S. BADRAOUI (Guelma)

BEHAVIOUR OF GLOBAL SOLUTIONS FOR A SYSTEM OF REACTION-DIFFUSION EQUATIONS FROM COMBUSTION THEORY

Abstract. We are concerned with the boundedness and large time behaviour of the solution for a system of reaction-diffusion equations modelling complex consecutive reactions on a bounded domain under homogeneous Neumann boundary conditions. Using the techniques of E. Conway, D. Hoff and J. Smoller [3] we also show that the bounded solution converges to a constant function as $t \rightarrow \infty$. Finally, we investigate the rate of this convergence.

1. Introduction. In this paper we investigate the asymptotic behaviour of global solutions for the following reaction-diffusion system:

$$
\begin{array}{rlr}
\frac{\partial Y_{1}}{\partial t}= & d_{0} \Delta Y_{1}-d_{1} Y_{1} Y_{2} f_{1}(T), & x \in \Omega, t>0 \\
\frac{\partial Y_{2}}{\partial t}= & d_{2} \Delta Y_{2}+d_{3} Y_{1} Y_{2} f_{1}(T) & \tag{1.2}\\
& -d_{4} Y_{2} f_{2}(T)-d_{5} Y_{2}-d_{6} Y_{2}^{2}, & x \in \Omega, t>0
\end{array}
$$

$$
\begin{align*}
\frac{\partial T}{\partial t}= & d_{7} \Delta T+d_{8} Y_{1} Y_{2} f_{1}(T) \tag{1.3}\\
& +d_{9} Y_{2} f_{2}(T)+d_{10} Y_{2}+d_{11} Y_{2}^{2}, \quad x \in \Omega, t>0
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial Y_{1}}{\partial \nu}=\frac{\partial Y_{2}}{\partial \nu}=\frac{\partial T}{\partial \nu}=0, \quad x \in \partial \Omega, t>0 \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
\left(Y_{1}, Y_{2}, T\right)(x, 0)=\left(Y_{10}, Y_{20}, T_{0}\right)(x), \quad x \in \Omega \tag{1.5}
\end{equation*}
$$

[^0]where Ω is a bounded domain in \mathbb{R}^{n} with boundary $\partial \Omega$, such that $\partial \Omega$ is a C^{m} hypersurface separating Ω from $\mathbb{R}^{n} / \bar{\Omega}(m \geq 1), d_{j}(j=0,1, \ldots, 11)$ are positive constants, $f_{i}(i=1,2)$ are given by the Arrhenius law
$$
f_{i}(T)=B_{i} \exp \left(-E_{i} / T\right),
$$
where B_{i}, E_{i} are constants, and E_{i} denotes the activation energy.
This system of reaction-diffusion equations arises as a model of chain branching and chain breaking kinetics of reactions with complex chemistry. Here Y_{1} is the concentration of fuel, Y_{2} is the concentration of radicals, and T is the dimensionless temperature. Y_{1}, Y_{2} and T depend on x and t where $(x, t) \in \Omega \times \mathbb{R}^{+}$.

Under suitable conditions (see (CD) in Section 3), it is expected that (1.1)-(1.5) has a unique global solution $\left(Y_{1}, Y_{2}, T\right)$ and this solution tends to an equilibrium state uniformly in x as $t \rightarrow \infty$.

We will show that $\left(Y_{1}(t), Y_{2}(t), T(t)\right)$ approaches an equilibrium state $\left(0,0, T_{\infty}\right)$ in $C^{\mu}(\bar{\Omega})^{3}$ as $t \rightarrow \infty$ for every $\mu \in[0,2)$, where T_{∞} is a constant, and we will consider the rate of this convergence, by means of integral equations, fractional powers of operators, Poincaré's inequality and some imbedding theorems.
2. Preliminary results. We state some results needed in the sequel.

Lemma 2.1. Let $\left(E,\|\cdot\|_{E}\right)$ and $\left(F,\|\cdot\|_{F}\right)$ be two real Banach spaces with continuous inclusion $E \subset F$. Let A be a linear operator generating a strongly continuous semigroup $G(t)$ in E such that:
(i) $G(t) E \subset F$ for all $t>0$,
(ii) there exists $\theta \in[0,1)$ such that $\|G(t) \varphi\|_{F} \leq c t^{-\theta}\|\varphi\|_{E}$ for all $t>0$.

Moreover, let $p>1 /(1-\theta), f \in L_{\text {loc }}^{p}\left(\mathbb{R}^{+}, E\right)$ and $\sup _{t \geq 0}\|f\|_{L^{p}(t, t+1 ; E)}$ $<\infty$. Let u be a mild solution on \mathbb{R}^{+}of

$$
\frac{d u}{d t}=A u(t)+f(t) .
$$

If $u \in L^{\infty}(0, \infty ; E)$, then $u(t) \in F$ for all $t>0$ and $u \in C_{B}(\delta, \infty ; F)$ for all $\delta>0$, where $C_{B}(\delta, \infty ; F)$ is the space of all continuous functions $u:(\delta, \infty) \rightarrow F$ such that $\sup \left\{\|u(t)\|_{F}: t \geq \delta\right\}<\infty$.

For the proof, see [4].
Lemma 2.2. Let $G(t)$ be the semigroup generated by the operator $d \Delta$ in $L^{p}(\Omega)$. Then for all $1 \leq p<q \leq \infty$ and all $\varphi \in L^{p}(\Omega)$ we have $G(t) \varphi \in L^{q}(\Omega)$ and

$$
\|G(t) \varphi\|_{q} \leq c(p, q) t^{-(n / 2)(1 / p-1 / q)}\|\varphi\|_{p} .
$$

For the proof, see [2].
3. Global existence and positivity. Throughout this paper, the following assumptions are in force:
(CD) (i) $d_{j}(j=0,1, \ldots, 11)$ are positive constants,
(ii) Y_{10}, Y_{20} and T_{0} are nonnegative measurable functions such that $0 \leq Y_{10}(x), Y_{20}(x), T_{0}(x) \leq M_{0}$ for almost every $x \in \Omega$, for some positive constant M_{0}.

Theorem 3.1. Assume (CD). Then there exists a unique nonnegative global solution $\left(Y_{1}, Y_{2}, T\right)$ for (1.1)-(1.5) which is smooth in $\bar{\Omega} \times(0, \infty)$.

Proof. For each $1<p<\infty$ and $j \in\{1,2,3\}$ define the linear operator $A_{j, p}$ on $L^{p}(\Omega)$ by

$$
\begin{align*}
& D\left(A_{j, p}\right)=\left\{u \in W^{2, p}(\Omega):(\partial u / \partial \nu) \mid \partial \Omega=0\right\} \\
& A_{1, p} u=d_{0} \Delta u, \quad A_{2, p} u=d_{2} \Delta u, \quad A_{3, p} u=d_{7} \Delta u \tag{3.1}
\end{align*}
$$

where $W^{2, p}(\Omega)$ is the usual Sobolev space. It is well known that $A_{j, p}$ generates a compact, analytic contraction semigroup $G_{j, p}(t), t \geq 0$, of bounded linear operators on $L^{p}(\Omega)$ (see, e.g., Amann [2]).

For the local existence we write (1.1)-(1.3) as a system of integral equations via the variation of constants formula. For simplicity we set

$$
\begin{aligned}
F_{1}\left(Y_{1}, Y_{2}, T\right)(t)(\cdot)= & -d_{1} Y_{1}(t) Y_{2}(t) f_{1}(T(t))(\cdot) \\
F_{2}\left(Y_{1}, Y_{2}, T\right)(t)(\cdot)= & \left(d_{3} Y_{1}(t) Y_{2}(t) f_{1}(T(t))-d_{4} Y_{2}(t) f_{2}(T(t))\right. \\
& \left.-d_{5} Y_{2}(t)-d_{6} Y_{2}^{2}(t)\right)(\cdot) \\
F_{3}\left(Y_{1}, Y_{2}, T\right)(t)(\cdot)= & \left(d_{8} Y_{1}(t) Y_{2}(t) f_{1}(T(t))+d_{9} Y_{2}(t) f_{2}(T(t))\right. \\
& \left.+d_{10} Y_{2}(y)+d_{11} Y_{2}^{2}(t)\right)(\cdot)
\end{aligned}
$$

for $x \in \Omega, t>0$; we then have

$$
\begin{align*}
Y_{1}(t) & =G_{1, p}(t) Y_{10}+\int_{0}^{t} G_{1, p}(t-\tau) F_{1}\left(Y_{1}(\tau), Y_{2}(\tau), T(\tau)\right) d \tau \tag{3.2}\\
Y_{2}(t) & =G_{2, p}(t) Y_{20}+\int_{0}^{t} G_{2, p}(t-\tau) F_{2}\left(Y_{1}(\tau), Y_{2}(\tau), T(\tau)\right) d \tau \tag{3.3}\\
T(t) & =G_{3, p}(t) T_{0}+\int_{0}^{t} G_{3, p}(t-\tau) F_{3}\left(Y_{1}(\tau), Y_{2}(\tau), T(\tau)\right) d \tau \tag{3.4}
\end{align*}
$$

For each $\alpha>0$ define the operator $B_{j, p}=I-A_{j, p}$. Then the fractional powers $B_{j, p}^{-\alpha}=\left(I-A_{j, p}\right)^{-\alpha}$ exist and are injective, bounded linear operators on $L^{p}(\Omega)$ (see Pazy [8]). Let $B_{j, p}^{\alpha}=\left(B_{j, p}^{-\alpha}\right)^{-1}$ and $X_{j, p}^{\alpha}=D\left(B_{j, p}^{\alpha}\right)$, the domain of $B_{j, p}^{\alpha}$. Then $X_{j, p}^{\alpha}$ is a Banach space with the graph norm $\|u\|_{\alpha}=$ $\left\|B_{j, p}^{\alpha} w\right\|_{p}$, and for $\alpha>\beta \geq 0, X_{j, p}^{\alpha}$ is a dense subspace of X_{p}^{β} with the
inclusion $X_{j, p}^{\alpha} \subset X_{j, p}^{\beta}$ compact (we use the convention $X_{p}^{0}=L^{p}(\Omega)$). Also if $0 \leq \alpha<1$ we have

$$
\begin{equation*}
X_{j, p}^{\alpha} \subset C^{\mu}(\bar{\Omega}) \quad \text { for every } 0 \leq \mu<m \alpha-n / p \tag{3.5}
\end{equation*}
$$

Note that this inclusion is valid even if $p=1$ (see Henry [5], p. 39).
In addition, $G_{j, p}$ and $B_{j, p}^{\alpha}$ have the properties summarised in the following lemma.

Lemma 3.2. The operators G_{p} and B_{p}^{α} satisfy
(i) $G_{j, p}(t): L^{p}(\Omega) \rightarrow X_{j, p}^{\alpha}$ for all $t>0$,
(ii) $G_{j, p}(t) B_{j, p}^{\alpha} u=B_{j, p}^{\alpha} G_{j, p}(t) u$ for every $u \in X_{j, p}^{\alpha}$,
(iii) $\left\|G_{j, p}(t) u\right\|_{\alpha} \leq C_{1}(\alpha) t^{-\alpha} e^{-t}\|u\|_{p}$ for every $t>0$ and $u \in L^{p}(\Omega)$,
(iv) $\left\|\left(G_{j, p}(t)-I\right) u\right\|_{p} \leq C_{2}(\alpha) t^{\alpha}\|u\|_{\alpha}$ for $0<\alpha \leq 1$ and $u \in X_{j, p}^{\alpha}$.

The proof can be found in Pazy [8].
Select $0<\alpha<1$ and $p>1$ so that (3.5) holds, and use the techniques of Pazy [8] to show that there exists a unique noncontinuable solution $\left(Y_{1}, Y_{2}, T\right)$ to (3.2)-(3.4) for $Y_{10} \in X_{1, p}^{\alpha}, Y_{20} \in X_{2, p}^{\alpha}$ and $T_{0} \in X_{3, p}^{\alpha}$. The solution satisfies

$$
\begin{array}{r}
Y_{1} \in C\left([0, \delta] ; X_{1, p}^{\alpha}\right) \cap C^{1}\left((0, \delta) ; L^{p}(\Omega)\right), \\
Y_{2} \in C\left([0, \delta] ; X_{2, p}^{\alpha}\right) \cap C^{1}\left((0, \delta) ; L^{p}(\Omega)\right), \\
T
\end{array} \in C\left([0, \delta] ; X_{3, p}^{\alpha}\right) \cap C^{1}\left((0, \delta) ; L^{p}(\Omega)\right), ~ \$
$$

for some $\delta>0$; and we have $\left\|Y_{1}(t)\right\|_{\infty}+\left\|Y_{2}(t)\right\|_{\infty}+\|T(t)\|_{\infty} \rightarrow \infty$ as $t \rightarrow t_{\text {max }}$ if $t_{\text {max }}<\infty$.

Suppose now that $\left(Y_{10}, Y_{20}, T_{0}\right) \in L^{\infty}(\Omega)^{3}$ and let $\left\{Y_{10}^{k}\right\}_{k=1}^{\infty}$ be a sequence in $X_{1, p}^{\alpha},\left\{Y_{20}^{k}\right\}_{k=1}^{\infty}$ a sequence in $X_{2, p}^{\alpha}$ and $\left\{T_{0}^{k}\right\}_{k=1}^{\infty}$ a sequence in $X_{3, p}^{\alpha}$ such that $Y_{10}^{k}, Y_{20}^{k}, T_{0}^{k} \geq 0$ and $\left\|Y_{10}^{k}-Y_{10}\right\|_{p} \rightarrow 0,\left\|Y_{20}^{k}-Y_{20}\right\|_{p} \rightarrow 0$ and $\left\|T_{0}^{k}-T_{0}\right\|_{p} \rightarrow 0$ as $t \rightarrow \infty$. Using the equation (3.2) and the properties of $A_{1, p}$ stated in Lemma 3.2, it follows for $\alpha \leq \beta<1$ that

$$
\left\|Y_{1}^{k}\right\|_{\beta} \leq C_{\beta} t^{-\beta}\left\|Y_{10}^{k}\right\|_{p}+\int_{0}^{t} C_{\beta}(t-\tau)^{-\beta}\left\|F_{1}\left(Y_{1}^{k}(\tau), Y_{1}^{k}(\tau), Y_{1}^{k}(\tau)\right)\right\|_{p} d \tau
$$

for all $t \in\left[0, t_{\max }^{k}\right)$, where $t_{\max }^{k}$ is the maximal time of existence for the system (1.1)-(1.5) with initial conditions $0 \leq\left(Y_{10}^{k}, Y_{20}^{k}, T_{0}^{k}\right) \in X_{1, p}^{\alpha} \times X_{2, p}^{\alpha} \times$ $X_{3, p}^{\alpha}$. From these estimates one can deduce the existence of a \bar{C}_{β} such that

$$
\max \left\{\left\|Y_{1}^{k}(t)\right\|_{\beta},\left\|Y_{2}^{k}(t)\right\|_{\beta},\left\|T^{k}(t)\right\|_{\beta}\right\} \leq \bar{C}_{\beta} t^{-\beta}
$$

for all $t \in[0, \delta], k \geq 1$; thus $\left\{\left(Y_{1}^{k}(t), Y_{2}^{k}(t), T^{k}(t)\right)\right\}_{k=1}^{\infty}$ is contained in a bounded subset of $X_{1, p}^{\beta} \times X_{2, p}^{\beta} \times X_{3, p}^{\beta}$ for each $t \in(0, \delta]$. So by the compact imbedding of $X_{j, p}^{\beta}$ in $X_{j, p}^{\alpha}(j=1,2,3)$ for $\alpha<\beta<1$, we see that
for each $t \in(0, \delta]$ the sequences $\left\{Y_{1}^{k}(t)\right\}_{k=1}^{\infty},\left\{Y_{2}^{k}(t)\right\}_{k=1}^{\infty}$ and $\left\{T^{k}(t)\right\}_{k=1}^{\infty}$ contain convergent subsequences $\left\{Y_{1}^{k, i}(t)\right\}_{i=1}^{\infty},\left\{Y_{2}^{k, i}(t)\right\}_{i=1}^{\infty}$ and $\left\{T^{k, i}(t)\right\}_{i=1}^{\infty}$ in $X_{1, p}^{\alpha}, X_{2, p}^{\alpha}$ and $X_{3, p}^{\alpha}$ respectively.

Now define

$$
Y_{1}(t)=\lim _{i \rightarrow \infty} Y_{1}^{k, i}(t), \quad Y_{2}(t)=\lim _{i \rightarrow \infty} Y_{2}^{k, i}(t), \quad T(t)=\lim _{i \rightarrow \infty} T^{k, i}(t)
$$

for each $t \in[0, \delta]$. Then $\left(Y_{1}(t), Y_{2}(t), T(t)\right)$ satisfies (3.2)-(3.4) for each $t \in$ $[0, \delta]$. Replacing $\left[0, t_{\max }\right)$ with $\left[\delta, t_{\max }\right.$) and $\left(Y_{10}, Y_{20}, T_{0}\right)$ by $\left(Y_{1}(\delta), Y_{2}(\delta)\right.$, $T(\delta)$) and using the results already established when $\left(Y_{10}, Y_{20}, T_{0}\right) \in X_{1, p}^{\alpha} \times$ $X_{2, p}^{\alpha} \times X_{3, p}^{\alpha}$, we find that there is a unique, classical noncontinuable solution ($\left.Y_{1}(t), Y_{2}(t), T(t)\right)$ on $\Omega \times\left[0, t_{\text {max }}\right)$, for every $\left(Y_{10}, Y_{20}, T_{0}\right) \in\left(L^{\infty}(\Omega)\right)^{3}$.

Since $F_{1}\left(0, Y_{2}, T\right) \geq 0, F_{2}\left(Y_{1}, 0, T\right) \geq 0$ and $F_{3}\left(Y_{1}, Y_{2}, 0\right) \geq 0$ it follows that $Y_{1}(t), Y_{2}(t)$ and $T(t)$ have nonnegative values on Ω (see [10]), and by the maximum principle we have

$$
\begin{equation*}
\left\|Y_{1}(t)\right\|_{\infty} \leq\left\|Y_{10}\right\|_{\infty} \quad \text { for all } t \in\left[0, t_{\max }\right) \tag{3.6}
\end{equation*}
$$

Multiplying (1.2) by Y_{2}^{p-1} and integrating the result over $\Omega \times(0, t)$ we obtain

$$
\frac{1}{n} \frac{d}{d t} \int_{\Omega} Y_{2}^{p} d x \leq c \int_{\Omega} Y_{2}^{p} d x
$$

where $c=d_{3}\left\|Y_{10}\right\|_{\infty}\left\|f_{1}(T(t))\right\|_{\infty}$, hence

$$
\int_{\Omega} Y_{2}^{p} d x \leq|\Omega|\left\|Y_{20}\right\|_{\infty} e^{n p t} \quad \text { for all } t<t_{\max }
$$

We can then deduce

$$
\begin{equation*}
\left\|Y_{2}(t)\right\|_{\infty} \leq e^{c t}\left\|Y_{20}\right\|_{\infty} \quad \text { for all } t<t_{\max } \tag{3.7}
\end{equation*}
$$

From the expression of $F_{3}\left(Y_{1}, Y_{2}, T\right)$ and (3.7) we can find two positive numbers c_{1} and c_{2} such that

$$
\begin{equation*}
\left\|F_{3}\left(Y_{1}(T), Y_{2}(T), T(t)\right)\right\|_{\infty} \leq e^{c t}\left(c_{1}+c_{2} e^{c t}\right) \quad \text { for all } t<t_{\max } \tag{3.8}
\end{equation*}
$$

where $c_{1}=B_{1} d_{8}\left\|Y_{10}\right\|_{\infty}+d_{9} B_{2}+d_{10}$ and $c_{2}=d_{11}\left\|Y_{20}\right\|_{\infty}$.
From (3.4) and (3.8) we obtain

$$
\|T(t)\|_{\infty} \leq\left\|T_{0}\right\|_{\infty}+\int_{0}^{t} e^{c \tau}\left(c_{1}+c_{2} e^{c \tau}\right) d \tau
$$

from which we have

$$
\begin{equation*}
\|T(t)\|_{\infty} \leq\left\|T_{0}\right\|_{\infty}+\frac{c_{1}}{c}\left(e^{c t}-1\right)+\frac{c_{2}}{2 c}\left(e^{2 c t}-1\right) \quad \text { for all } t<t_{\max } . \tag{3.9}
\end{equation*}
$$

Inequalities (3.6), (3.7) and (3.9) contradict the fact that $t_{\max }<\infty$, hence $t_{\text {max }}=\infty$.
4. Boundedness of the solution. In fact, the solution obtained in Theorem 3.1 is uniformly bounded over $\Omega \times(0, \infty)$.

Theorem 4.1. Assume (CD). Then there exists a positive number M such that

$$
\begin{array}{ll}
0 \leq Y_{1}(x, t) \leq\left\|Y_{10}\right\|_{\infty} & \text { for } x \in \Omega, t \geq 0 \\
0 \leq Y_{2}(x, t), T(x, t) \leq M & \text { for } x \in \Omega, t \geq 0 \tag{4.2}
\end{array}
$$

Proof. The function Y_{1} is uniformly bounded by $\left\|Y_{10}\right\|_{\infty}$ by the maximum principle.

Let $B(x, t)=d_{3} Y_{1}(x, t) f_{1}(T(x, t))-d_{4} f_{2}(T(x, t))-d_{5}-d_{6} Y_{2}(x, t)$. Then we can write

$$
\frac{\partial Y_{2}}{\partial t}=d_{2} \Delta Y_{2}+B(x, t) Y_{2}
$$

with $B(x, t) \leq a$ (for example $a=d_{3}\left\|Y_{10}\right\| B_{1}$) and $B(x, t)$ is locally Lipschitz in (x, t). Moreover, $Y_{2} \in L^{\infty}\left(\mathbb{R}^{+}, L^{1}(\Omega)\right)$. In fact, integrating (1.1) over $\Omega \times(0, t)$ we obtain
(4.3) $\int_{\Omega} Y_{1}(x, t) d x=\int_{\Omega} Y_{10}(x) d x-d_{1} \int_{0}^{t} \int_{\Omega} Y_{1}(x, \tau) Y_{2}(x, \tau) f_{1}(T(x, \tau)) d x d \tau$,
which implies

$$
\begin{equation*}
\int_{0}^{t} \int_{\Omega}\left(Y_{1} Y_{2} f_{1}(T)\right)(x, \tau) d x d \tau \leq \frac{|\Omega|}{d_{1}}\left\|Y_{10}\right\|_{\infty} \quad \text { for all } t \geq 0 \tag{4.4}
\end{equation*}
$$

where $|\Omega|$ is the Lebesgue measure of Ω. Similarly, we get

$$
\begin{align*}
& \int_{\Omega} Y_{2}(x, t) d x \tag{4.5}\\
& \quad \leq \int_{\Omega} Y_{20}(x) d x+d_{3} \int_{0}^{t} \int_{\Omega}\left(Y_{1} Y_{2} f_{1}(T)\right)(x, \tau) d x d \tau \quad \text { for all } t \geq 0
\end{align*}
$$

From (4.4) and (4.5) we obtain

$$
\begin{equation*}
\left\|Y_{2}(t)\right\|_{1} \leq|\Omega|\left(\left\|Y_{20}\right\|_{\infty}+\frac{d_{3}}{d_{1}}\left\|Y_{10}\right\|_{\infty}\right) \quad \text { for all } t \geq 0 \tag{4.6}
\end{equation*}
$$

An application of the result of Alikakos $([1], \S 3)$ shows that $Y_{2}(t)$ is uniformly bounded over $\Omega \times(0, \infty)$:

$$
\begin{equation*}
\left\|Y_{2}(t)\right\|_{\infty} \leq K \quad \text { for all } t \geq 0 \tag{4.7}
\end{equation*}
$$

for some $K>0$.

Now, integrating (1.3) over $\Omega \times(0, t)$ we obtain

$$
\begin{align*}
\int_{\Omega} T(x, t) d x= & \int_{\Omega} T_{0}(x) d x+d_{8} \int_{0}^{t} \int_{\Omega}\left(Y_{1} Y_{2} f_{1}(T)\right)(x, \tau) d x d \tau \tag{4.8}\\
& +d_{9} \int_{0}^{t} \int_{\Omega}\left(Y_{2} f_{2}(T)\right)(x, \tau) d x d \tau \\
& +d_{10} \int_{0}^{t} \int_{\Omega} Y_{2}(x, \tau) d x d \tau+d_{11} \int_{0}^{t} \int_{\Omega} Y_{2}^{2}(x, \tau) d x d \tau
\end{align*}
$$

Integrating (1.2) over $\Omega \times(0, t)$ we obtain

$$
\begin{align*}
& \int_{\Omega} Y_{2}(x, t) d x+d_{4} \int_{0}^{t} \int_{\Omega}\left(Y_{2} f_{2}\right)(x, \tau) d x d \tau+d_{5} \int_{0}^{t} \int_{\Omega} Y_{2}(x, \tau) d x d \tau \tag{4.9}\\
& \quad+d_{6} \int_{0}^{t} \int_{\Omega} Y_{2}^{2}(x, \tau) d x d \tau=d_{3} \int_{0}^{t} \int_{\Omega}\left(Y_{1} Y_{2}\right)(x, \tau) d x d \tau+\int_{\Omega} Y_{20}(x) d x
\end{align*}
$$

from which we deduce that

$$
\begin{equation*}
\int_{0}^{\infty} \int_{\Omega}\left(Y_{2} f_{2}\right)(x, \tau) d x d \tau<\infty \quad \text { and } \quad \int_{0}^{\infty} \int_{\Omega} Y_{2}^{2}(x, \tau) d x d \tau<\infty \tag{4.10}
\end{equation*}
$$

From (4.4)-(4.7) and (4.10) in (4.8) we obtain

$$
\begin{equation*}
\int_{\Omega} T(x, t) d x \leq C \quad \text { for all } t \geq 0 \tag{4.11}
\end{equation*}
$$

i.e., $T \in L^{\infty}\left(\mathbb{R}^{+}, L^{1}(\Omega)\right)$.

To prove that $T \in L^{\infty}\left(\mathbb{R}^{+}, L^{\infty}(\Omega)\right)$ we distinguish two cases. We define $S_{p}(t) \equiv G_{3, p}(t)$.

CASE 1: $n=1$, i.e., $\Omega=(a, b) \subset \mathbb{R}$. In this case we take $E:=L^{1}(\Omega)$ and $F=C(\bar{\Omega})$. Then Lemma 2.2 shows that

$$
\begin{equation*}
\left\|S_{1}(t) \varphi\right\|_{\infty} \leq c t^{-1 / 2}\|\varphi\|_{1} \quad \text { for all } \varphi \in L^{1}(\Omega) \tag{4.12}
\end{equation*}
$$

Take $\alpha=3 / 4$; from Lemma 2.2 and (3.5) we have $S_{1}(t) L^{1}(\Omega) \subset C(\bar{\Omega})$. Applying Lemma 2.1, we conclude that $T \in C_{B}(\delta, \infty ; C(\bar{\Omega}))$ for all $\delta>0$, hence from the result concerning the local existence we obtain

$$
\|T(t)\|_{\infty} \leq C \quad \text { for all } t \geq 0
$$

CASE 2: $n \geq 2$. Let $q_{1}=1, q_{r}=n /(n-r)$ and $E=L^{q_{r}}(\Omega), F=$ $L^{q_{r+1}}(\Omega)$ for $r \in\{1, \ldots, n-1\}$. We have $T \in C_{B}\left(\mathbb{R}^{+}, L^{q_{1}}(\Omega)\right), S_{q_{1}}(t) L^{q_{1}}(\Omega) \subset$ $L^{q_{2}}(\Omega)$ and $\left\|S_{q_{1}}(t) \varphi\right\|_{q_{2}} \leq c t^{-1 / 2}\|\varphi\|_{q_{1}}$. Application of Lemma 2.1 gives $T \in C_{B}\left(\mathbb{R}^{+}, L^{q_{2}}(\Omega)\right)$. Next we take $E=L^{q_{2}}(\Omega)$ and $F=L^{q_{3}}(\Omega)$ to obtain $T \in C_{B}\left(\mathbb{R}^{+}, L^{q_{3}}(\Omega)\right)$. Continuing this process we finally have $T \in$
$C_{B}\left(\mathbb{R}^{+}, L^{n}(\Omega)\right)$. In the last iteration we take $E=L^{n}(\Omega)$ and $F=C(\bar{\Omega})$. As $S_{n}(t) L^{n}(\Omega) \subset X_{3, n}^{\alpha}$ and $\left\|S_{n}(t) \varphi\right\|_{\infty} \leq c t^{-1 / 2}\|\varphi\|_{n}$ for all $\varphi \in L^{n}(\Omega)$ and $T \in C_{B}\left(\mathbb{R}^{+}, L^{n}(\Omega)\right)$, from Lemma 2.1 we conclude that $T \in C_{B}\left(\mathbb{R}^{+} ; C(\bar{\Omega})\right)$.
5. Asymptotic behaviour. First, let us establish a preparatory lemma. Consider the problem

$$
\left\{\begin{array}{l}
\partial u / \partial t+A u=\varphi(t), \tag{P}\\
u(0)=u_{0},
\end{array}\right.
$$

where $-A$ generates an analytic semigroup $G(t)$ in a Banach space $(X,\|\cdot\|)$ with $\operatorname{Re} \sigma(A)>a>0$. We have the following lemma.

Lemma 5.1. Let X be a Banach space. If $\varphi \in L^{\infty}\left(\mathbb{R}^{+}, X\right)$ and the problem (P) has a bounded global solution $u \in L^{\infty}\left(\mathbb{R}^{+}, X\right)$ then for all $0<$ $\alpha<1$ we have
(A) $\sup _{t \geq \delta}\left\|A^{\alpha} u(t)\right\| \leq C(\alpha, \delta)$ for any $\delta>0$, and
(B) the function $t \mapsto A^{\alpha} u(t)$ is Hölder continuous from $[\delta, \infty)$ to X for any $\delta>0$.

Proof. The solution u of (P) satisfies the integral equation

$$
u(t)=G(t) u_{0}+\int_{0}^{t} G(t-\tau) \varphi(\tau) d \tau, \quad t>0 .
$$

Applying A^{α} to both sides yields

$$
\left\|A^{\alpha} u(t)\right\| \leq\left\|A^{\alpha} G(t) u_{0}\right\|+\int_{0}^{t}\left\|A^{\alpha} G(t-\tau) \varphi(\tau)\right\| d \tau .
$$

From this and Lemma 3.2, we obtain

$$
\begin{aligned}
\left\|A^{\alpha} u(t)\right\|_{p} & \leq C_{1}(\alpha) t^{-\alpha} e^{-a t}\left\|u_{0}\right\|+\int_{0}^{t} C_{1}(\alpha)(t-\tau)^{-\alpha} e^{-a(t-\tau)}\|\varphi(\tau)\| d \tau \\
& \leq C_{1}(\alpha)\left\|u_{0}\right\|+C_{1}(\alpha) M \Gamma(1-\alpha) a^{\alpha-1}
\end{aligned}
$$

Here Γ is the gamma function of Euler. Hence $\left\|A^{\alpha} u(t)\right\|$ is uniformly bounded on $[\delta, \infty)$ for any $\delta>0$.

To prove (B), we have

$$
\begin{aligned}
\left\|A^{\alpha} u(t+h)-A^{\alpha} u(t)\right\| \leq & \left\|(G(h)-I) A^{\alpha} G(t) u_{0}\right\| \\
& +\int_{t}^{t+h}\left\|A^{\alpha} G(t+h-\tau) \varphi(\tau)\right\| d \tau \\
& +\int_{0}^{t}\left\|(G(h)-I) A^{\alpha} G(t-\tau) \varphi(\tau)\right\| d \tau .
\end{aligned}
$$

Set

$$
\begin{aligned}
& I_{1}=\left\|(G(h)-I) A^{\alpha} G(t) u_{0}\right\|, \\
& I_{2}=\int_{t}^{t+h}\left\|A^{\alpha} G(t+h-\tau) \varphi(\tau)\right\| d \tau, \\
& I_{3}=\int_{0}^{t}\left\|(G(h)-I) A^{\alpha} G(t-\tau) \varphi(\tau)\right\| d \tau .
\end{aligned}
$$

From the inequalities of Lemma 3.2, there exist two constants $C_{1}(\alpha), C_{2}(\alpha)$ such that

$$
\begin{aligned}
& I_{1} \leq C_{1}(\alpha+\beta) C_{2}(\alpha) t^{-1} e^{-a t}\left\|u_{0}\right\| h^{\beta} \\
& I_{2} \leq M C_{1}(\alpha) h^{1-\alpha} \\
& I_{3} \leq M C_{1}(\alpha+\beta) C_{2}(\beta) \Gamma(1-\alpha-\beta) a^{\alpha+\beta-1} h^{\beta},
\end{aligned}
$$

where $M=\sup _{t \geq 0}\|\varphi(t)\|_{p}$ for every $0<\beta<1$. Taking $\beta<1-\alpha$, we then have for all $t \geq \delta$,

$$
\left\|A^{\alpha} u(t+h)-A^{\alpha} u(t)\right\| \leq C\left(\alpha,\left\|u_{0}\right\|\right) \max \left\{h^{\beta}, h^{1-\alpha}\right\}
$$

Remark. As a consequence of this lemma, the function $t \mapsto A^{\alpha} u(t)$ is uniformly continuous.

The following proposition is also useful in the sequel.
Proposition 5.2. For any $\delta>0$, the family $\left\{Y_{1}(t): t \geq \delta\right\}$ is relatively compact in $C(\bar{\Omega})$.

Proof. We have $\partial Y_{1} / \partial t=d_{0} \Delta Y_{1}+F_{1}\left(Y_{1}, Y_{2}, T\right)$ where $F_{1}\left(Y_{1}, Y_{2}, T\right)=$ $-d_{1} Y_{1} Y_{2} f_{1}(T)$. There is a positive constant N such that $\left\|F_{1}\left(Y_{1}, Y_{2}, T\right)\right\|_{\infty} \leq$ N for all $t \geq 0$. Let $0<\varepsilon<1$ and $t>\varepsilon$. Then we can write $Y_{1}(t)=$ $G_{1, \infty}(\varepsilon) Y_{1}(t-\varepsilon)+\left[Y_{1}(t)-G_{1, \infty}(\varepsilon) Y_{1}(t-\varepsilon)\right]$, where $G_{1, \infty}(t)$ is the semigroup generated by $d_{0} \Delta$ with homogeneous Neumann boundary conditions in the Banach space $C(\bar{\Omega})$. We set

$$
Y_{1 \varepsilon}(t)=G_{1, \infty}(\varepsilon) Y_{1}(t-\varepsilon) \quad \text { and } \quad \bar{Y}_{1 \varepsilon}(t)=Y_{1}(t)-G_{1, \infty}(\varepsilon) Y_{1}(t-\varepsilon) .
$$

Then $\left\{Y_{1 \varepsilon}(t): t \geq \delta\right\}$ is relatively compact in $C(\bar{\Omega})$ since $\left\{Y_{1}(t-\varepsilon): t \geq \delta\right\}$ is bounded and $G_{1, \infty}(\delta)$ is a compact operator. Also,

$$
\left\|\bar{Y}_{1 \varepsilon}(t)\right\|_{\infty}=\left\|\int_{t-\varepsilon}^{t} G_{1, \infty}(t-s) F_{1}\left(Y_{1}, Y_{2}, T\right)(s) d s\right\|_{\infty} \leq \varepsilon N
$$

therefore $\left\{Y_{1}(t): t \geq 1\right\}$ is totally bounded, hence $\left\{Y_{1}(t): t \geq 1\right\}$ is relatively compact in $C(\bar{\Omega})$. As $\left\{Y_{1}(t): \delta \leq t \leq 1\right\}$ is compact in $C(\bar{\Omega})$, it follows that $\left\{Y_{1}(t): t \geq \delta\right\}$ is relatively compact in $C(\bar{\Omega})$. The same holds true for $\left\{Y_{2}(t): t \geq \delta\right\}$ and $\{T(t): t \geq \delta\}$.

ThEOREM 5.3. Under the assumptions (CD) we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left\|Y_{1}(t)\right\|_{\infty}=0, \quad \lim _{t \rightarrow \infty}\left\|Y_{2}(t)\right\|_{\infty}=0 \tag{5.1}
\end{equation*}
$$

and there exists a positive constant T_{∞} such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left\|T(t)-T_{\infty}\right\|_{\infty}=0 \tag{5.2}
\end{equation*}
$$

Proof. From (1.1) we have

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega} Y_{1}(x, t) d x=-d_{1} \int_{\Omega}\left(Y_{1}(t) Y_{2}(t) f_{1}(T(t))\right)(x) d x \leq 0, \tag{5.3}
\end{equation*}
$$

hence the function $t \mapsto \int_{\Omega} Y_{1}(x, t) d x$ is nonincreasing. Let \bar{Y}_{1} be a constant such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{\Omega} Y_{1}(x, t) d x=\bar{Y}_{1} \tag{5.4}
\end{equation*}
$$

From (1.2) we have
(5.5) $\frac{d}{d t} \int_{\Omega} Y_{2}(x, t) d x=\int_{\Omega}\left(d_{3} Y_{1} Y_{2} f_{1}(T)-d_{4} Y_{2} f_{2}(T)-d_{5} Y_{2}-d_{6} Y_{2}^{2}\right)(x, t) d x$.

From (5.3) and (5.5) we deduce

$$
\begin{align*}
\frac{d}{d t} \int_{\Omega}\left(\frac{1}{d_{1}} Y_{1}+\right. & \left.\frac{1}{d_{3}} Y_{2}\right)(x, t) d x \tag{5.6}\\
& =-\int_{\Omega}\left(\frac{d_{4}}{d_{3}} Y_{2} f_{2}(T)+\frac{d_{5}}{d_{3}} Y_{2}+\frac{d_{6}}{d_{3}} Y_{2}^{2}\right)(x, t) d x \leq 0
\end{align*}
$$

from which we infer that there is a constant K such that

$$
\begin{equation*}
\frac{1}{d_{1}} \int_{\Omega} Y_{1}(x, t) d x+\frac{1}{d_{3}} \int_{\Omega} Y_{2}(x, t) d x \rightarrow K \quad \text { as } t \rightarrow \infty \tag{5.7}
\end{equation*}
$$

Combining (5.1) and (5.7) we conclude that there is a positive constant \bar{Y}_{2} such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{\Omega} Y_{2}(x, t) d x=\bar{Y}_{2} \tag{5.8}
\end{equation*}
$$

Integrating (5.6) over $(0, \infty)$ we conclude that there is a constant C such that

$$
\begin{equation*}
\int_{0}^{\infty} \int_{\Omega} Y_{2}(x, \tau) d x d \tau \leq C \tag{5.9}
\end{equation*}
$$

Combining (5.8) and (5.9) we find that $\bar{Y}_{2}=0$, whence

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{\Omega} Y_{2}(x, t) d x=0 \tag{5.10}
\end{equation*}
$$

As $Y_{2}(x, t) \geq 0$, the invariance principle of La Salle [5] and (5.10) imply $\lim _{t \rightarrow \infty}\left\|Y_{2}(t)\right\|_{\infty}=0$.

Multiplying (1.1) by Y_{1} and integrating over Ω and using Poincaré's inequality we obtain

$$
\frac{d}{d t} \int_{\Omega} Y_{1}^{2}(x, t) d x \leq-c \int_{\Omega} Y_{1}^{2}(x, t) d x
$$

for some positive constant $c>0$, from which we deduce

$$
\begin{equation*}
\left\|Y_{1}(t)\right\|_{2}^{2} \leq e^{-c t}\left\|Y_{10}\right\|_{2}^{2} \tag{5.11}
\end{equation*}
$$

Also, as a consequence of the maximum principle we have

$$
\begin{equation*}
\left\|Y_{1}(t)\right\|_{\infty} \leq\left\|Y_{1}(s)\right\|_{\infty} \quad \text { for } t \geq s>0 \tag{5.12}
\end{equation*}
$$

According to Proposition 5.2, $\left\{Y_{1}(t): t \geq \delta\right\}$ is relatively compact in $C(\bar{\Omega})$ for all $\delta>0$; so from this, (5.11) and (5.12) we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left\|Y_{1}(t)\right\|_{\infty}=0 \tag{5.13}
\end{equation*}
$$

Multiplying (1.2) by Y_{2} and integrating over $\Omega \times(0, t)$ we have

$$
\begin{align*}
&\left\|Y_{2}(t)\right\|_{2}^{2}+2 d_{2} \int_{0}^{t}\left\|\nabla Y_{2}(\tau)\right\|_{2}^{2} d \tau+2 d_{4} \int_{0}^{t} \int_{\Omega} Y_{2}^{2} f_{2}(T) d x d \tau \tag{5.14}\\
&+2 d_{5} \int_{0}^{t}\left\|Y_{2}(\tau)\right\|_{2}^{2} d \tau+2 d_{6} \int_{0}^{t} \int_{\Omega} Y_{2}^{3} d x d \tau \\
&=\left\|Y_{20}\right\|_{2}^{2}+2 d_{3} \int_{0}^{t} \int_{\Omega} Y_{1} Y_{2}^{2} f_{1}(T) d x d \tau
\end{align*}
$$

Similarly for (1.3),

$$
\begin{align*}
&\|T(t)\|_{2}^{2}+2 d_{7} \int_{0}^{t}\|\nabla T(\tau)\|_{2}^{2} d \tau \tag{5.15}\\
&=\left\|T_{0}\right\|_{2}^{2}+2 d_{8} \int_{0}^{t} \int_{\Omega} Y_{1} Y_{2} T f_{1}(T) d x d \tau \\
&+2 d_{9} \int_{0}^{t} \int_{\Omega} Y_{2} T f_{2}(T) d x d \tau \\
&+2 d_{10} \int_{0}^{t} \int_{\Omega} Y_{2} T d x d \tau+2 d_{11} \int_{0}^{t} \int_{\Omega} Y_{2}^{2} T d x d \tau
\end{align*}
$$

By (4.4) and as Y_{1}, Y_{2} and T are uniformly bounded, it follows from (5.14)
and (5.15) that $\nabla Y_{2}, \nabla T \in L^{2}\left(\mathbb{R}, L^{2}(\Omega)\right)$, i.e.

$$
\begin{equation*}
\int_{0}^{\infty}\left\|\nabla Y_{1}(\tau)\right\|_{2}^{2} d \tau<\infty, \quad \int_{0}^{\infty}\left\|\nabla Y_{2}(\tau)\right\|_{2}^{2} d \tau<\infty, \quad \int_{0}^{\infty}\|\nabla T(\tau)\|_{2}^{2} d \tau<\infty \tag{5.16}
\end{equation*}
$$

For the equation (1.1) for example, we define the operator B_{p} as follows:

$$
D\left(B_{p}\right)=\left\{u \in W^{2, p}(\Omega):(\partial u / \partial \nu) \mid \partial \Omega=0\right\}, \quad B_{p} u=\left(-d_{0} \Delta+a\right) u,
$$

with a fixed positive real number $a>0$. It is well known that $-B_{p}$ generates an analytic semigroup and $\operatorname{Re} \sigma\left(B_{p}\right)>a>0$. Also, if we set $\varphi(t)=a Y_{1}(t)+$ $F_{1}\left(Y_{1}, Y_{2}, T\right)(t)$, then $\varphi \in L^{\infty}\left(\mathbb{R}^{+}, L^{p}(\Omega)\right)$. Application of Lemma 5.1 then implies

$$
\begin{equation*}
\sup _{t \geq \delta}\left\|B_{p}^{\alpha} Y_{1}(t)\right\|_{p} \leq C(p, \alpha, \delta) \quad \text { for any } \delta>0 \tag{5.17}
\end{equation*}
$$

and

$$
\begin{equation*}
t \mapsto B_{p}^{\alpha} Y_{1}(t) \text { is uniformly continuous from }[\delta, \infty) \text { to } L^{p}(\Omega) \tag{5.18}
\end{equation*}
$$ for any $\delta>0$.

The same holds for Y_{2} and T.
By (5.18) we find that $t \mapsto\left\|\nabla Y_{1}(t)\right\|_{2}, t \mapsto\left\|\nabla Y_{2}(t)\right\|_{2}$ and $t \mapsto\|\nabla T(t)\|_{2}$ are uniformly continuous on $[\delta, \infty)$ by choosing $p=2$ and suitable $\alpha \in(0,1)$ and m. From this and (5.16), Lemma 5.1 gives

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left\|\nabla Y_{1}(t)\right\|_{2}=0, \quad \lim _{t \rightarrow \infty}\left\|\nabla Y_{2}(t)\right\|_{2}=0, \quad \lim _{t \rightarrow \infty}\|\nabla T(t)\|_{2}=0 \tag{5.19}
\end{equation*}
$$

The interested reader can see [7] for details.
Since $\{T(t): t \geq \delta\}$ is compact in $C(\bar{\Omega})$ it follows that there is a sequence $\left\{t_{k}\right\}$ such that

$$
\lim _{t_{k} \rightarrow \infty} T\left(t_{k}\right)=T_{\infty} \quad \text { in } C(\bar{\Omega}),
$$

where T_{∞} is a constant. Owing to the Poincaré inequality (see [11]) we have

$$
\lambda\left\|T(t)-|\Omega|^{-1} \int_{\Omega} T(x, t) d x\right\|_{2}^{2} \leq\|\nabla T(t)\|_{2}^{2}
$$

Here λ is the smallest positive eigenvalue of $-\Delta$ with homogeneous Neumann boundary conditions on $\partial \Omega$. Since the limit T_{∞} is uniquely determined we have

$$
\lim _{t \rightarrow \infty} T(t)=T_{\infty} \quad \text { in } C(\bar{\Omega}) .
$$

6. Rates of convergence. In this section we study the rates of convergence obtained in Theorem 5.3.

Theorem 6.1. Assume (CD). Then for given $\mu \in[0,2)$, there exist $K_{1}(\mu), K_{2}(\mu), K(\mu)>0$ and $\varrho, \sigma, \omega>0$ such that

$$
\begin{aligned}
\left\|Y_{1}(t)\right\|_{C^{\mu}(\Omega)} & \leq K_{1}(\mu) e^{-\varrho\left(t-t^{*}\right)} \\
\left\|Y_{2}(t)\right\|_{C^{\mu}(\Omega)} & \leq K_{2}(\mu) e^{-\sigma\left(t-t^{*}\right)} \\
\|T(t)\|_{C^{\mu}(\Omega)} & \leq K(\mu) e^{-\omega\left(t-t^{*}\right)}
\end{aligned}
$$

for some $t^{*}>0$, as $t \rightarrow \infty$, where $0<\sigma<d_{5}, \varrho=\min \left\{\sigma, d_{0} \lambda\right\}, \omega=$ $\min \left\{\sigma, d_{7} \lambda\right\}$ and λ is the smallest positive eigenvalue of $-\Delta$ with homogeneous Neumann boundary condition on $\partial \Omega$.

Let us recall the following two lemmas.
Lemma 6.2. For $1<p<\infty$ and $d>0$, let L_{p} be the operator defined by $D\left(L_{p}\right)=\left\{u \in W^{2, p}(\Omega):(\partial u / \partial \nu) \mid \partial \Omega=0\right\}, L_{p} u=-d \Delta u$, and let the operators $Q_{0}, Q_{+}: L^{p}(\Omega) \rightarrow L^{p}(\Omega)$ be defined by

$$
Q_{0} u=\frac{1}{|\Omega|} \int_{\Omega} u(x) d x, \quad Q_{+} u=u-Q_{0} u .
$$

Define the operator L_{p+} as $L_{p+} \equiv L_{p} \mid Q_{+} L^{p}(\Omega)$, the restriction of L_{p} to $Q_{+} L^{p}(\Omega)$. Then there exists a constant $C_{3}(\alpha)>0$ such that for $u \in L^{p}(\Omega)$ and $t>0$,

$$
\left\|L_{p+}^{\alpha} e^{-t L_{p+}} Q_{+} u\right\|_{p} \leq C_{3}(\alpha) q(t)^{-\alpha} e^{-d \lambda t}\left\|Q_{+} u\right\|_{p}
$$

where $q(t)=\min \{t, 1\}$ and λ is the smallest positive eigenvalue of $-\Delta$ with homogeneous Neumann boundary conditions on $\partial \Omega$.

Lemma 6.2 is proved by Rothe [9].
Lemma 6.3. For $\alpha \in[0,1)$ and $\beta>0$, there exists a constant $C(\alpha, \beta)>0$ such that

$$
\int_{0}^{t} q(\xi)^{-\alpha} e^{\beta \xi} d \xi \leq C(\alpha, \beta) e^{\beta t} .
$$

For the proof, see [6].
Proof of Theorem 6.1. For $1<p<\infty$ we take the operators

$$
\begin{aligned}
& D\left(A_{p}\right)=D\left(B_{p}\right)=D\left(R_{p}\right)=\left\{u \in W^{2, p}(\Omega):(\partial u / \partial \nu) \mid \partial \Omega=0\right\}, \\
& A_{p} u=-d_{0} \Delta u, \quad B_{p}=-\left(d_{2} \Delta-d_{5}\right) u, \quad R_{p}=-d_{7} \Delta u .
\end{aligned}
$$

By Theorem 5.3 we already know that $Y_{1}(t) \rightarrow 0$ and $Y_{2}(t) \rightarrow 0$ in $C(\bar{\Omega})$ as $t \rightarrow \infty$, hence for any $\varepsilon>0$ there exists a constant $t^{*}>0$ such that

$$
\begin{equation*}
d_{3} Y_{1} f_{1}(T)<\varepsilon \quad \text { for all } t \geq t^{*} \tag{6.1}
\end{equation*}
$$

We take $0<\varepsilon<d_{5}$.
(I) The decay rate of $\left\|Y_{2}(t)\right\|_{p}$. From (1.2) and (6.1) we get

$$
\begin{equation*}
\frac{\partial Y_{2}}{\partial t} \leq d_{2} \Delta Y_{2}-\left(d_{5}-\varepsilon\right) Y_{2}, \quad t>t^{*} \tag{6.2}
\end{equation*}
$$

Multiplying both sides by Y_{2}^{p-1} for $p \in[1, \infty)$, integrating over Ω and using Green's formula, we obtain

$$
\begin{equation*}
\frac{d}{d t}\left\|Y_{2}(t)\right\|_{p}^{p} \leq-p\left(d_{5}-\varepsilon\right)\left\|Y_{2}(t)\right\|_{p}^{p} \quad \text { for } t>t^{*} \tag{6.3}
\end{equation*}
$$

which leads to

$$
\left\|Y_{2}(t)\right\|_{p} \leq\left\|Y_{2}\left(t^{*}\right)\right\|_{p} e^{-\left(d_{5}-\varepsilon\right)\left(t-t^{*}\right)} \quad \text { for } t>t^{*}
$$

The Hölder inequality then yields

$$
\begin{equation*}
\left\|Y_{2}(t)\right\|_{p} \leq M|\Omega|^{1 / p} e^{-\left(d_{5}-\varepsilon\right)\left(t-t^{*}\right)} \quad \text { for } t>t^{*} \tag{6.4}
\end{equation*}
$$

where M is the positive number appearing in (4.2).
(II) The decay rate of $\left\|Y_{2}(t)\right\|_{C^{\mu}(\bar{\Omega})}$. To investigate the decay rate of $\left\|Y_{2}(t)\right\|_{C^{\mu}(\bar{\Omega})}$, we treat the following integral equation which is equivalent to (1.2) with (1.4) for $t>t^{*}$:

$$
\frac{\partial Y_{2}}{\partial t}=d_{2} \Delta Y_{2}-d_{5} Y_{2}+F\left(Y_{1}, Y_{2}, T\right)
$$

where $F\left(Y_{1}, Y_{2}, T\right)=d_{3} Y_{1} Y_{2} f_{1}(T)-d_{4} Y_{2} f_{2}(T)-d_{6} Y_{2}^{2}$. Let $G_{p}(t)$ be the semigroup generated by $-B_{p}$. Then

$$
\begin{equation*}
Y_{2}(t)=G_{p}\left(t-t^{*}\right) Y_{2}\left(t^{*}\right)+\int_{t^{*}}^{t} G_{p}(t-\tau) F(\tau) d \tau, \quad t>t^{*} \tag{6.5}
\end{equation*}
$$

From Lemma 3.2(iii), we obtain

$$
\begin{equation*}
\left\|B_{p}^{\alpha} Y_{2}(t)\right\|_{p} \leq C_{1}(\alpha) q\left(t-t^{*}\right)^{-\alpha} e^{-d_{5}\left(t-t^{*}\right)}\left\|Y_{2}\left(t^{*}\right)\right\|_{p}+d_{3} M B_{1} J_{1}(t) \tag{6.6}
\end{equation*}
$$

where

$$
J_{1}(t)=\int_{t^{*}}^{t}\left\|G_{p}(t-\tau)\right\|_{L^{p}(\Omega) \rightarrow L^{p}(\Omega)}\left\|Y_{2}(\tau)\right\|_{p} d \tau
$$

It is sufficient to estimate $J_{1}(t)$. By (6.4) and Lemmas 3.2 and 6.3 we have

$$
\begin{align*}
J_{1}(t) & \leq C_{1}(\alpha) M|\Omega|^{1 / p} \int_{0}^{t-t^{*}} q\left(t-t^{*}-\tau\right)^{-\alpha} e^{-\left(d_{5}-\varepsilon\right) \tau} d \tau \tag{6.7}\\
& \leq C_{1}(\alpha) M|\Omega|^{1 / p} e^{-\left(d_{5}-\varepsilon\right)\left(t-t^{*}\right)} \quad \text { for } t \geq t^{*}
\end{align*}
$$

Consequently, the imbedding $D\left(B_{p}^{\alpha}\right) \subset C^{\mu}(\bar{\Omega})$ ensures the existence of a constant $K_{2}(\mu)>0$ such that for every $0<\sigma<d_{5}$ there is $t^{*}>0$ such that

$$
\begin{equation*}
\left\|Y_{2}(t)\right\|_{C^{\mu}(\bar{\Omega})} \leq K_{2}(\mu) e^{-\sigma\left(t-t^{*}\right)} \quad \text { for } t>t^{*} \tag{6.8}
\end{equation*}
$$

(III) The decay rate of $\left\|Y_{1}(t)\right\|_{C^{\mu}(\bar{\Omega})}$. First we write $Y_{1}(t)=Q_{0} Y_{1}(t)+$ $Q_{+} Y_{1}(t)$, where

$$
Q_{0} Y_{1}(t)=\frac{1}{|\Omega|} \int_{\Omega} Y_{1}(x, t) d x, \quad Q_{+} Y_{1}(t)=Y_{1}(t)-Q_{0} Y_{1}(t)
$$

We see from (4.3) and the fact that $Y_{1} \rightarrow 0$ as $t \rightarrow \infty$ in $C(\bar{\Omega})$ that

$$
\begin{align*}
Q_{0} Y_{1}(t) & \equiv \frac{1}{|\Omega|} \int_{\Omega} Y_{1}(x, t) d x \tag{6.9}\\
& =\frac{1}{|\Omega|} \int_{\Omega} Y_{10}(x, t) d x-\frac{d_{1}}{|\Omega|} \int_{0}^{t} \int_{\Omega}\left(Y_{1} Y_{2} f_{1}\right)(x, \tau) d x d \tau \\
& =\frac{d_{1}}{|\Omega|} \int_{t}^{\infty} \int_{\Omega}\left(Y_{1} Y_{2} f_{1}\right)(x, \tau) d x d \tau \\
& \leq \frac{d_{1}}{|\Omega|} B_{1} M_{0} \int_{t}^{\infty} \int_{\Omega} Y_{2}(x, \tau) d x d \tau \\
& \leq d_{1} B_{1} M_{0} \int_{t}^{\infty} e^{-\sigma\left(\tau-t^{*}\right)} d \tau \\
& \leq \frac{1}{\varrho} d_{1} B_{1} M_{0} e^{-\varrho\left(t-t^{*}\right)} \quad \text { for } t>t^{*}
\end{align*}
$$

Next, we study the decay of $Q_{+} Y_{1}(t)$. We consider the integral equation associated with (1.1) and apply $A_{p+}^{\alpha} Q_{+}$to get
$A_{p+}^{\alpha} Q_{+} Y_{1}(t)=G_{1, p+}\left(t-t^{*}\right) Q_{+} Y_{1}\left(t^{*}\right)-d_{1} \int_{t^{*}}^{t} G_{1, p+}(t-\tau)\left(Q_{+} Y_{1} Y_{2} f_{1}\right)(\tau) d \tau$ for $t>t^{*}$. By Lemma 6.2, we get

$$
\begin{align*}
\left\|A_{p+}^{\alpha} Q_{+} Y_{1}(t)\right\|_{p} \leq & C_{3}(\alpha) q\left(t-t^{*}\right)^{-\alpha} e^{-d_{0} \lambda\left(t-t^{*}\right)}\left\|Q_{+} Y_{1}\left(t^{*}\right)\right\|_{p} \tag{6.10}\\
& +M B_{1} d_{1} C_{3}(\alpha)\left\|Q_{+}\right\| J_{2}(t) \quad \text { for } t>t^{*}
\end{align*}
$$

where $J_{2}(t)=\int_{t^{*}}^{t} q(t-\tau)^{-\alpha} e^{-d_{0} \lambda(t-\tau)}\left\|Y_{2}(\tau)\right\|_{p} d \tau$ for $t>t^{*}$ and $\left\|Q_{+}\right\|$is the norm of the linear operator $Q_{+}: L^{p}(\Omega) \rightarrow L^{p}(\Omega)$. Here $Q_{+} Y_{1}\left(t^{*}\right) \in D\left(A_{p+}^{\alpha}\right)$ because $t>t^{*}$ and by the smoothness of $Y_{1}\left(t^{*}\right)$. By Lemma 6.3,

$$
\begin{align*}
J_{2}(t) & =\int_{t^{*}}^{t} q(t-\tau)^{-\alpha} e^{-d_{0} \lambda(t-\tau)}\left\|Y_{2}(\tau)\right\|_{p} d \tau \tag{6.11}\\
& \leq M|\Omega|^{1 / p} \int_{0}^{t-t^{*}} q(\xi)^{-\alpha} e^{-d_{0} \lambda \xi} d \xi \\
& \leq C\left(\alpha, d_{0} \lambda\right) e^{-d_{0} \lambda\left(t-t^{*}\right)} \quad \text { for } t>t^{*}
\end{align*}
$$

Let $\varrho=\min \left\{\sigma, d_{0} \lambda\right\}$. Now we take p, m and α as in (3.5), so that by combining (6.10)-(6.12) we get the decay rate

$$
\begin{equation*}
\left\|Y_{1}(t)\right\|_{C^{\mu}(\bar{\Omega})} \leq K_{1}(\mu) e^{-\varrho\left(t-t^{*}\right)} \quad \text { for } t>t^{*} \tag{6.12}
\end{equation*}
$$

(IV) The decay rate of $\left\|T(t)-T_{\infty}\right\|_{C^{\mu}(\bar{\Omega})}$. The argument in (III) can also be used to investigate this decay rate. We write $T(t)-T_{\infty}=\left(Q_{0} T(t)-T_{\infty}\right)$ $+Q_{+} T(t)$. We see from (4.7) that

$$
\left|Q_{0} T(t)-T_{\infty}\right| \leq D|\Omega|^{-1} N \int_{t}^{\infty} \int_{\Omega} Y_{2}(x, \tau) d x d \tau
$$

where $D=\max \left\{d_{8}, d_{9}, d_{10}, d_{11}\right\}$ and $N=M_{0} B_{1}+B_{2}+M+1$. From the estimate of $\left\|Y_{2}(t)\right\|_{C^{\mu}(\bar{\Omega})}$, we obtain

$$
\begin{equation*}
\left|Q_{0} T(t)-T_{\infty}\right| \leq \frac{1}{\sigma} D N C(0) e^{-\sigma\left(t-t^{*}\right)} \quad \text { for } t>t^{*} \tag{6.13}
\end{equation*}
$$

Next we study the decay of $Q_{+} T(t)$. We consider the integral equation associated with (1.3) and apply $R_{p+}^{\alpha} Q_{+}$with $\alpha \in(0,1)$, to get
$R_{p+}^{\alpha} Q_{+} T(t)=R_{p+}^{\alpha} S_{p}\left(t-t^{*}\right) Q_{+} T\left(t^{*}\right)+\int_{t^{*}}^{t} R_{p+}^{\alpha} S_{p}(t-\tau) Q_{+} F_{3}\left(Y_{1}, Y_{2}, T\right)(\tau) d \tau$ for $t>t^{*}$. By Lemma 6.2,

$$
\begin{aligned}
\left\|R_{p+}^{\alpha} Q_{+} T(t)\right\|_{p} \leq & C_{3}(0) e^{-d_{7} \lambda\left(t-t^{*}\right)}\left\|Q_{+} T\left(t^{*}\right)\right\|_{p} \\
& +N C_{3}(\alpha)\left\|Q_{+}\right\| \int_{t^{*}}^{t} q(t-\tau)^{-\alpha} e^{-d_{7} \lambda(t-\tau)}\left\|Y_{2}(\tau)\right\|_{p} d \tau
\end{aligned}
$$

for $t>t^{*}$. The estimate of $\left\|Y_{2}(t)\right\|_{C^{\mu}(\bar{\Omega})}$ yields

$$
\begin{aligned}
\left\|R_{p+}^{\alpha} Q_{+} T(t)\right\|_{p} \leq & C(0)\left\|Q_{+} T\left(t^{*}\right)\right\|_{p} e^{-d_{7} \lambda\left(t-t^{*}\right)} \\
& +N^{\prime} \int_{t^{*}}^{t} q(t-\tau)^{-\alpha} e^{-d_{7} \lambda(t-\tau)} e^{-\sigma\left(\tau-t^{*}\right)} d \tau
\end{aligned}
$$

for $t>t^{*}$, where $N^{\prime}=M N|\Omega|^{1 / p} C(\alpha)\left\|Q_{+}\right\|$. By Lemma 6.3 we get

$$
\begin{align*}
\left\|R_{p+}^{\alpha} Q_{+} T(t)\right\|_{p} \leq & C(0)\left\|Q_{+} T\left(t^{*}\right)\right\|_{p} e^{-d_{7} \lambda\left(t-t^{*}\right)} \tag{6.14}\\
& +N^{\prime} C\left(\alpha, d_{7} \lambda\right) e^{-d_{7} \lambda\left(t-t^{*}\right)} \quad \text { for } t>t^{*}
\end{align*}
$$

Let $\omega=\min \left\{\sigma, d_{7} \lambda\right\}$ and take p and α as in (3.5). By combining (6.12) and (6.13) we get

$$
\left\|T(t)-T_{\infty}\right\|_{C^{\mu}(\bar{\Omega})} \leq K(\mu) e^{-\omega\left(t-t^{*}\right)} \quad \text { for } t>t^{*}
$$

Remark. As a final remark, note that if

$$
\begin{equation*}
d_{3}+d_{8} \leq d_{1}, \quad d_{9} \leq d_{4}, \quad d_{10} \leq d_{5}, \quad d_{11} \leq d_{6} \tag{6.15}
\end{equation*}
$$

then

$$
\begin{equation*}
T_{\infty} \leq \frac{1}{|\Omega|}\left(\left\|Y_{10}\right\|_{1}+\left\|Y_{20}\right\|_{1}+\left\|T_{0}\right\|_{1}\right) \tag{6.16}
\end{equation*}
$$

Indeed, from equations (1.1)-(1.3) and the boundary conditions (1.4)-(1.5) we have

$$
\begin{align*}
& \quad \int_{\Omega} Y_{1} d x+\int_{\Omega} Y_{2} d x+\int_{\Omega} T d x \tag{6.17}\\
& =\int_{\Omega} Y_{10} d x+\int_{\Omega} Y_{20} d x+\int_{\Omega} T_{0} d x \\
& \quad+\left(d_{3}+d_{8}-d_{1}\right) \int_{0}^{t} \int_{\Omega} Y_{1} Y_{2} f_{1}(T) d x d \tau+\left(d_{9}-d_{4}\right) \int_{0}^{t} \int_{\Omega} Y_{2} f_{2}(T) d x d \tau \\
& \quad+\left(d_{10}-d_{5}\right) \int_{0}^{t} \int_{\Omega} Y_{2} d x d \tau+\left(d_{11}-d_{6}\right) \int_{0}^{t} \int_{\Omega} Y_{2}^{2} d x d \tau
\end{align*}
$$

The estimate (6.16) follows from (6.15) and (6.17).
Acknowledgements. I would like to thank Dr. M. Kirane for suggesting the problem (1.1)-(1.5).

References

[1] N. D. Alikakos, An application of the invariance principle to reaction-diffusion equations, J. Differential Equations 33 (1979), 201-225.
[2] H. Amann, Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math. 45 (1983), 225-254.
[3] E. Conway, D. Hoff and J. Smoller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations, SIAM J. Appl. Math. 35 (1978), 1-16.
[4] A. Haraux et M. Kirane, Estimations C^{1} pour des problèmes paraboliques semilinéaires, Ann. Fac. Sci. Toulouse 5 (1983), 265-280.
[5] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. 840, Springer, New York, 1981.
[6] H. Hoshino and Y. Yamada, Asymptotic behavior of global solutions for some reaction-diffusion equations, Funkcial. Ekvac. 34 (1991), 475-490.
[7] M. Kirane and A. Youkana, A reaction-diffusion system modelling the post irridiation oxydation of an isotactic polypropylene, Demonstratio Math. 23 (1990), 309-321.
[8] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.
[9] F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lecture Notes in Math. 1072, Springer, Berlin, 1984.
[10] D. Schmitt, Existence globale ou explosion pour les systèmes de réaction-diffusion avec contrôle de masse, Thèse de doctorat de l'Université Henri Poincaré, Nancy I, 1995.
[11] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer, Berlin, 1983.

Salah Badraoui
Institut des Sciences Exactes
Université 8 mai 1945
BP. 401, Guelma 24000, Algeria

Received on 15.6.1998;
revised version on 19.11.1998

[^0]: 1991 Mathematics Subject Classification: 35K57, 35B40, 35B45.
 Key words and phrases: reaction-diffusion equations, boundedness, global existence, large time behaviour.

