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ON AN INTERVAL-PARTITIONING SCHEME

Abstract. In a recent paper, Neuts, Rauschenberg and Li [10] examined,
by computer experimentation, four different procedures to randomly parti-
tion the interval [0, 1] into m intervals. The present paper presents some
new theoretical results on one of the partitioning schemes. That scheme is
called Random Interval (RI); it starts with a first random point in [0, 1]
and places the kth point at random in a subinterval randomly picked from
the current k subintervals (1 < k < m).

1. Introduction. In a recent paper, Neuts, Rauschenberg and Li [10]
examined, by computer experimentation, how different methods of randomly
partitioning the interval [0, 1] into m intervals can be identified from the
resulting fragments. The four partitioning schemes treated in [10] are as
follows.

1. Random Partition (RP): This is the familiar method where m −
1 points are chosen uniformly and independently on [0, 1]. An extensive
literature review is given by Pyke [11]. See also, for example, Darling [3],
Karlin and Taylor [6, pp. 100–107] and Mountford and Port [9].

2. Longest Interval First (LI): A first point is chosen at random in [0, 1].
For k = 2, . . . ,m − 1, the kth point is uniformly distributed in the longest
of the current k subintervals.

3. Random Interval (RI): Starting with a first random point in [0, 1], to
determine the kth point, 2 ≤ k ≤ m − 1, one of the current k subintervals
is chosen at random and a point is selected at random in it.

4. Modified Random Interval (MRI): Starting with a first random point
in [0, 1], the kth point, 2 ≤ k ≤ m − 1, is placed at random in an interval
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chosen with equal probability from among those of the k current intervals
that are at least of length 1/k.

The procedures RP and LI have been the subject of considerable study.
For RP, the Glivenko–Cantelli Theorem (see, e.g., Laha and Rohatgi [7,
p. 114]) ensures that the empirical distribution of the subdivision points
converges almost surely to the uniform distribution. Intuitively one expects
convergence to uniformity but at an even faster rate if the longest interval
is chosen at each stage, and Kakutani [5] conjectured that for LI the em-
pirical distribution Fm(x) of the m points is asymptotically uniform with
probability one. This is rather more difficult to prove than for RP as the
division process is more complicated. The conjecture was proved to be true
by Lootgieter [8] and van Zwet [13]. See also Adler and Flatto [2], Slud [12]
and Gutmann [4] for some related results.

In this paper we derive some results for RI. First, we obtain formulae
for the mean length of each interval, cross-moment formulae of the first and
last intervals and the distribution of the length of the first interval. Then a
convergence result is derived.

2. Formulae for subintervals in RI. Denote by Yi(m) (1 ≤ i ≤ m)
the length of the ith subinterval at that stage of the fragmentation procedure
when there are m ≥ 2 subintervals. We write yi(m) := E[Yi(m)]. To
begin, we remark that by symmetry of the construction the joint density of
Y1(m), . . . , Ym(m) is unchanged if the order of Y1(m), . . . , Ym(m) is reversed.
In particular, the marginal densities for Yi(m) and Ym−i+1(m) are identical.
Our basic result is as follows.

Theorem 2.1. For the procedure RI , the expected values yi(m) are

y1(m) = ym(m) =
1

22m−3

(

2m− 3

m− 1

)

,(1)

yi(m) =
1

22m−4

(

2i− 3

i− 1

)(

2m− 2i− 1

m− i

)

for 2 ≤ i ≤ m− 1.(2)

P r o o f. By considering the possible ways in which the index of the
interval to be partitioned can be chosen, we see that the {yi(m)} satisfy the
recurrence relation

yi(m+ 1) =
2i− 3

2m
yi−1(m) +

2m− 2i+ 1

2m
yi(m) for 1 ≤ i ≤ m+ 1,

with y1(1) = 1, y0(m) = ym+1(m) = 0.
We introduce the generating functions Φi(u) =

∑

∞

m=i yi(m)um−i for
i ≥ 1. After routine calculations, we obtain the difference-differential equa-
tion

2(1− u)Φ′

i(u) = (2i − 3)[Φi−1(u)− Φi(u)] for i ≥ 2.
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Initial conditions are obtained by noting that Φi(0) = yi(i) = y1(i), and
Φ0(u) = 0. The equation 2(1− u)Φ′

1(u) = Φ1(u) leads to

Φ1(u) = (1− u)−1/2,

and recursively solving the equations for higher values of i, we obtain

Φi(u) =
1

22i−3

(

2i− 3

i− 1

)

(1− u)−1/2 for i ≥ 2.

The stated expressions follow by a routine series expansion and are read-
ily seen to satisfy the original recurrence relations and boundary condi-
tions.

Next we proceed to find the distribution of Y1(m) and Ym(m).

Theorem 2.2. For the procedure RI, the probability density φm(u) of

the random variable Y1(m) is given by

(3) φm(u) =
1

m− 1

[

1 +

m−2
∑

j=1

ξm−2(j)

(j!)2
(− log u)j

]

,

for m ≥ 3, 0 < u < 1, where for i ≥ k, ξi(k) is the coefficient of zi in the

power series of (1− z)−1[− log(1− z)]k about the origin.

P r o o f. The probability densities φm(u) satisfy the recurrence relation

(4) φm(u) =
m− 2

m− 1
φm−1(u) +

1

m− 1

1\
u

v−1φm−1(v) dv

for m ≥ 3, 0 < u < 1, and φ2(u) = 1 for 0 < u < 1. An induction over m
shows that the density is a polynomial of degree m− 2 in − log u.

The substitution φm(e−u) = θm−2(u) enables (4) to be simplified to

(5) θm(u) =
m

m+ 1
θm−1(u) +

1

m+ 1

u\
0

θm−1(v) dv

for m ≥ 1, with θ0(u) = 1 for 0 < u < 1.
In order to identify θm(u), it is further useful to set

θm(u) = (m+ 1)−1[1 + ψm(u)] for m ≥ 1.

That leads to the recurrence relation

(6) ψm(u) = ψm−1(u) +
u

m
+

1

m

u\
0

ψm−1(v) dv for m ≥ 1,

with ψ0(u) = 0, which defines ψm(·) uniquely by recursion. On defining the
generating function

Ψ(u, z) :=

∞
∑

m=1

ψm(u)zm,
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we readily obtain the integral equation

(1− z)Ψ(u, z) = −u log(1− z) +

z\
0

dw

u\
0

Ψ(v,w) dv.

Successive substitutions suggest a solution of the form

Ψ(u, z) = (1− z)−1g[−u log(1− z)].

On substituting for a solution of that form, we find that g(·) must satisfy

g(z) = z +

z\
0

dt

t

t\
0

g(y) dy.

In fact, this equation has a unique solution which is analytic in a region
about the origin. For if there is such a solution, then substituting g(z) =
∑

∞

r=0Arz
r in the integral equation yields A0 = 0, A1 = 1 and Ar+1 =

(r + 1)−2Ar for r ≥ 1, so that

g(z) =

∞
∑

k=1

zk

(k!)2
= I0(2z

1/2)− 1,

where I0(·) denotes the modified Bessel function of order zero (see, for ex-
ample, Abramowitz and Stegun [1, p. 375]).

As is immediate from an application of the ratio test, this power series
for g has infinite radius of convergence and so represents a function which
is analytic in the whole of the complex plane. We readily verify that our
solution does indeed satisfy the integral equation for g.

Our solution yields
∞
∑

r=1

zrψr(u) = Ψ(u, z) =

∞
∑

k=1

uk

(k!)2
{(1 − z)−1[− log(1 − z)]k}

=

∞
∑

k=1

uk

(k!)2

∞
∑

r=k

ξr(k)z
r

=

∞
∑

r=1

zr
r

∑

k=1

uk

(k!)2
ξr(k).

The stated expression for φm(u) follows. We can verify that this satisfies (6)
with ψ0(u) = 0. As the stated recurrence relation defines ψm(u) uniquely,
we are done.

Remark. Since for |z| < 1,

[− log(1− z)]k =
∞
∑

j=k

(−1)j+k k!

j!
S
(k)
j zj ,



Interval-partitioning scheme 351

where S
(k)
j is the Stirling number of the first kind, we see that for m ≥ 3,

φm(u) may also be written as

(7) φm(u) =
1

m− 1

[

1 +

m−2
∑

j=1

1

j!

m−2
∑

ν=j

(−1)ν+j

ν!
S(j)
ν (− log u)j

]

.

Corollary 2.3. The random variable − log Y1(m) has the density with

Laplace–Stieltjes transform

(8) θ∗m(s) =

m−2
∏

r=0

(

r

r + 1
+

1

r + 1

1

s+ 1

)

,

and −(2 logm)−1/2 log[mY1(m)] has a standard normal asymptotic distribu-

tion.

P r o o f. The density of − log Y1(m) is given by e−uθm−2(u) on [0,∞).
By evaluating the transform

θ∗m(s) =

∞\
0

e−sue−uθm−2(u) du

from the recurrence relation (5), the stated expression is obtained. The
corresponding density is a mixture of the Erlang distributions of order 1 to
m−2 and scale parameter 1. Its mean and variance are respectively given by

m−2
∑

r=0

1

r + 1
and

m−2
∑

r=0

2r + 1

(r + 1)2
,

from which it follows that −(2 logm)−1/2 log[mY1(m)] asymptotically has a
standard normal distribution.

The joint density φm(u1, u2) of the random variables Y1(m) and Ym(m)
satisfies the recurrence relation

φm(u1, u2) =
m− 3

m− 1
φm−1(u1, u2)(9)

+
1

m− 1

1−u2\
u1

v−1φm−1(v, u2) dv

+
1

m− 1

1−u1\
u2

v−1φm−1(u1, v) dv,

for m ≥ 4 and u1, u2 ≥ 0, 0 ≤ u1 + u2 ≤ 1, where

φ3(u1, u2) =
1

2

[

1

1− u1
+

1

1− u2

]

.
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It appears rather difficult to extract an expression for φm(u1, u2) for
general m. However, all moments of that density can be found explicitly.
Define Mr1,r2(m) by

Mr1,r2(m) = E[Y r1
1 (m)Y r2

m (m)],

for r1 ≥ 0 and r2 ≥ 0. Then we have the following.

Theorem 2.4. For the procedure RI , the moment Mr1,r2(m) is given by

(10) Mr1,r2(m) =
r1! r2!

(r1 + r2 + 1)!

Γ [m− 2 + γ(r1, r2)]

(m− 1)!Γ [γ(r1, r2)]
for m ≥ 2,

where γ(r1, r2) = (r1 + 1)−1 + (r2 + 1)−1.

P r o o f. From equation (9) we obtain

Mr1,r2(m) =
m− 3

m− 1
Mr1,r2(m− 1)

+
1

m− 1

1\
0

du2 u
r2
2

1−u2\
0

ur11 du1

1−u2\
u1

φm−1(v, u2)v
−1 dv

+
1

m− 1

1\
0

du1 u
r1
1

1−u1\
0

ur22 du2

1−u1\
u2

φm−1(u1, v)v
−1 dv.

The first integral may be rewritten as

1\
0

du2 u
r2
2

1−u2\
0

φm−1(v, u2)v
−1 dv

v\
0

ur11 du1 =
1

r1 + 1
Mr1,r2(m− 1),

and a corresponding expression holds for the second integral. It follows that

Mr1,r2(m) =
1

m− 1

[

m− 3 +
1

r1 + 1
+

1

r2 + 1

]

Mr1,r2(m− 1),

with Mr1,r2(2) = B(r1 + 1, r2 + 1), a Beta function. Routine calculations
lead to the stated formula.

For r1 = 1 and r2 = 0, we find that

M1,0(m) =
Γ (m− 1/2)

Γ (1/2) (m − 1)!
=

1

22m−3

(

2m− 3

m− 1

)

,

which agrees with the expression in Theorem 2.1. The second moment of
Y1(m) is given by

M2,0(m) =
Γ (m− 2/3)

Γ (1/3) (m − 1)!
,

and the cross-moment M11(m) is found to be

M11(m) =
1

6(m− 1)
.
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For m ≥ 3, the joint density of the random variables − log Y1(m) and
− log Ym(m) is given by φm(e−v1 , e−v2)e−v1−v2 on the region where v1 > 0,
v2 > 0, and e−v1 + e−v2 ≤ 1. By a routine calculation using the recurrence
relation (9), we find that its joint Laplace–Stieltjes transform is given by

θ∗m(s1, s2) =Ms1,s2(m).

3. A limit theorem and a conjecture. As m → ∞, the expected
values yi(m) investigated at the beginning of the previous section have an
interesting limiting behavior. To examine it, we form a discrete probability
density by placing the masses yi(m) at the points i(m + 1)−1. That dis-
tribution is symmetric about 1/2. We also form the absolutely continuous
distributions with densities f(u;m) defined by

f(u;m) = (m+ 1)yi(m) for
2i− 1

2(m+ 1)
< u ≤

2i+ 1

2(m+ 1)

for 1 ≤ i ≤ m and zero elsewhere. Then we have the following result.

Theorem 3.1. The discrete distribution with density {yi(m)} and the

continuous distribution with density f(u;m) converge weakly to the arc-sine

law with density π−1[u(1− u)]−1/2 on (0, 1).

P r o o f. Fix x with 0 < x < 1. Then by using Stirling’s formula,
we easily verify that f(x;m) converges to π−1[x(1 − x)]−1/2 as m → ∞.
Moreover, that convergence is uniform in x in any interval [a, b] with 0 <
a < b < 1, so that

b\
a

f(u;m) du→

b\
a

π−1[u(1− u)]−1/2 du,

which is equivalent to convergence in law. Since f(u;m) is piecewise con–
stant, the first integral can be written as a finite sum. The stated convergence
therefore also implies that of the sequence of the discrete distributions.

Remark. The large magnitude of the Y1(m) and Ym(m) compared to the
lengths of intervals in the middle is an outstanding feature of the intervals
generated by the RI procedure. One may easily verify that as m → ∞, the
ratio of y1(m) to the length of the middle interval tends to infinity as m1/2.

Intuitive insight into the reasons for that behavior is gained by wrapping
the interval [0, 1] around a circle. When there are m intervals, there is
probability 2/m that the arc of length Y1(m)+ Ym(m) about the fixed point
corresponding to 0 and 1 is reduced. For successive m, reductions in size
of that interval occur according to Bernoulli trials with probabilities 2/m.
The number of such reductions in m steps behaves as logm, which accounts
for the greater relative length of that interval.
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We now conjecture that the almost sure convergence may be established
for the empirical distribution in the RI context, as was done for procedures
RP and LI.

Conjecture 3.2. For the procedure RI , the empirical distribution of

the points of divisions asymptotically converges to the arc-sine law almost

surely.
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