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ANALYSIS AND NUMERICAL APPROXIMATION

OF AN ELASTIC FRICTIONAL CONTACT PROBLEM

WITH NORMAL COMPLIANCE

Abstract. We consider the problem of frictional contact between an elas-
tic body and an obstacle. The elastic constitutive law is assumed to be
nonlinear. The contact is modeled with normal compliance and the associ-
ated version of Coulomb’s law of dry friction. We present two alternative
yet equivalent weak formulations of the problem, and establish existence and
uniqueness results for both formulations using arguments of elliptic varia-
tional inequalities and fixed point theory. Moreover, we show the continu-
ous dependence of the solution on the contact conditions. We also study the
finite element approximations of the problem and derive error estimates. Fi-
nally, we introduce an iterative method to solve the resulting finite element
system.

1. Introduction. Processes of frictional contact between deformable
bodies are very common in industry and everyday life. Contact without
lubrication can be found for example in the process of metal forming, in
car’s braking systems, in engines, motors and transmissions. Despite the
difficulties that the process of frictional contact presents because of the
complicated surface phenomena involved, considerable progress has been
made in the modeling and analysis of contact problems. An early attempt
to study frictional contact problems for elastic and viscoelastic materials
within the framework of variational inequalities was made in [6]. Steady-
state as well as time-dependent frictional contact problems for linearly and
nonlinearly elastic materials may be found in [13]. An excellent reference to
the field of contact problems with or without friction is [9].
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Dynamic problems with normal compliance contact condition were first
considered in [11] where the existence of a weak solution was proven. This
condition allows the interpenetration of the body’s surface into the obstacle.
It was justified in [11] and [10] by considering the interpenetration and defor-
mation of surface asperities. Moreover, the normal compliance condition has
been employed as a mathematical regularization of Signorini’s nonpenetra-
tion condition and used in numerical solution algorithms. Contact problems
with normal compliance have been discussed in numerous papers, e.g. [1, 7,
9, 10, 14] and the references therein.

In this work we consider the problem of frictional contact between an
elastic body and a foundation. We assume that the forces and tractions
acting upon the body change slowly in time so that the acceleration in
the system is negligible. Neglecting the inertial term in the equation of
motion leads to a quasistatic approximation for the process. The mate-
rial’s constitutive law is assumed to be nonlinear. The contact is modeled
with a normal compliance condition and the static version of Coulomb’s
law of dry friction. We establish the existence of a unique solution to the
problem, using fixed point arguments. Then we prove the stability of the
solution with respect to perturbation of the normal compliance functions,
which is important from the point of view of applications. We also dis-
cuss the numerical treatment of the problem and derive some error esti-
mates.

The paper is organized as follows. In Section 2 we introduce the func-
tion spaces for various quantities, and state assumptions on given data. The
mechanical problem is stated in Section 3, where two alternative yet equiv-
alent variational forms of the problem are formulated. The unknown for
one of the variational problems is the displacement, while for the other,
the unknown is the stress. For both variational problems, we show the
unique solvability in Section 4. The proofs are based on arguments from
elliptic variational inequalities and fixed point properties of certain maps.
We also study the link between the solutions of the variational problems
and we prove that the displacement and the stress field are related by the
elastic constitutive law. Section 5 is devoted to a result on the continuous
dependence of the solution on contact conditions, which indicates that a
small perturbation in the contact condition leads to a small change in the
solution. Finally, in Section 6 we study the finite element approximation
of the displacement variational formulation. We prove Céa’s type inequal-
ities, from which we can conclude the convergence of the finite element
method and derive order error estimates under appropriate regularity as-
sumptions on the exact solution. We introduce an iterative method to solve
the resulting finite element system, which converges under certain assump-
tions.
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2. Preliminaries. Let us introduce various notations and spaces which
will be used in the formulation and analysis of the mechanical problem. For
further details on this preliminary material we refer the reader to [6, 8, 13].

Let Ω be a bounded domain in R
N (N = 2, 3 in applications) with

a Lipschitz boundary Γ and let Γ1 be a measurable part of Γ such that
meas(Γ1) > 0. Since the boundary is Lipschitz continuous, the unit outward
normal vector ν is defined a.e. on Γ .

Let SN represent the space of second order symmetric tensors on R
N ,

or equivalently, the space of symmetric matrices of order N . We define the
inner products and the corresponding norms on R

N and SN by

u · v = uivi, |v| = (v · v)1/2, ∀u,v ∈ R
N ,

σ · τ = σijτij , |τ| = (τ · τ)1/2, ∀σ, τ ∈ SN .

Here and below, i, j = 1, . . . , N , and the summation convention over re-
peated indices is adopted. Moreover, in the sequel, the index that follows a
comma indicates a partial derivative, e.g., ui,j = ∂ui/∂xj .

We now introduce several function spaces. Let

H = {u = (ui) | ui ∈ L2(Ω)}, H1 = {u = (ui) | ui ∈ H1(Ω)},

H = {σ = (σij) | σij = σji ∈ L2(Ω)}, H1 = {σ ∈ H | σij,j ∈ H}.

The spaces H, H, H1 and H1 are real Hilbert spaces endowed with the inner
products given by

(u,v)H =
\
Ω

uivi dx, (u,v)H1
= (u,v)H + (ε(u), ε(v))H,

(σ, τ)H =
\
Ω

σijτij dx, (σ, τ)H1
= (σ, τ)H + (Divσ,Div τ)H .

Here ε : H1 → H and Div : H1 → H are the deformation and the divergence
operators, defined by

ε(u) = (εij(u)), εij(u) =
1
2
(ui,j + uj,i), Divσ = (σij,j).

The associated norms are denoted by ‖ · ‖H , ‖ · ‖H, ‖ · ‖H1
and ‖ · ‖H1

.
Let HΓ = H1/2(Γ )N and let γ : H1 → HΓ be the trace map. For every

element v ∈ H1, we also use the notation v to denote the trace γv of v on
Γ and we denote by vν and vτ the normal and tangential components of v
on Γ given by

(2.1) vν = v · ν, vτ = v − vνν.

Let H ′
Γ be the dual of HΓ and let 〈·, ·〉 denote the duality pairing between

H ′
Γ and HΓ . For every σ ∈ H1, σν can be defined as the element in H ′

Γ

which satisfies

(2.2) 〈σν, γv〉 = (σ, ε(v))H + (Divσ,v)H ∀v ∈ H1.
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Denote by σν and στ the normal and tangential traces of σ, respectively.
If σ is continuously differentiable on Ω, then

σν = (σν) · ν, στ = σν− σνν,(2.3)

〈σν, γv〉 =
\
Γ

σν · v da(2.4)

for all v ∈ H1, where da is the surface measure element.
In the sequel we use V to denote the closed subspace of H1 defined by

V = {v ∈ H1 | v = 0 on Γ1}.

Since meas(Γ1) > 0, the following Korn inequality holds:

(2.5) ‖ε(v)‖H ≥ cK‖v‖H1
∀v ∈ V

(see e.g. [12]). Here cK denotes a strictly positive constant which depends
only on Ω and Γ1.

On V we consider the inner product given by

(2.6) (u,v)V = (ε(u), ε(v))H

and let ‖·‖V be the associated norm. It follows from Korn’s inequality (2.5)
that ‖ · ‖H1

and ‖ · ‖V are equivalent norms on V . Therefore (V, ‖ · ‖V ) is a
real Hilbert space.

3. The mechanical problem and weak formulations. In this sec-
tion we introduce the physical setting, list the assumptions on the problem
data and present the variational formulations of the model.

We consider an elastic body occupying a bounded domain Ω ⊂ R
N with

a Lipschitz boundary Γ , partitioned into three disjoint measurable parts Γ1,
Γ2 and Γ3 such that meas(Γ1) > 0. A volume force of density ϕ1 acts in Ω
and a surface traction of density ϕ2 acts on Γ2. The body is clamped on Γ1

and thus the displacement field vanishes there. A gap g exists between the
potential contact surface Γ3 and a foundation, and it is measured along the
direction of the outward normal ν.

We denote by u the displacement vector, σ the stress field and ε(u) the
small strain tensor. The elastic constitutive law of the material is assumed
to be

(3.1) σ = F (ε(u))

with a given (nonlinear) function F . Here and below, in order to simplify
the notation, we usually do not indicate explicitly the dependence of various
functions on the spatial variable x ∈ Ω ∪ Γ .

Next, we describe the condition on the potential contact surface Γ3. We
assume that the normal stress σν satisfies the normal compliance condition

(3.2) −σν = pν(uν − g)
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where uν represents the normal displacement, pν is a prescribed nonnegative
function with pν(t) = 0 for t ≤ 0, and uν − g, when it is positive, represents
the penetration of the body in the foundation. Such a contact condition
was proposed in [11] and used in a number of publications (see e.g. [1, 7,
9, 10, 14] and references therein). In this condition the interpenetration is
allowed but penalized. In [7, 10, 11] the following function was employed:

(3.3) pν(t) = cν(t)
mν

+

where cν is a positive constant, mν is a positive exponent and t+=max{0, t}.
Formally, Signorini’s nonpenetration condition is obtained in the limit cν →
∞. Here we allow for a more general expression, similar to the one used in
[1, 14].

The associated friction law on Γ3 is chosen as

(3.4)





|στ | ≤ pτ (uν − g),
|στ | < pτ (uν − g) ⇒ uτ = 0,
|στ | = pτ (uν − g) ⇒ στ = −λuτ , λ ≥ 0.

Here pτ is a nonnegative function, the so-called friction bound , which satis-
fies pτ (t) = 0 for t ≤ 0, uτ denotes the tangential displacement and στ rep-
resents the tangential force on the contact boundary. This is a static version
of Coulomb’s law of dry friction and should be seen either as a mechanical
model suitable for the proportional loadings or as a first approximation of
a more realistic model, based on a friction law involving the time derivative
of uτ (see for instance [14, 15]). It states that the tangential shear cannot
exceed the maximal frictional resistance pτ . When strict inequality holds
the surface adheres to the foundation and is in the so-called stick state, and
when equality holds there is relative sliding, the so-called slip state. There-
fore, the contact surface Γ3 is divided into three zones: stick, slip and the
separation zone in which uν < g, i.e. there is no contact. The boundaries
of these zones are free boundaries since they are unknown a priori, and are
part of the problem.

In the references [3, 4, 5, 6, 9], the friction law (3.4) was used with

(3.5) pτ = µpν

where µ > 0 is a coefficient of friction. In [7] the friction law (3.4) was used
with

(3.6) pτ (t) = cτ

where cτ > 0. Recently, a new version for Coulomb’s law of friction was
derived in [16, 17] from thermodynamic consideration. It consists in using
in (3.4) the friction bound function

(3.7) pτ = µpν(1− αpν)+
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where α is a small positive coefficient related to the wear and hardness of
the surface.

With (3.1) as the constitutive relation, (3.2) and (3.4) for the contact
condition, the mechanical problem of frictional contact of the elastic body
may be formulated classically as follows.

Problem P . Find a displacement field u : Ω → R
N and a stress field

σ : Ω → SN such that

σ = F (ε(u)) in Ω,(3.8)

Divσ+ϕ1 = 0 in Ω,(3.9)

u = 0 on Γ1,(3.10)

σν = ϕ2 on Γ2,(3.11)

and on Γ3,

(3.12)





−σν = pν(uν − g),
|στ | ≤ pτ (uν − g),
|στ | < pτ (uν − g) ⇒ uτ = 0,
|στ | = pτ (uν − g) ⇒ στ = −λuτ for some λ ≥ 0.

In the study of the mechanical problem (3.8)–(3.12) we assume that the
elasticity operator

F : Ω × SN → SN

satisfies

(3.13) (a) There exists anM > 0 such that |F (x, ε1)−F (x, ε2)| ≤M |ε1−ε2|
for all ε1, ε2 ∈ SN , a.e. in Ω.

(b) There exists an m > 0 such that (F (x, ε1))−F (x, ε2)) · (ε1 − ε2)
≥ m|ε1 − ε2|

2 for all ε1, ε2 ∈ SN , a.e. in Ω.
(c) The mapping x 7→ F (x, ε) is Lebesgue measurable on Ω for any
ε ∈ SN .

(d) F (x,0) ∈ H for all x ∈ Ω.

A family of elasticity operators satisfying the condition (3.13) is provided
by nonlinear Hencky materials (for details, cf. e.g. [18]). For a Hencky
material, the stress-strain relation is

σ = K0 tr ε(u)I + ψ(|εD(u)|2)εD(u),

so that the elasticity operator is

(3.14) F (ε) = K0 tr εI + ψ(|εD|2)εD.

Here, K0 > 0 is a material coefficient, I is the identity tensor of the second
order, tr ε = εii is the trace of ε, and εD denotes the deviatoric part of ε:

εD = ε−
1

N
tr εI.
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The function ψ is assumed to be piecewise continuously differentiable, and
there exist positive constants c1, c2, d1 and d2 such that for ξ ≥ 0,

ψ(ξ) ≤ d1, −c1 ≤ ψ′(ξ) ≤ 0, c2 ≤ ψ(ξ) + 2ψ′(ξ)ξ ≤ d2.

Let us show that the condition (3.13) is satisfied for the elasticity oper-
ator defined in (3.14). We have

F (ε1)− F (ε2)

= K0 tr(ε1 − ε2)I + ψ(|εD1 |2)εD1 − ψ(|εD2 |2)εD2

= K0 tr(ε1 − ε2)I +

1\
0

d

dt
[ψ(|εD2 + t(εD1 − εD2 )|2)(εD2 + t(εD1 − εD2 ))] dt

= K0 tr(ε1 − ε2)I

+

1\
0

[2ψ′(|εD2 + t(εD1 − εD2 )|2)

× (εD2 + t(εD1 − εD2 )) · (ε1 − ε2)(ε
D
2 + t(εD1 − εD2 ))

+ ψ(|εD2 + t(εD1 − εD2 )|2)(ε1 − ε2)] dt.

Then the condition (3.13)(a) is satisfied for some constant M depending on
K0, d1, d2 and c1. Now

(F (ε1)− F (ε2)) · (ε1 − ε2)

= K0|tr(ε1 − ε2)|
2

+

1\
0

[2ψ′(|εD2 + t(εD1 − εD2 )|2)|(εD2 + t(εD1 − εD2 )) · (ε1 − ε2)|
2

+ ψ(|εD2 + t(εD1 − εD2 )|2)|ε1 − ε2|
2] dt

≥ K0|tr(ε1 − ε2)|
2

+

1\
0

[2ψ′(|εD2 + t(εD1 − εD2 )|2)|εD2 + t(εD1 − εD2 )|2

+ ψ(|εD2 + t(εD1 − εD2 )|2)]|ε1 − ε2|
2 dt

≥ K0|tr(ε1 − ε2)|
2 + c2|ε1 − ε2|

2.

Hence, the condition (3.13)(b) is satisfied with m depending on K0 and c2.
Conditions (3.13)(c), (d) are obviously valid.

Using the condition (3.13), we see that for all τ ∈ H the function x 7→
F (x, τ(x)) belongs toH and hence we may consider F as an operator defined
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on H with range in H. Moreover, F : τ ∈ H 7→ F (·, τ) ∈ H is a strongly
monotone Lipschitz continuous operator and therefore F is invertible and
its inverse F−1 : H → H is also a strongly monotone Lipschitz continuous
operator.

We assume the normal compliance functions

pr : Γ3 × R → R+ (r = ν, τ)

satisfy the following hypothesis for r = ν, τ .

(3.15) (a) There exists an Lr > 0 such that |pr(x, t1)−pr(x, t2)| ≤ Lr|t1−t2|
for all t1, t2 ∈ R, a.e. on Γ3.

(b) The mapping x 7→ pr(x, t) is Lebesgue measurable on Γ3 for any
t ∈ R.

(c) x 7→ pr(x, t) = 0 for t ≤ 0.

We observe that the assumptions (3.15) on the functions pν and pτ are
fairly general. The most severe restriction comes from the condition (a),
which, roughly speaking, requires the functions to grow at most linearly.
Certainly the function defined in (3.6) satisfies (3.15)(a), whereas that de-
fined in (3.3) satisfies it if and only if mν = 1. We also observe that if the
functions pν and pτ are related by (3.5) and pν satisfies (3.15)(a), then so
does pτ with Lτ = µLν . It can be verified that this statement is still valid
if the functions pν and pτ are related by (3.7).

The condition (3.15)(c) shows that when there is no penetration (i.e.
uν ≤ g) then the tractions vanish (σν = 0, στ = 0). This condition is
satisfied for the function (3.3) if mν > 0. We also observe that if the
functions pν and pτ are related by (3.5) or (3.7) and pν satisfies (3.15)(c),
then so does pτ .

We also suppose that the forces and the tractions have the regularity

(3.16) ϕ1 ∈ H, ϕ2 ∈ L2(Γ2)
N

while the gap function g is such that

(3.17) g ∈ L∞(Γ3), g(x) ≥ 0 a.e. on Γ3.

Next, using Riesz’s representation theorem, we define f ∈ V by

(3.18) (f ,v)V = (ϕ1,v)H + (ϕ2, γv)L2(Γ2)N ∀v ∈ V

and let j : V × V → R be the functional

(3.19) j(η,v) =
\
Γ3

pν(ην − g)vν da+
\
Γ3

pτ (ην − g)|vτ | da.

For all η ∈ V , set

(3.20) Σ(η) = {σ ∈ H | (σ, ε(v))H + j(η,v) ≥ (f ,v)V ∀v ∈ V }

and
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(3.21) D(T ) = {z ∈ H | ∃v ∈ V such that F (ε(v)) = z}.

From (3.13)(b) and Korn’s inequality (2.5) it follows that the operator F ◦ε :
V → D(T ) is invertible; we let T : D(T ) → V denote its inverse. We have

(3.22) v = T (z) ⇔ F (ε(v)) = z.

Moreover we obtain the following result.

Lemma 3.1. If {u,σ} are sufficiently smooth functions satisfying (3.8)–
(3.12), then

u ∈ V,

(σ, ε(v)− ε(u))H + j(u,v) − j(u,u) ≥ (f ,v − u)V ∀v ∈ V,
(3.23)

σ ∈ D(T ) ∩Σ(u), (τ− σ, ε(u))H ≥ 0 ∀τ ∈ Σ(u).(3.24)

P r o o f. The regularity u ∈ V follows from (3.10). Let v ∈ V . Using
(2.2), (2.4), (3.9)–(3.11) we have

(3.25) (σ, ε(v))H = (ϕ1,v)V + (ϕ2, γv)L2(Γ2)N +
\
Γ3

σν · v da,

and using (2.1), (2.3), (3.12) and (3.19) gives

(3.26)
\
Γ3

σν · v da ≥ −j(u,v).

Therefore, by (3.25), (3.26) and (3.18) we deduce

(3.27) (σ, ε(v))H + j(u,v) ≥ (f ,v)V .

The regularity σ ∈ D(T ) ∩ Σ(u) now follows from (3.8), (3.21), (3.20) and
(3.27).

Moreover, from (3.12) and (3.19) we have\
Γ3

σν · u da = −j(u,u)

and therefore, taking v = u in (3.25) and using again (3.18), we deduce

(3.28) (σ, ε(u))H + j(u,u) = (f ,u)V .

The inequalities (3.23) and (3.24) are now a consequence of (3.27), (3.28)
and (3.20).

Lemma 3.1, (3.8) and (3.22) lead us to consider the following two varia-
tional problems.

Problem P1. Find a displacement field u : Ω → R
N such that

(3.29) u ∈ V, (F (ε(u)), ε(v)− ε(u))H + j(u,v)− j(u,u)

≥ (f ,v − u)V ∀v ∈ V.
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Problem P2. Find a stress field σ : Ω → SN such that

(3.30) σ ∈ D(T ) ∩Σ(T (σ)), (F−1(σ), τ − σ)H ≥ 0 ∀τ ∈ Σ(T (σ)).

Problems P1 and P2 are formally equivalent to the mechanical prob-
lem P . Indeed, if u represents a sufficiently regular solution of P1 and σ
is defined by σ = F (ε(u)), then, using the arguments of [6], it follows that
{u,σ} is a solution of problem P . Similarly, if σ represents a regular so-
lution of P2 and u ∈ V is given by σ = F (ε(u)) then, using the same
arguments, it follows that {u,σ} is a solution of P . For this reason we may
consider problems P1 and P2 as variational formulations of the mechanical
problem P .

4. Existence and uniqueness. The main results of this section are on
the existence and uniqueness for the two weak formulations P1 and P2. We
have:

Theorem 4.1. Let the conditions (3.13), (3.15)–(3.17) hold. Then there

exists L0 > 0 depending only on Ω, Γ1 and F such that if Lν + Lτ < L0

then there exists a unique solution u to problem P1.

Theorem 4.2. Let the conditions (3.13), (3.15)–(3.17) hold. Let L0 > 0
be defined as in Theorem 4.1. If Lν + Lτ < L0 then there exists a unique

solution σ to problem P2. Moreover , σ ∈ H1.

The proof of Theorem 4.1 will be carried out in several steps. It is based
on fixed point arguments similar to those used in [14, 15]. We suppose in
the sequel that the assumptions of Theorem 4.1 are fulfilled and let η ∈ V .
We consider the following variational problem.

Problem P η
1 . Find uη ∈ V such that

(4.1) (F (ε(uη)), ε(v)− ε(uη))H + j(η,v)− j(η,uη)

≥ (f ,v − uη)V ∀v ∈ V.

We have the following result.

Lemma 4.3. For any η ∈ V , problem P η
1 has a unique solution uη ∈ V .

P r o o f. Using Riesz’s representation theorem we may define an operator
A : V → V by

(4.2) (A(w),v)V = (F (ε(w)), ε(v))H ∀w,v ∈ V.

Keeping in mind (3.13)(a) we see that A is a Lipschitz continuous operator.
Using (3.13)(b) and Korn’s inequality (2.5) we conclude that A is a strongly
monotone operator. Moreover, by (3.19) it follows that j(η, ·) is a continuous
seminorm on V . Lemma 4.3 now results from (4.2) and standard arguments
of elliptic variational inequalities.
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Lemma 4.3 allows us to consider an operator Λ : V → V defined by

(4.3) Λ(η) = uη ∀η ∈ V.

Lemma 4.4. There exists L0 > 0 depending only on Ω, Γ1 and F such

that if Lν + Lτ < L0 then the operator Λ has a unique fixed point η∗ ∈ V .

P r o o f. We use the Banach fixed point theorem. Let η1,η2 ∈ V be
given and denote the corresponding solutions of the problem (4.1) by u1
and u2. Then we have u1 ∈ V , u2 ∈ V , and

(F (ε(u1)), ε(v)− ε(u1))H + j(η1,v)− j(η1,u1)≥ (f ,v − u1)V ∀v ∈ V,

(F (ε(u2)), ε(v)− ε(u2))H + j(η2,v)− j(η2,u2)≥ (f ,v − u2)V ∀v ∈ V.

We take v = u2 in the first inequality, v = u1 in the second, and add the
two inequalities to obtain

(F (ε(u1))− F (ε(u2)), ε(u1)− ε(u2))H

≤ j(η1,u2)− j(η1,u1) + j(η2,u1)− j(η2,u2)

=
\
Γ3

(pν(η1ν − g)− pν(η2ν − g))(u2ν − u1ν) da

+
\
Γ3

(pτ (η1ν − g)− pτ (η2ν − g))(|u2τ | − |u1τ |) da.

Thus, using (3.13) and (3.15) we deduce

m‖ε(u1 − u2)‖
2
H ≤

\
Γ3

|η1ν − η2ν |(Lν |u1ν − u2ν |+ Lτ |u1τ − u2τ |) da

≤ (Lν + Lτ )
\
Γ3

|η1ν − η2ν | |u1 − u2| da

≤ (Lν + Lτ )‖η1 − η2‖L2(Γ3)N ‖u1 − u2‖L2(Γ3)N .

By the Sobolev trace theorem and the fact that ‖ε(v)‖H is an equivalent
norm on V , we have a constant c0 depending only on the domain Ω and Γ1

such that

(4.4) ‖v‖L2(Γ3)N ≤ c0‖ε(v)‖H ∀v ∈ V.

Hence,

m‖ε(u1 − u2)‖
2
H ≤ (Lν + Lτ )c

2
0‖ε(η1 − η2)‖H‖ε(u1 − u2)‖H,

i.e.,

‖ε(u1 − u2)‖H ≤
c20
m

(Lν + Lτ )‖ε(η1 − η2)‖H.

Let

(4.5) L0 = m/c20.
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Then if Lν +Lτ < L0, the mapping Λ is a contraction of V . By the Banach
fixed point theorem, the mapping Λ has a unique fixed point on V .

Proof of Theorem 4.1. Let Lν + Lτ < L0 and let η∗ be the fixed point
of the operator Λ. We denote by u∗ the solution of the variational problem
P η
1 for η = η∗. Using (4.1) and (4.3) it is straightforward to see that u∗

is a solution of (3.29). This proves the existence part of Theorem 4.1. The
uniqueness part follows from the uniqueness of the fixed point of the operator
Λ given by (4.3).

Next, we present the proof of Theorem 4.2. For this we suppose in the
sequel that conditions (3.13), (3.15)–(3.17) hold and let again η ∈ V . We
consider the following variational problem.

Problem P η
2 . Find ση : Ω → SN such that

(4.6) ση ∈ D(T ) ∩Σ(η), (F−1(ση), τ− ση)H ≥ 0 ∀τ ∈ Σ(η).

We have the following result.

Lemma 4.5. For any η ∈ V , problem P η
2 has a unique solution ση .

Moreover , ση ∈ H1.

P r o o f. Let ση ∈ D(T ) be given by

(4.7) ση = F (ε(uη))

where uη is the solution of problem P η
1 . Taking v = 2uη and v = 0 in (4.1)

we get

(4.8) (ση , ε(uη))H + j(η,uη) = (f ,uη)V .

Moreover, from (4.1), (4.7) and (4.8) we deduce that

(ση , ε(v))H + j(η,v) ≥ (f ,v)V ∀v ∈ V,

which implies ση ∈ Σ(η). Using again (4.7), (3.20) and (4.8) we see that

(F−1(ση), τ− ση)H = (τ− ση, ε(uη))H ≥ 0 ∀τ ∈ Σ(η),

which proves the existence part in Lemma 4.5. The uniqueness part fol-
lows from standard arguments since F−1 : H → H is a strongly monotone
operator.

The regularity ση ∈ H1 follows from ση ∈ Σ(η). Indeed, taking v = ±ϕ
with ϕ ∈ D(Ω)N in the constraint inequality defining the set (3.20) and
using (3.18), (3.19) we deduce

(4.9) Divση +ϕ1 = 0 a.e. in Ω.

Then with the condition (3.16), it follows that ση ∈ H1.

Proof of Theorem 4.2. Let Lν + Lτ < L0 and let η∗ be the fixed point
of the operator Λ defined by (4.3). We denote by σ∗ the solution of the
variational problem P η

2 for η = η∗. From (4.7) and (3.22) it follows that
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u∗ = T (σ∗) where u∗ is the solution of P η
1 for η = η∗. Moreover, by (4.3)

we have

(4.10) η∗ = T (σ∗).

From (4.6) and (4.10) it now follows that σ∗ satisfies (3.30), which proves
the existence part of Theorem 4.2. The regularity σ∗ ∈ H1 follows from
Lemma 4.5.

In order to prove the uniqueness part let σ∗ be the solution of problem
P2 obtained above and let σ be another solution of P2. We denote by η the
element of V given by

(4.11) η = T (σ).

From (3.30) and (4.11) it follows that σ is a solution of problem P η
2 and,

since by Lemma 4.5 this problem has the unique solution ση given by (4.7),
we have

(4.12) σ = ση.

Using again (4.7) and (3.22) we get

(4.13) uη = T (ση)

and therefore, by (4.11)–(4.13), it follows that uη = η. We conclude that
η is the fixed point of the operator Λ given by (4.3), and by Lemma 4.4 it
follows that

(4.14) η = η∗.

The uniqueness part in Theorem 4.1 is now a consequence of (4.12) and
(4.14).

As was pointed out in Section 3, problems P1 and P2 represent two
variational formulations of the mechanical problem P . Problem P1 is for-
mulated in terms of displacements while problem P2 is formulated in terms
of stresses. We are interested in the relation between the solutions u and σ
obtained in Theorems 4.1 and 4.2, which is stated in the next result.

Theorem 4.6. Let the conditions (3.13), (3.15)–(3.17) hold , and assume

Lν + Lτ < L0.

1) Let u be the solution of problem P1 and σ be given by

(4.15) σ = F (ε(u)).

Then σ belongs to H1 and σ is the solution of problem P2.

2) Conversely , let σ be the solution of problem P2. Then there exists a

unique u ∈ V such that (4.15) holds and u is the solution of problem P1.

P r o o f. 1) Let u be the solution of problem P1. It follows from the

proof of Theorem 4.1 that u is the solution of problem P η∗

1 where η∗ is the
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fixed point of the operator Λ given by (4.3). Therefore, from the proof of

Lemma 4.5 we deduce that σ given by (4.15) is a solution of P η∗

2 , which
concludes the proof.

2) Conversely, let σ be the solution of P2 and let u = T (σ) ∈ V . Using
(3.22) we deduce that (4.15) holds and moreover

(4.16) (τ− σ, ε(u))H ≥ 0 ∀τ ∈ Σ(u).

Using now the subdifferentiability of the seminorm j(u, ·) on V and (2.6)
we deduce that there exists τ̃ ∈ H such that

(4.17) (τ̃, ε(v)− ε(u))H + j(u,v) − j(u,u) ≥ (f ,v − u)V ∀v ∈ V.

Taking v = 2u and v = 0 in (4.17) we obtain

(4.18) (τ̃, ε(u))H + j(u,u) = (f ,u)V .

From (4.17), (4.18) and (3.20), it now follows that τ̃ ∈ Σ(u). Therefore,
taking τ = τ̃ in (4.16) and using again (4.18) we deduce

(f ,u)V ≥ (σ, ε(u))H + j(u,u).

The converse inequality follows from (3.20) since σ ∈ Σ(T (σ)) and T (σ) =
u. Therefore, we conclude that

(4.19) (σ, ε(u))H + j(u,u) = (f ,u)V .

Using again (3.20) we have

(4.20) (σ, ε(v))H + j(u,v) ≥ (f ,v)V

and from (4.20), (4.19) and (4.15) it results that u is a solution of P1.

The mechanical interpretation of the results in Theorem 4.6 is the fol-
lowing.

1) If the displacement field u is the solution of the variational problem P1,
then the associated stress field σ = F (ε(u)) is the solution of the variational
problem P2.

2) If the stress field σ is the solution of P2 then there exists a dis-
placement field u ∈ V associated with σ by the elastic constitutive law
σ = F (ε(u)) and u is the solution of P1.

Under the assumptions of Theorems 4.1 and 4.2, we also see that if
the displacement field u is the solution of P1 and the stress field σ is the
solution of P2, then u and σ are connected by the elastic constitutive law
σ = F (ε(u)). For this reason we shall consider in the sequel the couple
{u,σ} given by Theorems 4.1 and 4.2 as a weak solution for the problem
(3.8)–(3.12) and we conclude that this mechanical problem has a unique
weak solution provided Lν + Lτ < L0.
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5. Continuous dependence on contact conditions. Next, we in-
vestigate the behavior of the weak solution to the problem (3.8)–(3.12) with
respect to perturbations of the normal compliance functions pν and pτ . To
this end, suppose that the conditions (3.13), (3.15)–(3.17) hold. For every
α ≥ 0, let pαr be a perturbation of pr which satisfies (3.15) with Lipschitz
constant Lα

r (r = ν, τ). Let us also introduce the functionals jα which are
obtained by replacing pν and pτ by pαν and pατ in j, and let Σα(η) be given
by (3.20) with j replaced by jα. We now consider the following problems.

Problem Pα
1 . For α ≥ 0, find a displacement field uα ∈ V such that

(5.1) (F (ε(uα)), ε(v)− ε(uα))H + jα(uα,v)− jα(uα,uα)

≥ (f ,v − uα)V ∀v ∈ V.

Problem Pα
2 . For α ≥ 0, find a stress field σα ∈ D(T ) ∩ Σα(T (σα))

such that

(5.2) (F−1(σα), τ − σα)H ≥ 0 ∀τ ∈ Σα(T (σα)).

We suppose that Lα
ν +L

α
τ < L0. Using Theorems 4.1 and 4.2, we deduce

that for each α ≥ 0, problem Pα
1 has a unique solution uα ∈ V and problem

Pα
2 has a unique solution σα ∈ H1. Moreover, by Theorem 4.6 it follows

that σα and uα are connected by the elastic constitutive law, i.e.,

(5.3) σα = F (ε(uα)).

Suppose now that the normal compliance functions satisfy the following
assumption: there exist ϕr : R+ → R+ (r = ν, τ) and β > 0 such that

(5.4) (a) |pαr (x, t) − pr(x, t)| ≤ ϕr(α)|t| for all t ∈ R, a.e. on Γ3.

(b) limα→0 ϕr(α) = 0.

(c) Lα
ν + Lα

τ + β ≤ L0 for all α ≥ 0.

Under these assumptions we have the following result.

Theorem 5.1. Let (5.4) hold. Then

(5.5) uα → u in V, σα → σ in H1, as α→ 0.

P r o o f. Let α ≥ 0. Using (3.29) and (5.1) we obtain

(F (ε(uα))− F (ε(u)), ε(uα)− ε(u))H

≤ j(u,uα)− j(u,u) + jα(uα,u)− jα(uα,uα)

=
\
Γ3

(pν(uν − g)− pαν (u
α
ν − g))(uαν − uν) da

+
\
Γ3

(pτ (uν − g) − pατ (u
α
ν − g))(|uατ | − |uτ |) da.
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Thus, using (3.13), we deduce

(5.6) m‖ε(uα − u)‖2H

≤
\
Γ3

{|pν(uν − g)− pαν (u
α
ν − g)|+ |pτ (uν − g)− pατ (u

α
ν − g)|}|uα − u| da.

Let now r = ν or τ . Then

|pr(uν−g)−p
α
r (u

α
ν −g)| ≤ |pr(uν−g)−p

α
r (uν−g)|+|pαr (uν−g)−p

α
r (u

α
ν −g)|

a.e. on Γ3. Taking into account (5.4)(a) and (3.15), we get

(5.7) |pr(uν − g)− pαr (u
α
ν − g)| ≤ ϕr(α)|u|+ Lα

r |u
α − u|

a.e. on Γ3. Combining now (5.5) and (5.6) we deduce

m‖ε(uα − u)‖2H

≤
\
Γ3

[(ϕν (α) + ϕτ (α))|u| |u
α − u|+ (Lα

ν + Lα
τ )|u

α − u|2] da

≤ (ϕν(α) + ϕτ (α))‖u‖L2(Γ3)N ‖uα − u‖L2(Γ3)N

+ (Lα
ν + Lα

τ )‖u
α − u‖2L2(Γ3)N

and by (4.4) it follows that

m‖ε(uα − u)‖2H

≤ c20(ϕν(α) + ϕτ (α))‖ε(u)‖H‖ε(uα − u)‖H + c20(L
α
ν + Lα

τ )‖ε(u
α − u)‖2H.

Using now (4.5) and (5.4)(c) in the previous inequality, we deduce

(5.8) β‖ε(uα − u)‖H ≤ (ϕν(α) + ϕτ (α))‖ε(u)‖H.

Moreover, from (4.15), (5.3) and (3.13) it follows that

‖σα − σ‖H ≤M‖ε(uα − u)‖H

and since Divσα = Divσ = −ϕ1 (see (4.9)) we obtain

(5.9) ‖σα − σ‖H1
= ‖σα − σ‖H ≤M‖ε(uα − u)‖H.

The convergence result (5.5) is now a consequence of (5.7), (5.8) and
(5.4)(b).

In addition to the mathematical interest in the result of Theorem 5.1, it
is of importance in applications, as it indicates that a small perturbation in
the contact condition leads to a small change in the solution.

6. Finite element approximation. In this section we study the finite
element approximation of the variational problem P1. Everywhere in the
sequel c will denote a strictly positive generic constant which may depend
on Ω, Γ1 and F and whose value may vary from place to place. Let Vh ⊂ V
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be a finite element subspace. Then the finite element solution of problem
P1 is uh ∈ Vh which satisfies

(6.1) (F (ε(uh)), ε(vh)− ε(uh))H + j(uh,vh)− j(uh,uh)

≥ (f ,vh − uh)V ∀vh ∈ Vh.

Under the assumptions of Theorem 4.1 with the same value of L0, the dis-
crete system (6.1) has a unique solution uh ∈ Vh. Here we focus on error
analysis of the numerical solution. We first derive a Céa’s type inequality.

Theorem 6.1. Under the assumptions of Theorem 4.1 with the same

value of L0, for some constant c > 0 we have

(6.2) ‖u− uh‖V

≤ c inf
vh∈Vh

{‖u− vh‖V + ‖u− vh‖L2(Γ3)N + ‖F (ε(u))‖
1/2
H

‖u− vh‖
1/2
V

+ (‖pν(uν − g)‖L2(Γ3) + ‖pτ (uν − g)‖L2(Γ3))
1/2‖u− vh‖

1/2

L2(Γ3)N
}.

P r o o f. First we have

m‖ε(u− uh)‖
2
H

≤ (F (ε(u))− F (ε(uh)), ε(u− uh))H

= (F (ε(u))− F (ε(uh)), ε(u− vh))H + (F (ε(u)), ε(vh − u))H

+ (F (ε(u)), ε(u− uh))H − (F (ε(uh)), ε(vh − uh))H.

We then use (3.29) with v = uh and (6.1) to get

m‖ε(u− uh)‖
2
H

≤ (F (ε(u)) − F (ε(uh)), ε(u− vh))H + (F (ε(u)), ε(vh − u))H

+ j(u,uh)− j(u,u) + j(uh,vh)− j(uh,uh)− (f ,vh − u)V ,

i.e.,

(6.3) m‖ε(u− uh)‖
2
H ≤ R1 +R2 +R3 +R4,

where

R1 = (F (ε(u)) − F (ε(uh)), ε(u− vh))H,

R2 = (F (ε(u)), ε(vh − u))H + j(u,vh)− j(u,u) − (f ,vh − u)V ,

R3 = j(u,uh)− j(uh,uh) + j(uh,u)− j(u,u),

R4 = j(uh,vh)− j(u,vh) + j(u,u) − j(uh,u).

Let us estimate each of the four terms. For the first term, we have

(6.4) |R1| ≤M‖ε(u− uh)‖H‖ε(u− vh)‖H.



432 W. Han and M. Sofonea

The second term R2 can be viewed as a residual, and by a straightforward
estimation, we have

|R2| ≤ ‖F (ε(u))‖H‖ε(u− vh)‖H(6.5)

+ (‖pν(uν − g)‖L2(Γ3) + ‖pτ (uν − g)‖L2(Γ3))‖u− vh‖L2(Γ3)N .

Since

R3 =
\
Γ3

[(pν(uν − g)− pν(uhν − g))(uhν − uν)

+ (pτ (uν − g)− pτ (uhν − g))(|uhτ | − |uτ |)] da,

we have

|R3| ≤
\
Γ3

[Lν |uν − uhν |
2 + Lτ |uν − uhν | |uτ − uhτ |] da

and thus

(6.6) |R3| ≤ c(Lν + Lτ )‖ε(u− uh)‖
2
H.

Similarly,

R4 =
\
Γ3

[(pν(uhν − g)− pν(uν − g))(vhν − uν)

+ (pτ (uhν − g)− pτ (uν − g))(|vhτ | − |uτ |)] da

and then

|R4| ≤
\
Γ3

[Lν |uν − uhν | |uν − vhν |+ Lτ |uν − uhν | |uτ − vhτ |] da(6.7)

≤ c‖u− uh‖L2(Γ3)N ‖u− vh‖L2(Γ3)N

≤ c‖ε(u− uh)‖H‖u− vh‖L2(Γ3)N .

Using the bounds (6.4)–(6.7) in (6.3) and applying the elementary inequality

ab ≤ δa2 +
1

4δ
b2 ∀δ > 0,

we have

‖ε(u− uh)‖
2
H

≤ c{‖ε(u− vh)‖
2
H + ‖u− vh‖

2
L2(Γ3)N

+ ‖F (ε(u))‖H‖ε(u− vh)‖H

+ (‖pν(uν − g)‖L2(Γ3) + ‖pτ (uν − g)‖L2(Γ3))‖u− vh‖L2(Γ3)N },

so the inequality (6.2) holds.

The inequality (6.2) is the basis for convergence analysis. Indeed, we
see immediately that the finite element method converges under the basic
solution regularity u ∈ V , as long as the finite element triangulation is
regular and the finite element space Vh contains piecewise linear functions.
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We can improve the estimate (6.2) under the regularity assumption στ ∈
(L2(Γ3))

N . In this case, we can perform integration by parts to obtain

R2 =
\
Γ3

[στ · (vhτ − uτ ) + pτ (uν − g)(|vhτ | − |uτ |)] da.

Therefore we can use

(6.8) |R2| ≤ (‖στ‖L2(Γ3)N + ‖pτ (uν − g)‖L2(Γ3))‖uτ − vhτ‖L2(Γ3)N )

to replace (6.5). As a result we have the following variant of Theorem 6.1.

Theorem 6.2. Under the assumptions of Theorem 4.1 with the same

value of L0, assume additionally στ ∈ (L2(Γ3))
N . Then for some constant

c > 0, we have

(6.9) ‖ε(u− uh)‖H

≤ c inf
vh∈Vh

{‖ε(u− vh)‖H + ‖u− vh‖L2(Γ3)N

+ (‖στ‖L2(Γ3)N + ‖pτ (uν − g)‖L2(Γ3))
1/2‖u− vh‖

1/2

L2(Γ3)N
}.

To derive an error estimate, we need to make additional assumptions on
the solution regularity. We present a sample result.

Assume

(6.10) u ∈ H2(Ω)N , u|Γ3
∈ H2(Γ3)

N .

We use linear elements for the finite element space Vh. Let Πhu ∈ Vh be
the finite element interpolant of the solution u. Then from (6.2), we obtain

‖u− uh‖V ≤ c{‖u −Πhu‖V + ‖u−Πhu‖L2(Γ3)N

+ (‖στ‖L2(Γ3)N + ‖pτ (uν − g)‖L2(Γ3))
1/2‖u−Πhu‖

1/2

L2(Γ3)N
}.

The standard finite element interpolation theory yields (cf. [2])

‖u−Πhu‖V ≤ Ch|u|H2(Ω)N , ‖u−Πhu‖L2(Γ3)N ≤ ch2|u|H2(Γ3)N .

Therefore, under the regularity assumption (6.10), we have the following
error estimate:

‖u− uh‖V ≤ ch(|u|H2(Ω)N + |u|H2(Γ3)N

+ (‖στ‖L2(Γ3)N + ‖pτ (uν − g)‖L2(Γ3))
1/2|u|

1/2

H2(Γ3)N
).

The finite element system (6.1) can be approximated by a fixed-point
iteration method. This follows from a discrete analogue of the proof of
Theorem 4.1. Choosing an initial guess u0h ∈ Vh, we define a sequence
{unh} ⊂ Vh recursively by

(6.11) (F (ε(un+1
h )), ε(vh)− ε(u

n+1
h ))H + j(unh ,vh)− j(unh ,u

n+1
h )

≥ (f ,vh − un+1
h )V ∀vh ∈ Vh.
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We have the following convergence result.

Theorem 6.3. Under the assumptions of Theorem 4.1 with the same

value of L0, the iteration method (6.11) converges:

‖unh − uh‖V → 0 as n→ ∞.

Furthermore, for some constant 0 < κ < 1, we have the estimate

(6.12) ‖unh − uh‖V ≤ cκn.

P r o o f. We take vh = un+1
h in (6.1),

(6.13) (F (ε(uh)), ε(u
n+1
h )− ε(uh))H + j(uh,u

n+1
h )− j(uh,uh)

≥ (f ,un+1
h − uh)V ,

and take vh = uh in (6.11),

(6.14) (F (ε(un+1
h )), ε(uh)− ε(u

n+1
h ))H + j(unh,uh)− j(unh ,u

n+1
h )

≥ (f ,uh − un+1
h )V .

Adding (6.13) and (6.14), we obtain

(F (ε(uh))− F (ε(un+1
h )), ε(uh)− ε(u

n+1
h )) ≤ j(uh,u

n+1
h )− j(uh,uh)

+ j(unh ,uh)− j(unh,u
n+1
h ).

Then as in the proof of Lemma 4.4, we can derive the estimate

‖ε(uh − un+1
h )‖H ≤

c20
m

(Lν + Lτ )‖ε(uh − unh)‖H

=
Lν + Lτ

L0
‖ε(uh − unh)‖H.

Under the stated assumption, κ ≡ (Lν + Lτ )/L0 < 1, and we have the
estimate (6.12).
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