d1
\
Ω

(Y1(t)Y2(t)f1(T (t)))(x) dx ≤ 0,

hence the function t 7→
T
Ω
Y1(x, t) dx is nonincreasing. Let Y1 be a constant

such that

(5.4) lim
t→∞

\
Ω

Y1(x, t) dx = Y1.

From (1.2) we have

(5.5)
d

dt

\
Ω

Y2(x, t) dx =
\
Ω

(d3Y1Y2f1(T )−d4Y2f2(T )−d5Y2−d6Y
2
2 )(x, t) dx.

From (5.3) and (5.5) we deduce

(5.6)
d

dt

\
Ω

(

1

d1
Y1 +

1

d3
Y2

)

(x, t) dx

= −
\
Ω

(

d4
d3

Y2f2(T ) +
d5
d3

Y2 +
d6
d3

Y 2
2

)

(x, t) dx ≤ 0,

from which we infer that there is a constant K such that

(5.7)
1

d1

\
Ω

Y1(x, t) dx +
1

d3

\
Ω

Y2(x, t) dx → K as t → ∞.

Combining (5.1) and (5.7) we conclude that there is a positive constant Y2

such that

(5.8) lim
t→∞

\
Ω

Y2(x, t) dx = Y2.

Integrating (5.6) over (0,∞) we conclude that there is a constant C such
that

(5.9)

∞\
0

\
Ω

Y2(x, τ) dx dτ ≤ C.

Combining (5.8) and (5.9) we find that Y2 = 0, whence

(5.10) lim
t→∞

\
Ω

Y2(x, t) dx = 0.
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As Y2(x, t) ≥ 0, the invariance principle of La Salle [5] and (5.10) imply
limt→∞ ‖Y2(t)‖∞ = 0.

Multiplying (1.1) by Y1 and integrating over Ω and using Poincaré’s
inequality we obtain

d

dt

\
Ω

Y 2
1 (x, t) dx ≤ −c

\
Ω

Y 2
1 (x, t) dx

for some positive constant c > 0, from which we deduce

(5.11) ‖Y1(t)‖
2
2 ≤ e−ct‖Y10‖

2
2.

Also, as a consequence of the maximum principle we have

(5.12) ‖Y1(t)‖∞ ≤ ‖Y1(s)‖∞ for t ≥ s > 0.

According to Proposition 5.2, {Y1(t) : t ≥ δ} is relatively compact in C(Ω)
for all δ > 0; so from this, (5.11) and (5.12) we have

(5.13) lim
t→∞

‖Y1(t)‖∞ = 0.

Multiplying (1.2) by Y2 and integrating over Ω × (0, t) we have

(5.14) ‖Y2(t)‖
2
2 + 2d2

t\
0

‖∇Y2(τ)‖
2
2 dτ + 2d4

t\
0

\
Ω

Y 2
2 f2(T ) dx dτ

+ 2d5

t\
0

‖Y2(τ)‖
2
2 dτ + 2d6

t\
0

\
Ω

Y 3
2 dx dτ

= ‖Y20‖
2
2 + 2d3

t\
0

\
Ω

Y1Y
2
2 f1(T ) dx dτ.

Similarly for (1.3),

(5.15) ‖T (t)‖22 + 2d7

t\
0

‖∇T (τ)‖22 dτ

= ‖T0‖
2
2 + 2d8

t\
0

\
Ω

Y1Y2Tf1(T ) dx dτ

+ 2d9

t\
0

\
Ω

Y2Tf2(T ) dx dτ

+ 2d10

t\
0

\
Ω

Y2T dx dτ + 2d11

t\
0

\
Ω

Y 2
2 T dx dτ.

By (4.4) and as Y1, Y2 and T are uniformly bounded, it follows from (5.14)
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and (5.15) that ∇Y2,∇T ∈ L2(R, L2(Ω)), i.e.

(5.16)

∞\
0

‖∇Y1(τ)‖
2
2 dτ <∞,

∞\
0

‖∇Y2(τ)‖
2
2 dτ <∞,

∞\
0

‖∇T (τ)‖22 dτ <∞.

For the equation (1.1) for example, we define the operator Bp as follows:

D(Bp) = {u ∈ W 2,p(Ω) : (∂u/∂ν)|∂Ω = 0}, Bpu = (−d0∆+ a)u,

with a fixed positive real number a > 0. It is well known that −Bp generates
an analytic semigroup and Reσ(Bp) > a > 0. Also, if we set ϕ(t) = aY1(t)+
F1(Y1, Y2, T )(t), then ϕ ∈ L∞(R+, Lp(Ω)). Application of Lemma 5.1 then
implies

(5.17) sup
t≥δ

‖Bα
p Y1(t)‖p ≤ C(p, α, δ) for any δ > 0,

and

(5.18) t 7→ Bα
p Y1(t) is uniformly continuous from [δ,∞) to Lp(Ω)

for any δ > 0.

The same holds for Y2 and T .
By (5.18) we find that t 7→ ‖∇Y1(t)‖2, t 7→ ‖∇Y2(t)‖2 and t 7→ ‖∇T (t)‖2

are uniformly continuous on [δ,∞) by choosing p = 2 and suitable α ∈ (0, 1)
and m. From this and (5.16), Lemma 5.1 gives

(5.19) lim
t→∞

‖∇Y1(t)‖2 = 0, lim
t→∞

‖∇Y2(t)‖2 = 0, lim
t→∞

‖∇T (t)‖2 = 0.

The interested reader can see [7] for details.
Since {T (t) : t ≥ δ} is compact in C(Ω) it follows that there is a sequence

{tk} such that

lim
tk→∞

T (tk) = T∞ in C(Ω),

where T∞ is a constant. Owing to the Poincaré inequality (see [11]) we have

λ
∥

∥

∥
T (t)− |Ω|−1

\
Ω

T (x, t) dx
∥

∥

∥

2

2
≤ ‖∇T (t)‖22.

Here λ is the smallest positive eigenvalue of −∆ with homogeneous Neumann
boundary conditions on ∂Ω. Since the limit T∞ is uniquely determined we
have

lim
t→∞

T (t) = T∞ in C(Ω).

6. Rates of convergence. In this section we study the rates of con-
vergence obtained in Theorem 5.3.

Theorem 6.1. Assume (CD). Then for given µ ∈ [0, 2), there exist

K1(µ),K2(µ),K(µ) > 0 and ̺, σ, ω > 0 such that



Reaction-diffusion equations 145

‖Y1(t)‖Cµ(Ω) ≤ K1(µ)e
−̺(t−t∗),

‖Y2(t)‖Cµ(Ω) ≤ K2(µ)e
−σ(t−t∗),

‖T (t)‖Cµ(Ω) ≤ K(µ)e−ω(t−t∗),

for some t∗ > 0, as t → ∞, where 0 < σ < d5, ̺ = min{σ, d0λ}, ω =
min{σ, d7λ} and λ is the smallest positive eigenvalue of −∆ with homoge-

neous Neumann boundary condition on ∂Ω.

Let us recall the following two lemmas.

Lemma 6.2. For 1 < p < ∞ and d > 0, let Lp be the operator defined

by D(Lp) = {u ∈ W 2,p(Ω) : (∂u/∂ν)|∂Ω = 0}, Lpu = −d∆u, and let the

operators Q0, Q+ : Lp(Ω) → Lp(Ω) be defined by

Q0u =
1

|Ω|

\
Ω

u(x) dx, Q+u = u−Q0u.

Define the operator Lp+ as Lp+ ≡ Lp|Q+L
p(Ω), the restriction of Lp to

Q+L
p(Ω). Then there exists a constant C3(α) > 0 such that for u ∈ Lp(Ω)

and t > 0,

‖Lα
p+e

−tLp+Q+u‖p ≤ C3(α)q(t)
−αe−dλt‖Q+u‖p,

where q(t) = min{t, 1} and λ is the smallest positive eigenvalue of −∆ with

homogeneous Neumann boundary conditions on ∂Ω.

Lemma 6.2 is proved by Rothe [9].

Lemma 6.3. For α ∈ [0, 1) and β > 0, there exists a constant C(α, β) > 0
such that

t\
0

q(ξ)−αeβξ dξ ≤ C(α, β)eβt.

For the proof, see [6].

Proof of Theorem 6.1. For 1 < p < ∞ we take the operators

D(Ap) = D(Bp) = D(Rp) = {u ∈ W 2,p(Ω) : (∂u/∂ν)|∂Ω = 0},

Apu = −d0∆u, Bp = −(d2∆− d5)u, Rp = −d7∆u.

By Theorem 5.3 we already know that Y1(t) → 0 and Y2(t) → 0 in C(Ω)
as t → ∞, hence for any ε > 0 there exists a constant t∗ > 0 such that

(6.1) d3Y1f1(T ) < ε for all t ≥ t∗.

We take 0 < ε < d5.

(I) The decay rate of ‖Y2(t)‖p. From (1.2) and (6.1) we get

(6.2)
∂Y2

∂t
≤ d2∆Y2 − (d5 − ε)Y2, t > t∗.
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Multiplying both sides by Y p−1
2 for p ∈ [1,∞), integrating over Ω and using

Green’s formula, we obtain

(6.3)
d

dt
‖Y2(t)‖

p
p ≤ −p(d5 − ε)‖Y2(t)‖

p
p for t > t∗,

which leads to

‖Y2(t)‖p ≤ ‖Y2(t
∗)‖pe

−(d5−ε)(t−t∗) for t > t∗.

The Hölder inequality then yields

(6.4) ‖Y2(t)‖p ≤ M |Ω|1/pe−(d5−ε)(t−t∗) for t > t∗,

where M is the positive number appearing in (4.2).

(II) The decay rate of ‖Y2(t)‖Cµ(Ω). To investigate the decay rate of

‖Y2(t)‖Cµ(Ω), we treat the following integral equation which is equivalent to

(1.2) with (1.4) for t > t∗:

∂Y2

∂t
= d2∆Y2 − d5Y2 + F (Y1, Y2, T ),

where F (Y1, Y2, T ) = d3Y1Y2f1(T ) − d4Y2f2(T ) − d6Y
2
2 . Let Gp(t) be the

semigroup generated by −Bp. Then

(6.5) Y2(t) = Gp(t− t∗)Y2(t
∗) +

t\
t∗

Gp(t− τ)F (τ) dτ, t > t∗.

From Lemma 3.2(iii), we obtain

(6.6) ‖Bα
p Y2(t)‖p ≤ C1(α)q(t − t∗)−αe−d5(t−t∗)‖Y2(t

∗)‖p + d3MB1J1(t),

where

J1(t) =

t\
t∗

‖Gp(t− τ)‖Lp(Ω)→Lp(Ω)‖Y2(τ)‖p dτ.

It is sufficient to estimate J1(t). By (6.4) and Lemmas 3.2 and 6.3 we
have

J1(t) ≤ C1(α)M |Ω|1/p
t−t∗\
0

q(t− t∗ − τ)−αe−(d5−ε)τ dτ(6.7)

≤ C1(α)M |Ω|1/pe−(d5−ε)(t−t∗) for t ≥ t∗.

Consequently, the imbedding D(Bα
p ) ⊂ Cµ(Ω) ensures the existence of a

constant K2(µ) > 0 such that for every 0 < σ < d5 there is t∗ > 0 such that

(6.8) ‖Y2(t)‖Cµ(Ω) ≤ K2(µ)e
−σ(t−t∗) for t > t∗.
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(III) The decay rate of ‖Y1(t)‖Cµ(Ω). First we write Y1(t) = Q0Y1(t) +

Q+Y1(t), where

Q0Y1(t) =
1

|Ω|

\
Ω

Y1(x, t) dx, Q+Y1(t) = Y1(t)−Q0Y1(t).

We see from (4.3) and the fact that Y1 → 0 as t → ∞ in C(Ω) that

Q0Y1(t) ≡
1

|Ω|

\
Ω

Y1(x, t) dx(6.9)

=
1

|Ω|

\
Ω

Y10(x, t) dx −
d1
|Ω|

t\
0

\
Ω

(Y1Y2f1)(x, τ) dx dτ

=
d1
|Ω|

∞\
t

\
Ω

(Y1Y2f1)(x, τ) dx dτ

≤
d1
|Ω|

B1M0

∞\
t

\
Ω

Y2(x, τ) dx dτ

≤ d1B1M0

∞\
t

e−σ(τ−t∗) dτ

≤
1

̺
d1B1M0e

−̺(t−t∗) for t > t∗.

Next, we study the decay of Q+Y1(t). We consider the integral equation
associated with (1.1) and apply Aα

p+Q+ to get

Aα
p+Q+Y1(t) = G1,p+(t− t∗)Q+Y1(t

∗)− d1

t\
t∗

G1,p+(t− τ)(Q+Y1Y2f1)(τ) dτ

for t > t∗. By Lemma 6.2, we get

‖Aα
p+Q+Y1(t)‖p ≤ C3(α)q(t − t∗)−αe−d0λ(t−t∗)‖Q+Y1(t

∗)‖p(6.10)

+MB1d1C3(α)‖Q+‖J2(t) for t > t∗,

where J2(t) =
Tt
t∗
q(t−τ)−αe−d0λ(t−τ)‖Y2(τ)‖p dτ for t > t∗ and ‖Q+‖ is the

norm of the linear operator Q+ : Lp(Ω) → Lp(Ω). Here Q+Y1(t
∗) ∈ D(Aα

p+)
because t > t∗ and by the smoothness of Y1(t

∗). By Lemma 6.3,

J2(t) =

t\
t∗

q(t− τ)−αe−d0λ(t−τ)‖Y2(τ)‖p dτ(6.11)

≤ M |Ω|1/p
t−t∗\
0

q(ξ)−αe−d0λξ dξ

≤ C(α, d0λ)e
−d0λ(t−t∗) for t > t∗.
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Let ̺ = min{σ, d0λ}. Now we take p,m and α as in (3.5), so that by
combining (6.10)–(6.12) we get the decay rate

(6.12) ‖Y1(t)‖Cµ(Ω) ≤ K1(µ)e
−̺(t−t∗) for t > t∗.

(IV) The decay rate of ‖T (t)−T∞‖Cµ(Ω). The argument in (III) can also

be used to investigate this decay rate. We write T (t)−T∞ = (Q0T (t)− T∞)
+Q+T (t). We see from (4.7) that

|Q0T (t)− T∞| ≤ D|Ω|−1N

∞\
t

\
Ω

Y2(x, τ) dx dτ,

where D = max{d8, d9, d10, d11} and N = M0B1 + B2 +M + 1. From the
estimate of ‖Y2(t)‖Cµ(Ω), we obtain

(6.13) |Q0T (t)− T∞| ≤
1

σ
DNC(0)e−σ(t−t∗) for t > t∗.

Next we study the decay of Q+T (t). We consider the integral equation
associated with (1.3) and apply Rα

p+Q+ with α ∈ (0, 1), to get

Rα
p+Q+T (t) = Rα

p+Sp(t−t∗)Q+T (t
∗)+

t\
t∗

Rα
p+Sp(t−τ)Q+F3(Y1, Y2, T )(τ) dτ

for t > t∗. By Lemma 6.2,

‖Rα
p+Q+T (t)‖p ≤ C3(0)e

−d7λ(t−t∗)‖Q+T (t
∗)‖p

+NC3(α)
∥

∥

∥
Q+

∥

∥

∥

t\
t∗

q(t− τ)−αe−d7λ(t−τ)
∥

∥

∥
Y2(τ)

∥

∥

∥

p
dτ

for t > t∗. The estimate of ‖Y2(t)‖Cµ(Ω) yields

‖Rα
p+Q+T (t)‖p ≤ C(0)‖Q+T (t

∗)‖pe
−d7λ(t−t∗)

+N ′

t\
t∗

q(t− τ)−αe−d7λ(t−τ)e−σ(τ−t∗) dτ

for t > t∗, where N ′ = MN |Ω|1/pC(α)‖Q+‖. By Lemma 6.3 we get

‖Rα
p+Q+T (t)‖p ≤ C(0)‖Q+T (t

∗)‖pe
−d7λ(t−t∗)(6.14)

+N ′C(α, d7λ)e
−d7λ(t−t∗) for t > t∗.

Let ω = min{σ, d7λ} and take p and α as in (3.5). By combining (6.12)
and (6.13) we get

‖T (t)− T∞‖Cµ(Ω) ≤ K(µ)e−ω(t−t∗) for t > t∗.

Remark. As a final remark, note that if

(6.15) d3 + d8 ≤ d1, d9 ≤ d4, d10 ≤ d5, d11 ≤ d6,
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then

(6.16) T∞ ≤
1

|Ω|
(‖Y10‖1 + ‖Y20‖1 + ‖T0‖1).

Indeed, from equations (1.1)–(1.3) and the boundary conditions (1.4)–(1.5)
we have

(6.17)
\
Ω

Y1 dx+
\
Ω

Y2 dx+
\
Ω

T dx

=
\
Ω

Y10 dx+
\
Ω

Y20 dx+
\
Ω

T0 dx

+ (d3 + d8 − d1)

t\
0

\
Ω

Y1Y2f1(T ) dx dτ + (d9 − d4)

t\
0

\
Ω

Y2f2(T ) dx dτ

+ (d10 − d5)

t\
0

\
Ω

Y2 dx dτ + (d11 − d6)

t\
0

\
Ω

Y 2
2 dx dτ.

The estimate (6.16) follows from (6.15) and (6.17).

Acknowledgements. I would like to thank Dr. M. Kirane for suggest-
ing the problem (1.1)–(1.5).

References

[1] N. D. Al ikakos, An application of the invariance principle to reaction-diffusion
equations, J. Differential Equations 33 (1979), 201–225.

[2] H. Amann, Dual semigroups and second order linear elliptic boundary value prob-
lems, Israel J. Math. 45 (1983), 225–254.

[3] E. Conway, D. Hof f and J. Smol ler, Large time behavior of solutions of systems
of nonlinear reaction-diffusion equations, SIAM J. Appl. Math. 35 (1978), 1–16.

[4] A. Haraux et M. Kirane, Estimations C1 pour des problèmes paraboliques semi-
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