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ON LOCALIZING GLOBAL PARETO SOLUTIONS
IN A GIVEN CONVEX SET

Abstract. Sufficient conditions are given for the global Pareto solution
of the multicriterial optimization problem to be in a given convex subset
of the domain. In the case of maximizing real valued-functions, the condi-
tions are sufficient and necessary without any convexity type assumptions
imposed on the function. In the case of linearly scalarized vector-valued
functions the conditions are sufficient and necessary provided that both the
function is concave and the scalarization is increasing with respect to the
cone generating the preference relation.

1. Introduction. The aim of this paper is to investigate a sufficient and
necessary condition for a vector-valued function g to attain its weak Pareto
maximum in a given convex subset V of a vector space X. Seemingly, the
condition is somehow similar to that of Pshenichny̆ı (see [6]) who has given
necessary and sufficient conditions for a continuous and concave real function
to attain its maximum at a given point x ∈ X in terms of the subgradient
and of the cone of feasible directions. Pshenichny̆ı’s result was extended by
Swartz (see [9]) to the case of Pareto maxima for vector-valued functions.

Comparing with the Pshenichny̆ı and Swartz results, we do not assume
that g is continuous. Moreover, we give a sufficient and necessary condition
for the weak Pareto maximum of g to be attained on a given set V ⊆ X
not necessarily at a given point of X. Even when V consists of one point
only, our condition differs from those of Pshenichny̆ı and Swartz. This can
be easily seen in the case of real-valued functions where our condition is
sufficient and necessary without imposing any convexity type conditions on
g, contrary to the result of Pshenichny̆ı, which does not hold without such
assumptions.
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We first fix the notation. Let X and Z be real, locally convex topological
vector spaces, and let K be a closed convex cone in Z. Let K0 denote the
interior of K. We assume throughout the paper that K0 6= ∅. Let Ω be a
subset of X, and f : Ω → R be a given function.

Fix a nonempty convex set V ⊂ X and a point x 6∈ V . Let ∂f(V, x) ⊂ X ′

(the dual space to X) be the set of all x′ ∈ X ′ such that

(1) ∃v ∈ V, t ∈ (0, 1] : f(xt)− f(x) ≥ 〈x′, xt − x〉,
where xt = tv+(1− t)x, i.e. xt−x = t(v−x). Clearly, ∂f(V, x) ⊇ ∂f(W,x)
for any V ⊇W and x ∈ X.

Recall that the subdifferential ∂f(x) of f at x is defined as the set of all
x′ ∈ X ′ satisfying

f(y)− f(x) ≥ 〈x′, y − x〉 for all y ∈ Ω.

Observe that ∂f(V, x) ⊇ ∂f(x) for any ∅ 6= V ⊆ Ω, x ∈ Ω\V and f : Ω → R.
For x 6∈ V , denote by G(V, x) the set of all directions leading to V from

x, i.e.
G(V, x) = {u ∈ X : x + tu ∈ V for some t > 0}.

Clearly, G(V, x) = {t(v − x) : v ∈ V and t > 0} and because V is convex,
G(V, x) is a convex cone as well.

Let G(V, x)∗ denote the dual cone of G(V, x), i.e.

G(V, x)∗ = {x′ ∈ X ′ : 〈x′, u〉 ≥ 0 for all u ∈ G(V, x)}.
A function g : Ω → Z has a weak Pareto maximum (weak P -maximum)

at x ∈ Ω if there exists no y ∈ Ω such that g(y)− g(x) ∈ K0.
A function ϕ : Z → R is strictly monotone with respect to the cone K0

if for every x, y ∈ X such that y ∈ x + K0 we have ϕ(y) > ϕ(x).
Let us recall Pshenichny̆ı’s condition. It states that a continuous concave

function f attains its maximum over a convex set Ω at x ∈ Ω iff

∂[−f ](x) ∩ F (Ω, x)∗ 6= ∅,
where F (Ω, x)∗ is the dual cone of F (Ω, x) = {u ∈ X : ∃τ > 0 such that
x + tu ∈ Ω for all 0 ≤ t ≤ τ}, the cone of feasible directions to Ω at x ∈ Ω.

Let V be a convex sequentially compact subset of Ω such that Ω \ V ⊆
Ω. The main result of the paper is Theorem 3.1, which says that if there
is a function ϕ : Z → R which is strictly monotone with respect to K0 and
such that ϕ ◦ g is upper semicontinuous on Ω and for every x ∈ Ω \ V ,

∂(ϕ ◦ g)(V, x) ∩G(V, x)∗ 6= ∅,
then g attains its weak P -maximum over Ω in V . The result need not
hold when: 1) ϕ ◦ g is not upper semicontinuous, or 2) Ω \ V 6⊆ Ω, or
3) V is not a convex set, or 4) V is not sequentially compact, or 5) ∅ =
∂(ϕ ◦ g)(V, x) ∩G(V, x)∗ (see Examples 3.8–3.10 in Section 3).
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The sufficient condition turns out to be necessary provided g is a real-
valued function, no matter if g is concave or not (Proposition 3.6). The
condition is no longer necessary if g is vector-valued and ϕ is linear (Ex-
ample 3.4). When g is K-concave, i.e.

−g(tx + (1− t)y) + tg(x) + (1− t)g(y) ∈ −K for x, y ∈ Ω and t ∈ [0, 1],

and ϕ is linear the condition becomes again necessary (Proposition 3.7).
An open question is what other kind of correspondence between g and

ϕ makes Theorem 3.1 a sufficient and necessary condition for a weak P -
maximum of g to be in V .

2. Preliminary notions and results. To prove the main result we
need some results on sequentially compact sets and countably orderable sets.
Therefore we first recall some notions and results from [2], [4] and [8].

Let X be a nonempty set and s ⊂ X2 be an arbitrary relation in X. We
write xsy instead of (x, y) ∈ s; by s∗ we mean the transitive closure of s,
i.e. xs∗y iff x = x1s . . . sxn = y for some finite sequence x1, . . . , xn ∈ X;
by ∼(xsy) we mean (x, y) 6∈ s. For every x ∈ X and U ⊆ X we denote by
Us(x) the set {z ∈ U : xsz}. If X is a linear space, for every x, y ∈ X, [x, y]
means the set {z ∈ X : ∃t ∈ [0, 1] such that z = tx + (1− t)y}.

Definition 2.1 (see [4, p. 288]). X is called countably orderable with
respect to the relation s if for every nonempty subset W ⊆ X the existence
of a relation η well ordering W and such that η ⊆ s∗ ∪ id implies that W is
at most countable.

A number of examples of countably orderable sets together with appli-
cations to optimization are given in [4].

The following result has been proven in [4].

Theorem 2.2 (see [4, Theorem 4.1, p. 297]). Let X be a nonempty set
with relations s, r ⊆ X × X. Let U, V ⊆ X be nonempty sets such that
U \ V 6= ∅, U \ V is countably orderable with respect to r and r is transitive
on U \ V . Assume that for every u ∈ U \ V the set Us(u) is nonempty and
the following conditions hold :

(i) for every sequence (xi) ⊆ Us(u)\V such that xirxi+1 for every i ∈ N
there is x ∈ Us(u) with xirx for every i ∈ N;

(ii) for every x ∈ Us(u) \ V there is y ∈ Us(u) for which xry, x 6= y and
∼(yrx).

Then U ∩ V 6= ∅ and for every u ∈ U \ V there exists v ∈ U ∩ V such
that usv.

Now we recall the definition of a sequentially compact set.
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Definition 2.3 (see [2, p. 261]). A nonempty subset A of a topological
Hausdorff space X is called sequentially compact if for every sequence {xi}
in A there is a subsequence {xik

} ⊆ {xi} converging to some x ∈ A.

The following results have been given in [2].

Theorem 2.4 (see [2, Theorem 24, p. 262]). The Cartesian product of
a countable number of sequentially compact spaces is sequentially compact
with Tikhonov’s topology.

Theorem 2.5 (see [2, Theorem 21, p. 262]). Let X be a sequentially
compact space. If there is a continuous function f from X onto Y and Y
is a Hausdorff space, then Y is sequentially compact.

Let X be a vector space and A be a subset of X.

Definition 2.6 (see [8, p. 47]). The intersection of all convex sets
containing A is called the convex hull (conv(A)) of A.

It is easy to check that

(2) conv(A) =
{

y ∈ X :

y =
n∑

i=1

αiai, ai ∈ A, αi ≥ 0,

n∑
i=1

αi = 1, n arbitrary
}

.

Lemma 2.7. Let A be a sequentially compact and convex subset of a real
locally convex topological space X and x0 ∈ X. Then conv(A ∪ {x0}) is
sequentially compact.

P r o o f. Since A is convex, it follows from (2) that

conv(A ∪ {x0}) =
{

y ∈ X :

y =
2∑

i=1

αiai, a1 ∈ A, a2 = x0, α1 + α2 = 1, α1, α2 ≥ 0
}

.

Define
L := {(α1, α2) : α1, α2 ≥ 0 and α1 + α2 = 1} ⊂ R2.

It is easy to show that L is a sequentially compact subset of R2. Observe
that conv(A ∪ {x0}) is a continuous image of the sequentially compact set
L × A × {x0} ⊂ R2 × X × X (see Theorem 2.4), so by Theorem 2.5, it is
sequentially compact.

3. The main results. We start this section with presenting a general
sufficient condition for a global Pareto maximum of a vector-valued function
to be in a given convex subset of the domain.



Localizing Pareto solutions 387

Theorem 3.1. Let X and Z be locally convex topological vector spaces,
Ω be a nonempty subset of X and g : Ω → Z. Let V 6= ∅ be a given
sequentially compact , convex subset of Ω such that Ω \ V ⊆ Ω. If a function
ϕ : g(Ω)→ R is such that ϕ ◦ g is upper semicontinuous on Ω \ V and

(3) ∅ 6= ∂(ϕ ◦ g)(V, y) ∩G(V, y)∗

for every y ∈ Ω \ V , then

sup
x∈Ω

ϕ ◦ g(x) = sup
v∈V

ϕ ◦ g(v).

If , additionally , ϕ is strictly monotone with respect to K0 and ϕ ◦ g attains
its maximum over V at v0 ∈ V , then v0 is a global weak P -maximum of g
over Ω.

P r o o f. Fix ε > 0 and a convex absorbing neighbourhood U of zero.
Let µU denote the Minkowski functional relative to U . Define a relation
s ⊂ Ω ×Ω by

∀x, y ∈ Ω : xsy ⇔ ϕ ◦ g(x)− εµU (x, V ) ≤ ϕ ◦ g(y)− εµU (y, V ),

where µU (x, V ) = infv∈V µU (v − x). Define a relation r ⊂ Ω ×Ω by

∀x, y ∈ Ω : xry ⇔ ∃v ∈ V : y ∈ [v, x].

Since V is convex, r is transitive.
When Ω \V = ∅ the assertion trivially holds, so assume that Ω \V 6= ∅.

First we show that Ω \ V is countably orderable with respect to r. Let
W ⊆ Ω \V be well ordered with respect to some relation η ⊆ r∪ id. Let w0

be the η-first element of W and denote V − conv(V ∪ {w0}) by A. Clearly,
tA ⊆ A for every t ∈ [0, 1]. Since A is convex and absorbing (for V −W ),
it is easy to prove that the Minkowski functional of A has the following
properties (cf. [8]):

1◦ µA(x) <∞ for all x ∈ V −W ,
2◦ µA(x + y) ≤ µA(x) + µA(y) for all x, y ∈ V −W ,
3◦ µA(λx) = λµA(x) for all x ∈ V −W and λ ∈ R+.

From Lemma 2.7 it also follows that A is sequentially compact.
Now we show, using the above properties of A and µA, that the condi-

tions x, y ∈W , x 6= y and xηy together force

µA(x, V ) > µA(y, V ),

where µA(x, V ) = infv∈V µA(v−x). First we show that µA(x, V ) > 0 for all
x ∈ W . Suppose that µA(x, V ) = 0 for some x ∈ W . Then for every n > 0
there is vn ∈ V such that µA(vn − x) < 2−n, hence vn − x ∈ 2−nA. Now
suppose that x is not the limit of {vn}. Then there is a convex symmetric
neighbourhood U0 of zero and a subsequence {vnk

} ⊆ {vn} such that vnk
−

x 6∈ U0 for all nk. The way the sequence {vn} was constructed implies that
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we can choose points ank
∈ A for which vnk

− x = 2−nkank
6∈ U0 for every

k ∈ N. On the other hand, A is sequentially compact, so ankj
→ a ∈ A

for some subsequence {ankj
}, and hence µU0(ankj

− a) ≤ 1 for every j large
enough. Thus for j →∞,

∞← 2nkj ≤ µU0(ankj
) ≤ µU0(a) + µU0(ankj

− a) ≤ µU0(a) + 1 <∞,

which is a contradiction. Therefore the sequence {vn} converges to x. Since
V is sequentially compact, we have x ∈ V , which is a contradiction because
x ∈W ⊆ Ω \ V . So µA(x, V ) > 0 for all x ∈W .

Now let x, y ∈ W , x 6= y and xηy. Then there are t ∈ (0, 1) and u ∈ V
such that y = (1− t)x + tu. We can take v ∈ V such that

µA(v − x) < (1 + t)µA(x, V ).

Observe that since V is convex, we have (1− t)v + tu ∈ V and by 3◦,

µA(y, V ) ≤ µA((1− t)v + tu− y)
= µA((1− t)v + tu− (1− t)x− tu)
= (1− t)µA(v − x) < (1− t)(1 + t)µA(x, V ) < µA(x, V ).

Thus the set µA(W,V ) ⊆ R is well ordered by ≤ and therefore it is at most
countable. But the same concerns W , since µA(·, V ) is a one-to-one mapping
on W . So Ω \ V is countably orderable with respect to r.

Now, fix x0 ∈ Ω \ V and let Ωs(x0) = {x ∈ Ω : x0sx}. Consider a
sequence {xi} ⊂ Ωs(x0) \ V such that xirxi+1 for all i = 1, 2, . . . Since r is
transitive, xi ∈ conv(V ∪ {x1}) for all i = 2, 3, . . . , and from Lemma 2.7,
conv(V ∪{x1}) is sequentially compact. Choose a subsequence {xik

} ⊆ {xi}
converging to some x ∈ conv(V ∪ {x1}). Then xik+j

∈ conv(V ∪ {xik
}) for

every j = 1, 2, . . . Therefore x ∈ conv(V ∪ {xik
}) for all k = 1, 2, . . . and

xik
rx for all k = 1, 2, . . .

Now, we show that µU (x, V ) ≥ µU (y, V ) for all x, y ∈ Ω \ V with x 6= y
and xry.

1◦ If µU (x, V ) = 0 and x ∈ Ω \ V , then for every n ∈ N there exists
vn ∈ V such that µU (vn−x) < 2−n. Since V is sequentially compact there is
a subsequence {vnk

} ⊆ {vn} converging to a point v0 ∈ V . Consequently, for
every n0 ∈ N, there is k ≥ n0 such that for nj > k we have vnj ∈ 2−n0U +v0.
Hence for n0 →∞,

0 ≤ µU (v0 − x) ≤ µU (v0 − vnj
) + µU (vnj

− x) ≤ 1
2n0

+
1

2nj
→ 0.

So there is v0 ∈ V such that µU (v0 − x) = 0, and finally,

(4) µU (v0 − x) = µU (x, V ) = 0.
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2◦ If µU (x, V ) > 0, then

(5) ∀t ∈ (0, 1) ∃v0 ∈ V : µU (v0 − x) < (1 + t)µU (x, V ).

From (4) and (5), we get in both cases 1◦ and 2◦,

(6) ∀x ∈ Ω \ V, t ∈ (0, 1) ∃v0 ∈ V : µU (v0 − x) ≤ (1 + t)µU (x, V ).

Let x, y ∈ Ω \ V , x 6= y and xry. By the definition of r, there are t ∈ (0, 1)
and u ∈ V such that y = tu + (1 − t)x. From (6) and the fact that V is
convex, it follows that tu + (1− t)v0 ∈ V and

µU (y, V ) ≤ µU ((tu + (1− t)v0 − tu− (1− t)x)(7)
= (1− t)µU (v0 − x) ≤ (1− t)(1 + t)µU (x, V ) ≤ µU (x, V ).

Since x0sxik
for all k = 1, 2, . . . and ϕ◦ g is upper semicontinuous on Ω \ V ,

by (7) we get

ϕ ◦ g(x0)− εµU (x0, V ) ≤ ϕ ◦ g(xik
)− εµU (xik

, V )
≤ ϕ ◦ g(x)− εµU (x, V )

whenever x 6∈ V . Otherwise 0 = µU (x, V ) ≤ µU (xik
, V ), and the above

inequality holds as well. This shows that x ∈ Ωs(x0) and the condition (i)
of Theorem 2.2 is satisfied.

Now we examine the condition (ii). Consider any x ∈ Ωs(x0) \ V and
observe that there are, by (3), an x′ ∈ ∂(ϕ◦g)(V, x) and an v ∈ V such that

(8) ϕ ◦ g(xt)− ϕ ◦ g(x) ≥ 〈x′, xt − x〉 for some t ∈ (0, 1]

where xt = tv + (1− t)x. Simultaneously, x′ ∈ G(V, x)∗ and since xt − x =
t(v − x) ∈ G(V, x) we get

(9) 〈x′, xt − x〉 ≥ 0.

From (8) and (9), it follows that

(10) ϕ ◦ g(xt)− ϕ ◦ g(x) ≥ 0 ≥ −t2εµU (x, V ).

It is easy to check (cf. (7)) that

(11) µU (xt, V ) ≤ (1− t2)µU (x, V ).

From (10) and (11), we get

ϕ ◦ g(xt)− ϕ ◦ g(x) ≥ −t2εµU (x, V ) ≥ εµU (xt, V )− εµU (x, V ).

Consequently,

ϕ ◦ g(xt)− εµU (xt, V ) ≥ ϕ ◦ g(x)− εµU (x, V ).

Thus xrxt, x 6= xt and xt ∈ Ωs(x0) (recall that s is transitive), which shows
that (ii) holds. Therefore Theorem 2.2 implies that

∀x ∈ Ω \ V ∃v ∈ Ω ∩ V : xsv.
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So we have

∀x ∈ Ω \ V ∃v ∈ V :
ϕ ◦ g(x)− εµU (x, V ) ≤ ϕ ◦ g(v)− εµU (v, V ) = ϕ ◦ g(v) ≤ sup

v∈V
ϕ ◦ g(v).

Since ε > 0 is arbitrary, the first assertion of the theorem holds.
Assume now that ϕ ◦ g attains its maximum over V at v0 ∈ V . Then it

follows from the first part of Theorem 3.1 that

(12) ∀x ∈ Ω : ϕ ◦ g(x)− ϕ ◦ g(v0) ≤ 0.

If v0 were not a weak P -maximum of g over Ω, there would exist y ∈ Ω
such that

g(y)− g(v0) ∈ K0.

Since ϕ is strictly monotone with respect to K0, this and (12) would imply

0 < ϕ ◦ g(y)− ϕ ◦ g(v0) ≤ 0,

which is a contradiction. Therefore g has a weak P -maximum over Ω at
v0 ∈ V .

Remark 3.2. If we assume that ϕ◦g is upper semicontinuous on V , then
ϕ ◦ g attains its maximum over V at some v0 ∈ V . Moreover, one can only
assume increasing semicontinuity of ϕ ◦ g (instead of upper semicontinuity)
(see [5]) and the same assertion holds. Indeed, this is a consequence of the
following lemma.

Lemma 3.3 [4]. Let X be an abstract set and f : X → R. The function
f attains its supremum at some point of X if and only if for every sequence
{xi} ⊆ X such that for every i = 1, 2, . . . ,

f(xi) ≤ f(xi+1)

there is an x ∈ X such that f(xi) ≤ f(x) for all i = 1, 2, . . .

The following example shows that Theorem 3.1 does not give necessary
conditions for a weak P -maximum of g to be in V when Z is more than
one-dimensional and ϕ is linear and strictly monotone with respect to K0.

Example 3.4. Let K0 be the cone of vectors in R2 with positive coor-
dinates. Define g : Ω ≡ [1, 2]→ R2 by g(x) = (x, 1/x) and ϕε : R2 → R by
ϕε(x, y) = εx+(1−ε)y with ε ∈ [0, 1]. Set V = {3/2}. It is easy to see that
x0 = 3/2 is a weak P -maximum. Now we show that for every ϕε, ε ∈ [0, 1],
condition (3) is not satisfied for some y ∈ Ω \ V .

1◦ If ε ∈ [0, 4/13), then set y = 1. It is easy to see that G(V, y) = {u ∈
R : u > 0}, so G(V, y)∗ = {x′ ∈ R : x′ ≥ 0}. On the other hand,

ϕε ◦ g(tx0 + (1− t)y)− ϕε ◦ g(y) < 0 for all t ∈ (0, 1],

so ∂(ϕε ◦ g)(V, y) ⊂ {x′ ∈ R : x′ < 0}, hence ∂(ϕε ◦ g)(V, y) ∩G(V, y)∗ = ∅.
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2◦ If ε ∈ [4/13, 1], then set y = 2. Since G(V, y) = {u ∈ R : u < 0} we
have G(V, y)∗ = {x′ ∈ R : x′ ≤ 0}. On the other hand,

ϕε ◦ g(tx0 + (1− t)y)− ϕ ◦ g(y) < 0 for all t ∈ (0, 1],

so ∂(ϕε ◦ g)(V, y) ⊂ {x′ ∈ R : x′ > 0}, hence ∂(ϕε ◦ g)(V, y) ∩G(V, y)∗ = ∅.

Remark 3.5. When Z is one-dimensional a stronger result than Theo-
rem 3.1 is available. For simplicity we assume a continuity condition slightly
stronger than necessary.

Proposition 3.6. Let X be a locally convex topological vector space
and Ω be a nonempty subset of X. Assume that g : Ω → R is upper
semicontinuous on Ω. Assume that V is a sequentially compact convex
subset of Ω such that Ω \ V ⊆ Ω. Then g attains its maximum over Ω at
some point of V if and only if

∅ 6= ∂g(V, y) ∩G(V, y)∗ for every y ∈ Ω \ V.

P r o o f. First, suppose that g attains a global maximum over Ω at some
v ∈ V . Then

g(v)− g(y) ≥ 0 for all y ∈ Ω.

Thus x′0 = 0 ∈ X ′ satisfies

g(v)− g(y) ≥ 〈x′0, v − y〉.

By (1), we have x′0 ∈ ∂g(V, y) ∩ G(V, y)∗. The sufficiency follows from
Theorem 3.1 and Remark 3.2.

In order to present a necessary condition for a vector-valued function g
to attain its weak Pareto maximum in a given convex subset V of Ω, we
need some definitions.

Recall that

K∗ = {z′ ∈ Z ′ : 〈z′, k〉 ≥ 0 for all k ∈ K}

is the dual cone of K and Z ′ is the dual space of Z. Define

K∗
0 = {k′ ∈ K∗ : 〈k′, k0〉 > 0 for all k0 ∈ K0}.

It is easy to show that K∗
0 = K∗ \ {0}. Clearly, if k′ ∈ K∗

0 , then 〈k′, ·〉 is
strictly monotone with respect to K0.

Proposition 3.7. Assume that X and Z are locally convex topological
vector spaces and Ω is a convex subset of X. Let g : Ω → Z be a K-concave
function, and V be a convex subset of X. If g attains its weak P -maximum
over Ω in V , then there exists k′ ∈ K∗

0 such that

∂(k′g)(V, y) ∩G(V, y)∗ 6= ∅ for every y ∈ Ω \ V.
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P r o o f. Suppose that g has a weak P -maximum at some v ∈ V . Then
there is no y ∈ Ω such that

−(g(v)− g(y)) ∈ K0.

By Craven’s alternative theorem (see [1, p. 31]), there exists k′ ∈ K∗
0 such

that
〈k′, g(v)− g(y)〉 ≥ 0 for all y ∈ Ω.

Thus, v ∈ V maximizes the linear scalar function k′g over Ω. An application
of Proposition 3.6 completes the proof.

The following examples show that the main assumptions in Theorem 3.1
and Proposition 3.6 cannot be dropped.

Example 3.8. Define f : R→ R by

f(x) =


0 for x ∈ [0, 1) ∪ (4, 5],
x for x ∈ [1, 2],
2 for x ∈ (2, 3],
−x + 5 for x ∈ [3, 4].

Let V = [0, 1]∪ [4, 5]. Then V is a sequentially compact non-convex set and
f is upper semicontinuous on Ω = [0, 5]. Moreover, for all y ∈ Ω \ V we
have ∂f(V, y) ∩G(V, y)∗ 6= ∅, since

∂f(V, y) = R and G(V, y)∗ = {0} ∀y ∈ (1, 2),
∂f(V, y) = R and G(V, y)∗ = {0} ∀y ∈ (2, 3),
∂f(V, y) = R and G(V, y)∗ = {0} ∀y ∈ (3, 4),
∂f(V, y) = R \ (0, 1) and G(V, y)∗ = {0} for y = 2,

∂f(V, y) = R \ (−1, 0) and G(V, y)∗ = {0} for y = 3.

However, f does not have a maximum over Ω in V .

Example 3.9. Define f : R→ R by

f(x) =
{

x for x ∈ (−∞, 3),
2 for x ∈ [3,+∞).

(i) Let Ω = (−∞,∞) and V = [3, 4]. Then V is convex and compact,
but f is not upper semicontinuous on Ω \ V . It is easy to see that ∂f(V, y)∩
G(V, y)∗ 6= ∅ for all y ∈ Ω \ V , since

∂f(V, y) = (−∞, 1] and G(V, y)∗ = R+ ∪ {0} ∀y ∈ (−∞, 3),
∂f(V, y) = [0,∞) and G(V, y)∗ = R− ∪ {0} ∀y ∈ (4,∞).

However, f does not have a maximum over Ω in V .
(ii) Let Ω = (−∞, 3) ∪

[
3 1

2 , 4
]

and V =
[
3 1

2 , 4
]
. Then V is convex and

sequentially compact and f is upper semicontinuous on Ω, but Ω \ V 6⊆ Ω.
It is easy to see that ∂f(V, y) ∩ G(V, y)∗ 6= ∅ for every y ∈ Ω \ V , since
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∂f(V, y) = (−∞, 1] and G(V, y)∗ = [0,∞) for all y ∈ (−∞, 3). However, f
does not have a maximum over Ω in V .

(iii) Define f : R→ R by

f(x) =
{

x for x ∈ (−∞, 3],
2 for x ∈ (3,∞).

Let Ω = (−∞,∞) and V = [5, 6]. Then V is convex and sequentially
compact, f is upper semicontinuous on Ω, ∂f(V, 3) = (−∞,−1/3) and
G(V, 3)∗ = R+ ∪ {0}, i.e. ∂f(V, 3) ∩G(V, 3)∗ = ∅. Observe that f does not
have a maximum over Ω in V .

Example 3.10. Let Ω = {x = (ti) :
∑∞

i=1 |ti| <∞} and ‖x‖ =
∑∞

i=1 |ti|,
for x = (ti) ∈ Ω. Define V = {x = (ti) ∈ Ω : ‖x‖ ≤ 1 and ti ≥ 0 for all i =
1, 2, . . .}. It is easy to see that V is convex but is not sequentially compact.
Let x0 = (−2,−1,−1/2,−1/4, . . .). Consider the sequence {xk} ⊆ Ω, xk =
(tki ), such that

x1 = α1x0 + (1− α1)e1,

x2 = α2x1 + (1− α2)e2,

...
xn = αnxn−1 + (1− αn)en,

where αi = 2−i for 1, 2, . . . and e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, . . .) and so
on. Clearly, ei ∈ V for all i, and consequently, xn+1 ∈ conv(xn, V ). It is
easy to see that {xn} ⊂ Ω \ V because

tn1 = −(1/2)(n−1)(n+2)/2 < 0

and obviously ‖xn‖ <∞ for all n ∈ N. Define f : Ω → R by

f(x) =
{

0, x 6= xi,
i, x = xi.

Now we show that the sequence {xk} has no cluster points. Indeed, for
fixed i ∈ N, tki → 0 as k tends (no matter how) to infinity. So the only
cluster point of {xk} might be e0 = (0, 0, . . .). On the other hand,

‖xk‖ =
∞∑

i=1

|tki | ≥ |tkk| −−−→
k→∞

1.

This shows that {xk} has no cluster points and, consequently, f is upper
semicontinuous on Ω. Finally, we verify condition (3). For y 6∈ {xk}, (3)
is satisfied because e′0 = (0, 0, . . .) ∈ G(V, y)∗ ∩ ∂f(V, y). The same is true
when y = xn for some n ∈ N. Indeed, e′0 ∈ G(V, xn)∗ by definition and

f(xn+1)− f(xn) = 1 > 〈e′0, xn+1 − xn〉,
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which together with the decomposition

xn+1 = αn+1xn + (1− αn+1)en+1

implies that e′0 ∈ ∂f(V, xn). Hence (3) is satisfied for all y ∈ Ω\V . However,
the maximum of f over Ω is not attained in V .

Remark 3.11. Example 3.10 is related to the drop property. Since V is
a closed unit ball, the sequence {xn} has a convergent subsequence if and
only if the norm ‖ · ‖ has the drop property (see [7], Proposition 2). It is
well known that the space Ω is not reflexive, so Ω does not have the drop
property, and consequently, {xn} may not have a convergent subsequence
(cf. [7]).
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