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Applications of the Carathéodory theorem to PDEs

by Konstanty Holly and Joanna Orewczyk (Kraków)

Abstract. We discuss and exploit the Carathéodory theorem on existence and unique-

ness of an absolutely continuous solution x : J (⊂ R)→ X of a general ODE ẋ
(⋆)
= F(t, x)

for the right-hand side F : domF (⊂ R ×X) → X taking values in an arbitrary Banach
space X, and a related result concerning an extension of x. We propose a definition of
solvability of (⋆) admitting all connected J and unifying the cases “domF is open” and
“domF = J ×Ω for some Ω ⊂ X”. We show how to use the theorems mentioned above
to get approximate solutions of a nonlinear parabolic PDE and exact solutions of a linear
evolution PDE with distribution data.

1. Introduction. We start with reviewing the original Carathéodory
result in the simplest case of X=R. Let F be a real function on the rectangle
[a, b]× [c, d]⊂ R

2. A real function x on an open interval ]α, β[⊂ [a, b] is said
to be a solution of the ordinary differential equation (ODE)

(1) x′ = F(t, x)

if x is absolutely continuous in ]α, β[ (i.e. it is absolutely continuous in any
[α′, β′] ⊂ ]α, β[) and x′(t) = F(t, x(t)) for almost all t ∈ ]α, β[.

We say that the right-hand side F satisfies the Carathéodory conditions

(see Carathéodory [3], Opial [13], Pelczar–Szarski [14], Sansone [18]) if:

(i) for all x ∈ [c, d] the function F(·, x) : [a, b] ∋ t 7→ F(t, x) ∈ R is
measurable;

(ii) for all t ∈ [a, b] the function F(t, ·) : [c, d] ∋ x 7→ F(t, x) ∈ R is
continuous;

(iii) there exists a measurable function M : [a, b] → R+ := [0,∞[ such

that
Tb
a
M(t) dt <∞ and

∀(t, x) ∈ [a, b]× [c, d] : |F(t, x)| ≤M(t).

These assumptions allow proving the existence of a solution of the Cauchy
problem {(1), x(t0) = x0} for each (t0, x0) ∈ ]a, b[× ]c, d[ (see Carathéodory
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[3], Chap. XI, §582). Such a solution is given on a certain neighbourhood
of t0. In the fifties G. Aguaro [1] introduced the condition

(iv) for any continuous function z : [a, b]→ [c, d] the function [a, b] ∋ t 7→
F(t, z(t)) ∈ R is summable and the family of functions

{
x 7→

x\
a

F(s, z(s)) ds
∣∣∣ z : [a, b]→ [c, d] is continuous

}

is absolutely equicontinuous.

He proved that under assumptions (i), (ii), (iv) the assertion of the Cara-
théodory existence theorem remains true. Next, Z. Opial [13] observed that
the systems of conditions {(i), (ii), (iii)} and {(i), (ii), (iv)} are equivalent.

C. Carathéodory tackled the existence theorem, straightaway, in the gen-
eral case of X = R

n. Replacing [a, b] and [c, d] above by ]a, b[ and R
n, re-

spectively, he proved that for any (t0, x0) ∈ ]a, b[ × R
n the Cauchy problem

{(1), x(t0) = x0} has a solution defined on the whole ]a, b[. He also proved
([3], Chap. XI, §583) that the generalized Lipschitz condition

(2) |F(t, x1)−F(t, x2)| ≤ L(t)|x1 − x2|

for (t, xj) ∈ ]a, b[×R
n (j = 1, 2) with some summable function L on ]a, b[ is

a sufficient condition for the solution to be unique.

From among a variety of later generalizations of the Carathéodory the-
orem we want to mention only two which are related to the version of the
theorem on existence and uniqueness (Th. 2.6 below) used in this paper.
P. S. Bondarenko [2] generalized the result of Carathéodory to the case of
domF being a domain in R × R

n. Next, W. N. Everitt and D. Race [5]
showed that for linear ODEs the local summability of the coefficients is
sufficient for local existence. They also discussed when this assumption is
necessary, and mentioned a similar result for certain nonlinear equations.

In the present paper we consider absolutely continuous solutions of a
general ODE taking values in an abstract Banach space. We propose a def-
inition of solvability (Def. 2.2) which takes into account solutions defined
in a both-sided or one-sided neighbourhood of an initial moment and, in
particular, unifies two basic cases mentioned in the abstract. It enables us
to solve (3) even if domF is neither open nor a Cartesian product (Ex. 2.4).
The assumptions of Theorem 2.6 (on existence and uniqueness) resemble
those made by Carathéodory and by Bondarenko. The well known Picard–
Banach method of successive approximations, exploited originally for right-
hand sides satisfying (2) in R

n, works without essential modifications also in
the case of dimX =∞; so, we confine ourselves to give a sketch of proof of
Theorem 2.5. However, in our opinion the second fundamental result, The-
orem 2.8 (on extension of solutions), should be proved most scrupulously.
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Unlike other authors (for example Hartman [6]), we impose no assumptions
ensuring uniqueness and local existence, but, simply, we assume that (3) is
uniquely solvable. We do not exclude discontinuity of F and ẋ, so condition
(ii) differs considerably from extension theorems for C1-solutions. From our
experience, Theorem 2.8 is, despite an abstract undertone, very useful in
applications.

In the literature concerning ODEs (in both classical and Carathéodory
formulations) the dominating case is that of domF being open in R × X.
Nevertheless, applications to PDEs seem to be more connected with the
case of domF = J × Ω, especially for PDEs of parabolic type. In the
present paper we try to redress the balance and emphasize the last case,
both in examples (Sections 3, 4) and in the general theory (Sec. 2). That
case distinguishes itself by an evident set-theoretic simplicity, so the versions
2.5 and 2.7 of the fundamental theorems have transparent statements and
relatively simple proofs.

In Sections 3 and 4 we show how Theorems 2.5 and 2.7 work in the theory
of partial differential equations (PDEs). We regard the examples considered
there (important in PDE theory) as being indispensable to understand the
essence of these theorems. The applications of ODEs in Sections 3 and 4 are
not elementary; however, in comparison with examples which can be found
in handbooks, they are an authentic origin of Theorems 2.6 and 2.8.

Specifically, in Section 3 we show how, in the case of an abstract nonlinear
parabolic equation, the Faedo–Galerkin method works, and in Section 4
how to realize the old Fourier idea of reduction of a linear evolution partial
differential equation to an ordinary differential equation. By “reduction”
we mean a constructive procedure which gives an exact solution in analytic
form. In Section 3 we quote the fragments of the paper [9] and, in Section 4,
we announce the results of preprint [7].

2. Short theory of ODEs of the Carathéodory type. Let X be a
Banach space with the norm |·|, over a scalar field K (= R or C). A curve x ⊂
R×X, i.e. an X-valued function defined on an interval domx (⊂ R), is said
to be absolutely continuous if the restriction x|[a,b] is absolutely continuous
for any a, b ∈ domx. The absolute continuity of x|[a,b] means, as in the
theory of real functions, that

∀ε > 0 ∃δ > 0 :

k∑

i=1

|x(βi)− x(αi)| < ε

for any family ]α1, β1[, . . . , ]αk, βk[ of pairwise disjoint subintervals of [a, b]

satisfying
∑k

i=1 |βi − αi| < δ.
Let a “right-hand side” F ⊂ (R×X)×X be any mapping defined on an

arbitrary set domF ⊂ R × X. An absolutely continuous curve x ⊂ domF
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is called a solution of the ordinary differential equation

(3) ẋ = F(t, x)

if domx is an infinite interval in R and there exists a set Z (⊂ domx) of
zero Lebesgue measure such that for every t ∈ domx\Z, ẋ(t) exists and

(4) ẋ(t) = F(t, x(t)).

Here ẋ(t) (∈ X) denotes the derivative of the curve x at time t, that is,

lim
h→0

∣∣∣∣
x(t+ h)− x(t)

h
− ẋ(t)

∣∣∣∣ = 0.

In particular, each solution x ⊂ R×X of (3) satisfies

x(t2)− x(t1) =

t2\
t1

ẋ(t) dt for any t1, t2 ∈ domx.

This follows from Theorem 5.1 (see Appendix), which, together with other
properties of vector-valued absolutely continuous functions (which will be
needed here), can be achieved as a generalization of appropriate properties of
real functions, using, without essential modifications, the methods described
e.g. in Saks [17] (Chap. III, §§ 12, 13) or  Lojasiewicz [11] (Chap. 7, §§ 7.3,
7.4). This only requires some familiarity with the Bochner integral and a
counterpart of the Luzin theorem for Banach spaces.

As in the classical theory of differential equations we say that the equa-
tion (3) has the uniqueness property if for arbitrary solutions x1, x2 of (3)
such that x1 ∩ x2 6= ∅ we have x1 = x2 in domx1 ∩ domx2.

The notion of solvability of (3) at a fixed point (t0, x0) ∈ domF must
include the topological structure of the domain of our right-hand side in a
neighbourhood of (t0, x0). We begin with the important particular case of
domF being a Cartesian product.

Definition 2.1. Assume that domF = J × Ω for some J ⊂ R and
Ω⊂X. We say that the differential equation (3) is solvable at a point (t0, x0)
∈ J ×Ω if there exists a solution x ⊂ R×X of (3) such that

(5) x(t0) = x0

and domx is a neighbourhood of t0 in J (with relative topology).

Exactly this type of solvability appears in 2.5 and 2.7. In the general
case, when domF is not necessarily a Cartesian product, we propose the
following universal

Definition 2.2. The differential equation (3) is solvable at a point

(t0, x0) ∈ domF if there exists a solution x ⊂ R×X of (3) and a neighbour-



Applications of the Carathéodory theorem 5

hood G of (t0, x0) (in R×X) such that (5) is satisfied and

(the projection of (G ∩ domF) onto the time axis) ⊂ domx.

This is a generalization of Definition 2.1. Indeed, we have the following
elementary

Proposition 2.3. Suppose domF is open in R×X (respectively , domF
= J × Ω for some J ⊂ R and Ω ⊂ X). Fix (t0, x0) ∈ domF . Then the

following conditions are equivalent :

(i) the equation (3) is solvable at (t0, x0);
(ii) there exists a solution x ⊂ R × X of (3) such that (5) holds and

domx is a neighbourhood of t0 in R (in J , respectively).

We say that (3) is solvable if it is solvable at any point of domF (in the
sense of Def. 2.2).

Example 2.4. Let X = R and

(6) F(t, x) :=

{
−x/t if t 6= 0,
1 if t = 0,

for (t, x) ∈ domF := {(0, 0)}∪(]0,∞[×R) (which is, of course, neither open
nor a Cartesian product). Then for each (t0, x0) ∈ domF the equation (3)
is solvable at (t0, x0) in the sense of Definition 2.2 with

G =

{
R

2 if (t0, x0) = (0, 0),
]0,∞[× R if (t0, x0) ∈ ]0,∞[× R.

Indeed, the functions [0,∞[ ∋ t 7→ 0 and ]0,∞[ ∋ t 7→ c/t (c ∈ R \ {0})
are solutions of (3), i.e. they are absolutely continuous and satisfy (4) for t
outside the sets of measure zero Z = {0} and Z = ∅, respectively. So, (3) is
(globally) solvable. Furthermore, since F|]0,∞[×R is of class C1, the equation
(3) has the uniqueness property.

Next, the ODE

(7) ẋ(t) = −F(t, x(t)) (= x(t)/t)

is solvable with the uniform G = R
2 (because every linear function [0,∞[ ∋

t 7→ ct (c ∈ R) is its solution), but it does not have the uniqueness property.
Lastly, the formula (6) defines an extension F of the above right-hand

side F to the whole plane domF = R
2. Then for each x0 ∈ R \ {0} the

equation

(8) ẋ = F(t, x)

has no solution defined on an open interval and satisfying (5) with t0 = 0.
So, (8) has the uniqueness property but it is not solvable.

In what follows, we assume the following
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Convention. By a measurable function we mean a Borel measurable
function; summability is understood in the Bochner sense (in particular the
range of values of a summable function is supposed to be separable).

The old idea of successive approximations originating from Liouville [10]
and Picard [15] (see historic comments in Hartman [6]) gave inspiration to
formulate the following

Theorem 2.5. Assume that domF = J ×O for some connected infinite

J ⊂ R and open O ⊂ X. Let L : J → R+ be locally summable. Suppose

that

(i) for any x ∈ O the curve J ∋ τ 7→ F(τ, x) ∈ X is locally summable,

(ii) ∀t ∈ J ∀x1, x2 ∈ O : |F(t, x1)−F(t, x2)| ≤ L(t)|x1 − x2|.

Then the differential equation (3) is solvable and has the uniqueness prop-

erty.

The condition (ii) (cf. (2)) comes from Picard [15], while (i) from Ca-
rathéodory [3]. The proof resembles the reasoning in proofs of standard
theorems on existence and uniqueness of classical (C1-) solutions, so we only
give the following

S k e t c h o f p r o o f. First, we show that

(9) J ∋ τ 7→ F(τ, γ(τ)) ∈ X is locally summable whenever γ : J → O is
continuous.

Let S : J → O be a measurable simple curve. Then F(·, S(·)) is measurable
by (i). There is a sequence (γn) of measurable simple curves taking values
in O such that γn → γ pointwise as n→∞. Since

|F(t, γn(t))−F(t, γ(t))| ≤ L(t)|γn(t)− γ(t)|
n→∞
−−→ 0 for every t ∈ J ,

the curve F(·, γ(·)) is measurable. For a given t0 ∈ J we choose a compact
neighbourhood N of t0 in J and, fixing t ∈ N , estimate:

|F(t, γ(t))| ≤ |F(t, γ(t)) −F(t, γ(t0))|+ |F(t, γ(t0))|

≤ L(t)|γ(t) − x0|+ |F(t, x0)| ≤ (oscNγ)L(t) + |F(t, x0)|,

where x0 := γ(t0) and (oscNγ) := diam γ(N) (< ∞). Finally, F(·, γ(·))|N
is summable, which, in view of the arbitrariness of t0, completes the proof
of (9).

Fix (t0, x0) ∈ J × O. We now prove the existence of a solution of the
problem {(3), (5)} in a neighbourhood of t0 in J . There is an r > 0 so small
that K(x0, r) := {|x− x0| ≤ r} ⊂ O and a connected neighbourhood N of t0
in J so small that

T
N
L(τ) dτ < 1/2. The class Γ of all continuous curves

from N into K(x0, r) with the metric (γ1, γ2) 7→ supt∈N |γ1(t) − γ2(t)| is a
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complete metric space. Next, the mapping

Q : X ∋ x 7→ x0 + rR

(
x− x0
r

)
∈ X,

given by means of the retraction R from Lemma 5.2 (see Appendix), is a
retraction onto K(x0, r) and satisfies the Lipschitz condition with constant 2.
Finally, by (9) and the Banach contraction principle, the mapping Γ ∋ γ 7→

Q(x0 +
Tt
t0
F(τ, γ(τ)) dτ) ∈ Γ is well defined and has a fixed point, which,

after restriction to a sufficiently small neighbourhood of t0 (in J ), is the
required solution.

Uniqueness may be showed by standard reduction of {(3), (5)} to the
integral form and use of the following version of the Gronwall inequality:

(10) if t0, t1 ∈ R, C ∈ R+, u : I := [t0, t1] → R+ is continuous, a : I →
R+ is summable and u(t) ≤ C +

T
[t0,t]

a(τ)u(τ) dτ for each t ∈ I,

then u(t) ≤ C exp(
T
[t0,t]

a(τ) dτ) for each t ∈ I,

which can be derived elementarily from its classical prototype (proved for
continuous a e.g. in Rabczuk [16]).

Related results (e.g. Th. 2.6 below) can be obtained in a more general
case, when domF need not be a Cartesian product. To prove them, it
suffices to use Theorem 2.5 locally.

Theorem 2.6. Assume that for every (t0, x0) ∈ domF there are: a

connected infinite J ⊂ R, an open O ⊂ X and a locally summable L : J →
R+ such that (t0, x0) ∈ J ×O ∈ top domF and

(i) for any x ∈ O the curve J ∋ τ 7→ F(τ, x) ∈ X is locally summable,
(ii) ∀t ∈ J ∀x1, x2 ∈ O : |F(t, x1)−F(t, x2)| ≤ L(t)|x1 − x2|.

Then the differential equation (3) is solvable and has the uniqueness prop-

erty.

The symbol top domF above stands for the topology in domF inherited
from R×X.

Now we show a necessary and sufficient condition for the existence of a
solution of the Cauchy problem {(3), (5)} defined on the whole J , first in
the special case of domF = J ×Ω (with a not necessarily open Ω ⊂ X).

Theorem 2.7. Assume domF = J × Ω for some interval J ⊂ R and

some Ω ⊂ X. Suppose that the equation (3) is solvable and has the unique-

ness property. Let (t0, x0) ∈ J × Ω. Let γ be the maximal (with respect to

inclusion) solution of the initial-value problem {(3), (5)}. Then the following

conditions are equivalent :

(i) J ⊂ dom γ;
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(ii) if x ⊂ R×X is a solution of {(3), (5)} such that domx is a compact

subinterval of J , then x ⊂ domF and
T
|ẋ(t)| dt <∞ .

The symbol x stands for the closure of the relation x in R×X.

P r o o f. (i)⇒(ii). Suppose J ⊂dom γ. Consider a solution x of {(3), (5)}
such that K := domx is a compact subinterval of J . From the maximality
of γ we infer that x ⊂ γ. The restriction γ|K is an absolutely continuous
curve defined on a compact interval. So, (γ|K)′ is summable and\

dom x

|ẋ(t)| dt =
\

dom x

|γ̇(t)| dt =
\
K

|γ̇(t)| dt <∞.

To show x ⊂ domF , fix (t, x) ∈ x. There is a sequence ((tν , xν))ν∈N ∈ x
such that (tν , xν)→ (t, x) as ν →∞. Of course t ∈ K. Finally,

γ(t)← γ(tν) = x(tν) = xν → x,

so (t, x) = (t, γ(t)) ∈ γ ⊂ domF , which gives (ii).

(ii)⇒(i). First, we show that

(11) J ∩ [t0,∞[ ⊂ dom γ.

Suppose, contrary to our claim, that there is t̂ ∈ J such that t < t̂ for
every t ∈ dom γ. Clearly, T := sup dom γ ≤ t̂, so, I := [t0, T ] is a compact
subinterval of J . The curve x := γ|I : I ∩ dom γ → X is a solution of
{(3), (5)}, so, according to (ii), x ⊂ domF and ẋ is summable. Of course,
[t0, T [ ⊂ domx and

x(t) = x0 +

t\
t0

ẋ(τ) dτ for any t0 ≤ t < T.

Define xT := x0 +
TT
t0
ẋ(τ) dτ (∈ X). Since (T, xT ) ∈ x it also belongs to

domF . The gluing γ̃ := γ ∪ {(T, xT )} is an absolutely continuous function
from (dom γ) ∪ {T} into X. Moreover,

γ̃′(t) = γ′(t) = F(t, γ(t)) = F(t, γ̃(t)) for almost all t ∈ dom γ̃.

Thus, γ̃ is a solution of {(3), (5)}. Consequently, γ̃ = γ by maximality.
Then T ∈ dom γ and γ(T ) = xT . But our ODE is solvable at (T, xT ), so
there is a solution y ⊂ R×X of (3) with the initial condition y(T ) = xT and
dom y is a neighbourhood of T in J . Consequently, there exists S open in R

and such that T ∈ S and J ∩ S ⊂ dom y. Since T ∈ dom γ, we have T < t̂.
There is a positive ε < t̂− T so small that [T, T + ε] ⊂ S. Simultaneously,
[T, T + ε] ⊂ J , and, finally,

[T, T + ε] ⊂ J ∩ S ⊂ dom y.
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Since γ(T ) = xT = y(T ), the curve Γ := γ ∪ (y|[T,T+ε]) is absolutely contin-
uous and

Γ ′(t) = F(t, Γ (t)) for almost all t ∈ domΓ = (dom γ) ∪ [T, T + ε].

Thus, Γ is a solution of {(3), (5)} and, again from the maximality of γ,
we have Γ ⊂ γ. In particular, domΓ ⊂ dom γ. Finally, T + ε ∈ dom γ, so
T+ε ≤ sup dom γ = T , which is impossible. This contradicts our hypothesis
and gives (11).

A symmetric reasoning shows the inclusion J ∩ ]−∞, t0] ⊂ dom γ, which
together with (11) completes the proof.

Let us pass to the case of an arbitrary domF . Adding an elementary
topological argument to the reasoning above we obtain the following quite
general

Theorem 2.8. Suppose that the equation (3) is solvable and has the

uniqueness property. Consider a pair (t0, x0) ∈ domF and an interval J
such that t0 ∈ J . Let γ be the maximal (with respect to inclusion) solution

of the initial-value problem {(3), (5)}. Then the following conditions are

equivalent :

(i) J ⊂ dom γ;
(ii)(a) for every (t, x) ∈ (J ×X) ∩ γ ∩ domF and every neighbourhood G

of (t, x) in R×X we have

J ∩ (projection of G ∩ domF onto the time axis)

is a neighbourhood of t in J ,
(b) if x ⊂ R×X is a solution of {(3), (5)} such that domx is a compact

subinterval of J , then x ⊂ domF and
T
|ẋ(t)| dt <∞.

Moreover , (ii)(a) holds in the following special case:

(12) domF ∈ top(R×X) or domF = J ×Ω for some Ω ⊂ X.

As before, the symbols γ, x stand for the closures of γ, x in R×X.
Lastly, to show how Theorems 2.5 and 2.7 work together, we will examine

the existence, uniqueness and continuous dependence (on data) of a solution
of a general linear ODE of the Carathéodory type.

Example 2.9. Consider another Banach space A, a continuous bilinear
mapping Λ : A × X → X and locally summable curves A : J → A, C :
J → X on a nondegenerate interval J ⊂ R. Define

ax = a · x := Λ(a, x) for every (a, x) ∈ A×X.

With a fixed pair (t0, x0) ∈ J ×X we may associate the Cauchy problem

(13)

(14)

{
ẋ(t) = A(t)x(t) + C(t),

x(t0) = x0.
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The equation (13) is said to be a generalised linear ODE with the coefficients
A and C. It is an important particular case of (3), corresponding to the
right-hand side

(15) F : J ×X ∋ (t, x)
def
7→ A(t)x+ C(t) ∈ X.

Putting L(t) := |Λ| · |A(t)| for t ∈ J , where |A(t)| stands for the norm of
the vector A(t) while |Λ| := sup{|ax| : |a| ≤ 1, |x| ≤ 1}, we can easily check
that assumptions (i) and (ii) of Theorem 2.5 hold. So,

(16) the differential equation (13) is solvable and has the uniqueness prop-
erty.

Let x ⊂ R ×X be a solution of {(13), (14)} such that K := domx is a
compact subinterval of J . Of course, x ⊂ K ×X ⊂ J ×X = domF . After
integrating (13) and using (14) we estimate:

|x(t)| =
∣∣∣x0 +

t\
t0

A(τ)x(τ) dτ +

t\
t0

C(τ) dτ
∣∣∣

≤ |x0|+
\

[t0,t]

L(τ)|x(τ)| dτ +
\
K

|C(τ)| dτ

for any fixed t ∈ domx. Hence, in virtue of (10),

(17) |x(t)| ≤
(
|x0|+

\
K

|C(τ)| dτ
)

exp
( \

[t0,t]

L(τ) dτ
)

for t ∈ domx.

So, x is bounded. Finally, since

|ẋ(t)| = |A(t)x(t) + C(t)|

≤ |Λ| · |A(t)| sup
τ∈dom x

|x(τ)|+ |C(t)| for t ∈ dom ẋ,

ẋ is summable. By Theorem 2.7,

(18) the problem {(13), (14)} has a solution γ defined on J .

Now, we deal with the continuous dependence on data of such a solution.
Let t0,ν → t0 in J (as N ∋ ν →∞), x0,ν → x0 in X, Aν → A in the Fréchet
space L1

loc(J ,A) (i.e. limν→∞

T
K
|Aν(t) − A(t)|dt = 0 for every compact

K ⊂ J ) and Cν → C in L1
loc(J ,X) as N ∋ ν →∞. From (17) and (18), the

initial-value problem

(13ν)

(14ν)

{
ẋ(t) = Aν(t)x(t) + Cν(t),

x(t0,ν) = x0,ν ,

has a unique (absolutely continuous) solution γν : J → X. Let K ⊂ J be
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any compact interval containing {t0,ν : ν ∈ N}. Then, by (17),

sup
ν∈N, t∈K

|γν(t)| ≤M = sup
ν∈N

((
|x0,ν |+

\
K

|Cν(τ)| dτ
)
e|Λ|

T
K

|Aν(τ)| dτ
)
<∞.

Setting aν := Aν − A, cν := Cν − C, yν := γν − γ and yν := yν(t0,ν), and
remembering (14), (14ν) we have

(19) lim
ν→∞

\
K

|aν(t)| dt = lim
ν→∞

\
K

|cν(t)| dt = lim
ν→∞

|yν | = 0.

Next, combining (13) with (13ν) we calculate:

|yν(t)| ≤ |yν(t)− yν(t0,ν)|+ |yν(t0,ν)|

=
∣∣∣

t\
t0,ν

ẏν(τ) dτ
∣∣∣ + |yν |

≤
∣∣∣

t\
t0,ν

aν(τ)γν(τ) dτ
∣∣∣ +

∣∣∣
t\

t0,ν

A(τ)yν(τ) dτ
∣∣∣ +

∣∣∣
t\

t0,ν

cν(τ)dτ
∣∣∣ + |yν |

≤
\
K

|aν(τ)γν(τ)| dτ +
∣∣∣

t0\
t0,ν

A(τ)yν(τ) dτ +

t\
t0

A(τ)yν(τ) dτ
∣∣∣

+
\
K

|cν(τ)|dτ + |yν |

≤M |Λ|
\
K

|aν(τ)| dτ + 2M |Λ|
\

[t0,t0,ν ]

|A(τ)| dτ

+
\

[t0,t]

L(τ)|yν(τ)| dτ +
\
K

|cν(τ)| dτ + |yν |.

In view of the arbitrariness of t (∈ K), we may use (10) again to get

|yν(t)| ≤ rν exp
( \

[t0,t]

L(τ) dτ
)

for each t ∈ K,

where

rν := M |Λ|
( \

K

|aν(τ)| dτ + 2
\

[t0,t0,ν ]

|A(τ)| dτ
)

+
\
K

|cν(τ)| dτ + |yν |.

Therefore, supt∈K |yν(t)| ≤ rν exp(
T
K
L(τ)dτ) (

ν→∞
−−→ 0 due to (19)). Finally,

(20) γν

ν→∞
−−→ γ in the Fréchet space C(J ,X),

that is, supt∈K |γν(t)− γ(t)|
ν→∞
−−→ 0 for every compact K ⊂ J .
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3. An application of Theorems 2.5 and 2.7 to a nonlinear para-

bolic equation. The Faedo–Galerkin method enables us to reduce an
initial-boundary problem for a parabolic PDE to the Cauchy problem
{(3), (5)}. We will show it taking as an example the general variational equa-
tion (24) below, examined in the paper [9]. The question of convergence of
the sequence of approximate solutions (obtained below by the Carathéodory
method) to an exact solution of (24) is rather topological in character and it
is not our main subject. Nevertheless, we will discuss two algebraic examples
(3.1 and 3.2) and they allow us to check certain sensible conditions implying
such a convergence.

Consider a Hilbert space (H, (·|·)) over a scalar field K ∈ {R,C}. Define
|h| :=

√
(h|h) for h ∈ H. Let (V, ‖ · ‖) be a reflexive Banach space (over

K) with separable dual space V ′. Consider also a separable Banach space Φ
and assume that

(21) Φ ⊂ V ⊂ H, Φ is dense in V , V is dense in H,

(22) the injections Φ →֒ V , V →֒ H are linear and continuous.

Let 0 < T < ∞. Suppose that a family b(t) : V → Φ′ (0 ≤ t ≤ T ) of
(perhaps nonaffine) mappings fulfils the following conditions:

(A) for every ϕ ∈ Φ and every measurable curve v : [0, T ]→ V satisfying

(23)

T\
0

‖v(t)‖2 dt + sup
0≤t≤T

|v(t)| <∞,

the function [0, T ] ∋ t 7→ (b(t)v(t))ϕ ∈ K is measurable; moreover,
there is a continuous function ϑ : (R+)2 → R+ vanishing on R+×{0}
such that for every ϕ ∈ Φ and every V -measurable v with property
(23) we have

T\
0

|(b(t)v(t))ϕ| dt ≤ ϑ(‖v‖L2(0,T ;V ) + sup
t
|v(t)|, |ϕ|Φ);

(C) for every (t⋆, ϕ⋆) ∈ [0, T ] × Φ there exist J ∈ top[0, T ], O ∈ topΦ
and a summable function L : J → R+ such that (t⋆, ϕ⋆) ∈ J × O
and

|b(t)ϕ1 − b(t)ϕ2|Φ′ ≤ L(t)|ϕ1 − ϕ2|Φ

for every t ∈ J and all ϕ1, ϕ2 ∈ O;

(D) there exists a constant µ > 0 and summable functions C, a : [0, T ]→
R+ such that for all t ∈ [0, T ] and all ϕ ∈ Φ,

Re(b(t)ϕ)ϕ ≥ µ‖ϕ‖2 − C(t)− a(t)|ϕ|2.

For a given vector u0 ∈ H we look for a weakly continuous curve u :
[0, T ]→ H such that
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(a) u−1(V ) has Lebesgue measure T and
TT
0
‖u(t)‖2 dt <∞,

(b) for every t ∈ [0, T ] and every ϕ ∈ Φ,

(24) (ϕ|u(t)) − (ϕ|u0) = −
t\
0

(b(τ)u(τ))ϕdτ.

(Note that the weak continuity of u as an H-valued curve makes the con-
ditions (a) and (b) meaningful. Indeed, since H is separable, u is a (strongly)
measurable H-valued curve; next, by the Banach–Alaoglu theorem and
Mazur separation theorem (used as in the elementary Lemma 2.7 of [9]),
u−1(V ) is a Borel set and, finally, the restriction u|u−1(V ) is measurable
as a V -valued mapping). Such a curve u is called a solution of the varia-
tional equation (24) or an evolution of the “initial state” u0 in the “velocity
field” b. The equation (24) can be called parabolic because of the generalized
G̊arding inequality (D).

As we have previously announced, we will show how to find, by the
Faedo–Galerkin method, an approximate solution of the equation (24). Sup-
pose that

(25) there exists a Banach space H and a sequence (VN )∞N=1 of finite-
dimensional linear subspaces of H such that H is a dense linear
subspace of Φ, the canonical injection H →֒ Φ is continuous and
limN→∞ |ϕ− PN (ϕ)|H = 0 for any ϕ ∈ H,

where PN : H → VN is the (·|·)-orthogonal projection onto VN . Fix N ∈ N

and consider a measurable curve uN : [0, T ] → VN such that supt |uN (t)|

< ∞. Then
TT
0
‖uN (t)‖2 dt < ∞ because the restrictions of the norms

| · |, ‖ · ‖ to VN are equivalent. According to (A), the function [0, T ] ∋
t 7→ (b(t)uN (t))ϕ ∈ K is summable for each ϕ ∈ Φ. Suppose that uN is
a solution of the following Galerkin equation in VN corresponding to (24):

(24N ) (ϕ|uN (t))− (ϕ|u0) = −
t\
0

(b(τ)uN (τ))ϕdτ

for every (t, ϕ) ∈ [0, T ]×VN . Putting t = 0 and ϕ = uN (0)−PN (u0) we get

(26) uN (0) = PN (u0).

For a fixed ϕ ∈ VN the function [0, T ] ∋ t 7→ (ϕ|uN (t)) ∈ K is absolutely
continuous and

d

dt
(ϕ|uN (t)) = −(b(t)uN (t))ϕ for almost every t ∈ [0, T ].

Hence, the curve uN : [0, T ] → VN itself is absolutely continuous (in-
deed, uN (t) =

∑
k (ϕk|uN (t))ϕk for each 0 ≤ t ≤ T , for an arbitrary
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(·|·)-orthonormal basis (ϕk) in VN ). Moreover,

(27)
d

dt
uN (t) = FN (t, uN (t)) for a.e. t ∈ [0, T ],

where FN : [0, T ]×VN → VN and, for a fixed (t, w) ∈ [0, T ]×VN , the vector
FN (t, w) is defined as the Riesz representation of the linear functional

VN ∋ ϕ 7→ −(b(t)w)ϕ ∈ K,

in the sense of (·|·). In other words,

(28) −(b(t)w)ϕ = (ϕ|FN (t, w)) for all (t, w, ϕ) ∈ [0, T ]× VN × VN .

The Cauchy problem {(27), (26)} is an equivalent form of the Galerkin vari-
ational equation (24N ). We will study it from the viewpoint of Theorems 2.5
and 2.7.

For a fixed w ∈ VN the curve [0, T ] ∋ t 7→ FN (t, w) ∈ VN is weakly
summable (in virtue of assumption (A)) and therefore it is summable. So,
condition (i) of Theorem 2.5 holds for J = [0, T ], F = FN , O = VN . Since
any two norms in VN are equivalent, the condition (ii) of Theorem 2.5 is
satisfied, in virtue of assumption (C) (cf. p. 107 in [9]). Thus, the equation
(27) is solvable in the sense of Definition 2.1 and it has the uniqueness
property.

Let γ denote the maximal (with respect to inclusion) solution of the
initial value problem {(27), (26)}. Now, our aim is to show that

(29) J := [0, T ] ⊂ dom γ.

Let x ⊂ [0, T ] × VN be any solution of the Cauchy problem {(27), (26)}. It
is clear that x ⊂ domFN . Thus, to see that condition (ii) of Theorem 2.7
holds, it remains to show that ẋ is summable. Let τ ∈ dom ẋ satisfy ẋ(τ) =
FN (τ, x(τ)). By (28),

d

dτ

1

2
|x(τ)|2 = Re(x(τ)|ẋ(τ)) = Re(x(τ)|FN (τ, x(τ)))(30)

= − Re(b(τ)x(τ))x(τ).

Using (D) we estimate

(31)
d

dτ

1

2
|x(τ)|2 ≤ −µ‖x(τ)‖2 + C(τ) + a(τ)|x(τ)|2.

Let t ∈ domx. We integrate the inequality (31) over [0, t] and estimate:

1

2
|x(t)|2 −

1

2
|PN (u0)|2 ≤ −µ

t\
0

‖x(τ)‖2 dτ +

T\
0

C(τ) dτ +

t\
0

a(τ)|x(τ)|2 dτ.
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Hence, after a rearrangement, we get

(32) |x(t)|2 + 2µ

t\
0

‖x(τ)‖2 dτ ≤ |u0|
2 + 2‖C‖L1 +

t\
0

2a(τ)|x(τ)|2 dτ.

In particular, for every t ∈ domx,

|x(t)|2 ≤ |u0|
2 + 2‖C‖L1 +

t\
0

2a(τ)|x(τ)|2 dτ

and so, by the Gronwall inequality (see (10) above),

∀t ∈ domx : |x(t)|2 ≤ (|u0|
2 + 2‖C‖L1) exp

( t\
0

2a(τ) dτ
)
.

Therefore,

sup
t∈dom x

|x(t)|2 ≤M0 := (|u0|
2 + 2‖C‖L1) exp

( T\
0

2a(τ) dτ
)
.

Coming back to (32) we estimate

(33)
\

dom x

‖x(τ)‖2 dτ ≤
1

2µ
(|u0|

2 + 2‖C‖L1 + 2M0‖a‖L1) =: M1.

Consider the measurable curve v : [0, T ]→ V given by the formula

v(t) :=

{
x(t) if t ∈ domx,
0 if t 6∈ domx.

It is clear that

sup
0≤t≤T

|v(t)| = sup
t∈dom x

|x(t)| ≤
√
M0,

T\
0

‖v(τ)‖2 dτ =
\

dom x

‖x(τ)‖2 dτ ≤M1.

According to assumption (A), the curve [0, T ] ∋ t 7→ (b(t)v(t))ϕ ∈ K is
summable for each ϕ ∈ Φ, so, by (28), the curve [0, T ] ∋ t 7→ FN (t, v(t))
∈ VN is weakly summable. In fact, it is (strongly) summable because dimVN

< ∞. In particular, its restriction domx ∋ t 7→ FN (t, x(t)) ∈ VN is also
summable. Finally, ẋ(t) = FN (t, x(t)) for a.e. t ∈ domx, and therefore, ẋ is
summable, as required. This way, condition (ii) of Theorem 2.7 is satisfied,
so (29) holds.

The curve uN := γ : [0, T ] → VN is called the Nth approximation of an
(exact) solution u of (24). This terminology is justified, because we add the
assumption:
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(B) there are a separable Banach space E, a normed space B, a linear
completely continuous operator ı : V → B and a continuous R-linear
operator σ0 : B → E′ such that

(i) E is a dense linear subspace of Φ, the injection E
can
→֒ Φ is con-

tinuous;

(ii) ker σ0 = 0, ∀ϕ ∈ E : sup
x∈E |(σ0 ◦ ı)(x)ϕ|/(1 + |(x|ϕ)|) <∞;

(iii) if vν , v : [0, T ]→ V are square-summable (ν ∈ N), supν,τ |vν(τ)|
< ∞, vν → v weakly in L2(0, T ;V ), vν(t) → v(t) weakly in H
and (ı◦vν)(t)→ (ı◦v)(t) in B (strongly) for any t ∈ [0, T ], then

T\
0

(b(t)vν(t))ϕdt
ν→∞
−−→

T\
0

(b(t)v(t))ϕdt

for any ϕ ∈ E.

Now one can prove, replacing Φ by E, that (25) holds and there exists a
subsequence of (uN )N∈N which is weakly (in a certain sense) convergent to
the required solution u (see Holly–Wiciak [9]). Finally, the full system of
assumptions A)–(D) guarantees the existence of a solution of (24) (satisfying
additionally an “energy” inequality, i.e. a relation of the type (32)) for an
arbitrary initial value u0 ∈ H.

To show when the assumption (B) works, we give two examples of
E,B, ı, σ0 satisfying conditions (i), (ii) of (B).

Example 3.1. Suppose that the canonical injection ı : V →֒ H is com-
pletely continuous. Then we put E = Φ, B = H, and

σ0 : H ∋ h
def
7→ (·|h)|Φ ∈ Φ

′.

Note that (σ0 ◦ ı)(x)ϕ = (ϕ|x) for any ϕ, x ∈ Φ. (Exactly such a scheme was
used to construct a solution u of the initial-boundary problem for a system
of nonlinear diffusion equations—see Holly–Danielewski [8].)

Example 3.2. Consider a normed space Y with separable dual space
Y ′ such that H is a dense linear subspace of Y and the canonical injection
V →֒ Y is completely continuous. Suppose that the linear subspace

E := {ϕ ∈ Φ | the functional (·|ϕ) : H → K is | · |Y -continuous}

(of Φ) is dense in Φ. Then E, with the norm

|ϕ|E := |ϕ|Φ + |(·|ϕ)|Y ′ ,

is a separable Banach space. Here (·|ϕ) denotes the unique continuous ex-
tension of the functional (·|ϕ) (∈ H ′) to Y . The R-linear operator π : H ∋

h
def
7→ (·|h)|E ∈ E′ is | · |Y -continuous, so there exists a unique continuous

extension π : Y → E′ of π to Y . Since kerπ is a K-linear closed subspace of
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Y , the quotient space B := Y/ker π with the norm |[y]|B := distY (y, ker π),
where [y] := y + kerπ, is a normed space. The linear operator

ı : V ∋ ψ
def
7→ [ψ] ∈ B

is completely continuous. Finally, the operator

σ0 : B ∋ [y]
def
7→ π(y) ∈ E′

is a continuous R-monomorphism and

(σ0 ◦ ı)(x)ϕ = (ϕ|x) for any ϕ, x ∈ E.

(The scheme above was used to construct a solution u of the nonstationary
Navier–Stokes equations in an arbitrary open Ω ⊂ R

n for any n ≥ 2—see
Sec. 4 in Holly–Wiciak [9].)

4. Example of the use of Theorems 2.5 and 2.7 when dimX
= ∞. In Section 3 we have solved an ordinary differential equation of the
Carathéodory type in a finite-dimensional Banach space VN , getting an ap-
proximate solution of the original nonlinear PDE. In the present section we
will find an exact solution of a linear PDE in R

n using the theory of ODEs
of the Carathéodory type for an infinite-dimensional Banach space X.

The approach to evolution PDEs which is announced (and, to a large
extent, examined) in this section is, from some point of view, less general
than the theory of semigroups of operators. Namely, we need the coefficients
of differential operators to be independent of the space variable. Instead,
we admit any distribution initial values and any t-summable distribution
exterior forces.

Let B be a complex Banach space and S a semimetrizable locally convex
space over C . Consider an arbitrary nonnegative measure µ on a measurable
space (Z,domµ). The symbol L(S, B) will stand for the linear space of all
continuous linear operators of S into B. With a fixed continuous seminorm
q on S we may associate a linear space

L((S, q), B) := {T ∈ L(S, B) : |T |q := sup
q(ϕ)≤1

|T (ϕ)| <∞},

where |T (ϕ)| denotes the norm of the vector T (ϕ) in B. Note that
L((S, q), B), equipped with the norm | · |q , is a Banach space. We say that a
mapping κ : Z → L(S, B) is (strongly) summable if there exists a continuous
seminorm q : S → R+ such that

1◦ κ(Z) ⊂ L((S, q), B);
2◦ κ(Z) is a separable metric subspace of L((S, q), B);

3◦ ∀O ∈ topL((S, q), B) : κ−1(O) ∈ domµ;

4◦
T
Z
|κ(t)|q dµ <∞.
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Briefly, this means that κ is summable in the Bochner sense, as a function
taking values in L((S, q), B). Its integral,

(34)
\
Z

κdµ (∈ L(S, B)),

does not depend on the choice of a seminorm q satisfying 1◦–4◦ (see Chap. I,
Sec. 3 of [7]).

With any continuous linear operator L : S → S we may associate the
conjugate operator

L⋆ : L(S, B) ∋ T
def
7→ T ◦ L ∈ L(S, B).

For every continuous seminorm q : S → R+ the composition q ◦ L is again
a continuous seminorm, so that L⋆ maps L((S, q), B) continuously into
L((S, q ◦ L), B). Therefore,

(35) if κ : Z → L(S, B) is summable, then L⋆ ◦ κ : Z → L(S, B) is
summable and \

Z

(L⋆ ◦ κ)dµ = L⋆
( \

Z

κdµ
)
.

We say that a curve u : [a, b] → L(S, B) is (strongly) absolutely contin-

uous iff there is a summable curve κ : [a, b]→ L(S, B) such that

u(t2)− u(t1) =

t2\
t1

κ(t) dt for all t1, t2 ∈ [a, b].

This time Z = [a, b], where a, b ∈ R, and µ is the linear Lebesgue measure on
the σ-algebra domµ of all Borel subsets of [a, b]. Properties of the integral
(34) and L(S, B)-valued absolutely continuous curves are examined in Holly
[7]. We say that a curve u : J → L(S, B), defined on a connected J ⊂ R,
is absolutely continuous if the restriction u|[a,b] is absolutely continuous for
any a, b ∈ J . Then for almost all t ∈ J the limit

u̇(t) := lim
h→0

u(t + h)− u(t)

h
(∈ L(S, B))

exists in the inductive topology of L(S, B) (that is, in the strongest locally
convex topology such that the canonical injection L((S, q), B) →֒ L(S, B)
is continuous for all continuous seminorms q : S → R+).

From now on, let S be the Schwartz space, i.e.

S := {ϕ : R
n → C | ϕ is a rapidly decreasing function}.

With the vector topology induced by the family of norms

qN : S ∋ ϕ
def
7→ sup{(1 + |x|2)N |(Dαϕ)(x)| : x ∈ R

n, α ∈ N
n, |α| ≤ N}
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(N = 0, 1, . . .), where |α| := α1 + . . . + αn, S is a Fréchet space (i.e. it is
a locally convex space, metrizable and complete). Next, let D(Rn) stand
for the space of all complex test functions on R

n. So, every tempered dis-
tribution T : D(Rn) → B has a unique continuous extension T : S → B.
A curve u : J → D′

temp with values in the space D′
temp := D′

temp(Rn;B) of
all tempered distributions D(Rn)→ B is said to be absolutely continuous if
the curve

u : J ∋ t
def
7→ u(t) ∈ L(S, B)

is absolutely continuous. Then, in particular, for almost all t ∈ J the limit

d

dt
u(t) = u̇(t) = lim

h→0

u(t+ h)− u(t)

h
(∈ D′

temp)

exists in the sense of pointwise convergence.

Consider the initial-value problem

d

dt
u(t) =

∑

α

aα(t)Dαu(t) + f(t),(36)

u(t0) = u0,(37)

where the abbreviation
∑

α means
∑

α∈Nn, |α|≤m for some fixed m ∈ N,

and the “initial state” u0 ∈ D
′
temp, “external forces” f : J → D′

temp and
coefficients aα : J → C (α ∈ N

n, |α| ≤ m) are given. We assume that J is
an interval of the time axis, t0 ∈ J , the function aα is locally summable for
any |α| ≤ m, and, finally, the curve f is also locally summable, that is, for
all t1, t2 ∈ J the curve [t1, t2] ∋ t 7→ f(t) ∈ L(S, B) is summable. (Then the
integral

t2\
t1

f(t) dt :=
( t2\

t1

f(t) dt
) ∣∣∣

D(Rn)
: D(Rn)→ B

is a tempered distribution.)

Suppose that an absolutely continuous curve u : J → D′
temp is a solution

of the problem {(36), (37)}, that is, u satisfies (37) and (36) for almost all
t ∈ J . Then, according to (35), the curve

û : J ∋ t
def
7→ û(t) ∈ D′

temp

is absolutely continuous and

d

dt
û(t) =

∑

α

aα(t)(iξ)αû(t) + f̂(t) for a.e. t ∈ J ,

where

û(t) = û(t) = ℑ(u(t)) : D(Rn) ∋ ϕ
def
7→ u(t)(ϕ̂) ∈ B

is the Fourier transform of the distribution u(t).
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Let t⋆ ∈ J , ψ ∈ D(Rn). Then, again by (35), the curve

x : J⋆ := [t0, t⋆] ∋ t
def
7→ ψû(t) ∈ D′

temp

is absolutely continuous and

(38)
d

dt
x(t) =

∑

α

aα(t)(iξ)αx(t) + ψf̂(t) for a.e. t ∈ J⋆.

There exists an integer N ∈ N so large that

(a) the curve J⋆ ∋ t 7→ ψf̂(t) ∈ L((S, qN ), B) is well defined and sum-
mable (in the Bochner sense, as a curve with values in L((S, qN ), B));

(b) the curve x : J⋆ → L((S, qN ), B) is well defined, differentiable almost
everywhere and absolutely continuous (in the usual sense).

Consider the Banach space

X := {T ∈ D′
temp : suppT ⊂ suppψ, T is qN -continuous}

with the norm

|T | := |T |qN
= sup{|T (ϕ)| : ϕ ∈ S, qN (ϕ) ≤ 1}.

Because of (38), the absolutely continuous curve x : J⋆ → X is a solution
(in the Carathéodory sense) of the equation (3) with the right-hand side

F : J⋆ ×X ∋ (s, T )
def
7→

(∑

α

aα(s)(iξ)α
)∼

(T ) + ψf̂(s) ∈ X,

where

P̃ : X ∋ T
def
7→ PT ∈ X

for any smooth function P : R
n → C (cf. (15)). Moreover, x satisfies (5)

with x0 := ψ|û0| (∈ X). As proved in Holly [7] (Chap. II, Sec. 4), the

transformation P 7→ P̃ is a continuous homomorphism from the Fréchet
algebra C∞(Rn) (with multiplication of functions) into the Banach algebra
EndX := L(X,X) (with composition of operators); in particular,

(39) {P̃ : P ∈ C∞(Rn)}

is a commutative subalgebra of EndX. Of course, X is an infinite-dimen-
sional linear space whenever ψ 6≡ 0 and B 6= 0 (e.g. in the case of B =
C

k, k ∈ N \ {0}). Nevertheless, we will find an analytic formula for the
solution of (38). It will allow us to get rid of the factor ψ (on which both
x and X depend) and to write an original solution u of {(36), (37)} as an
explicit functional of the data u0 and f . The reasoning (known sometimes
as analysis of ancients), leading from any solution of a problem to a con-
crete formula which determines this solution is of course an ocular proof of
uniqueness. Uniqueness itself can usually be obtained in a simpler manner,
e.g. by examining the kernel of a suitable linear operator (in the case of
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linear equations). However, the explicit formula for a solution is, above all,
a hint how to construct this solution.

Let us consider an abstract Banach space M and a commutative Banach
algebra A such that M is a module over A and the external multiplica-
tion A×M →M is continuous. Consider the following abstract equivalent
of (38):

(40)
d

dt
y(t) = A(t)y(t) + C(t).

The coefficients A : J⋆ → A and C : J⋆ →M are assumed to be summable,
while an absolutely continuous solution y : J⋆ → M is meant in the
Carathéodory sense. By (17) and (18), equation (40) together with the initial
condition

(41) y(t0) = y0 (any fixed vector from M)

has a unique solution defined on the whole J⋆. We will compute it, copying
the Euler method, well known in the case of M = A = R.

Let Γ : J⋆ → A be an absolutely continuous and almost everywhere
differentiable curve with values in the group of invertible elements. The
operation of inversion (defined on this group) is of class C1, so the curve
t 7→ Γ (t)−1 is also absolutely continuous, a.e. differentiable and

0 =
d

dt
(Γ (t)−1Γ (t)) =

(
d

dt
Γ (t)−1

)
Γ (t) + Γ (t)−1

(
d

dt
Γ (t)

)

for almost all t ∈ J⋆. Thus,

(42)
d

dt
Γ (t)−1 = −Γ (t)−1Γ̇ (t)Γ (t)−1 for a.e. t ∈ J⋆.

We multiply (40) by Γ (t)−1 and, using (42), compute:

Γ (t)−1C(t) = Γ (t)−1ẏ(t)− Γ (t)−1A(t)y(t)

= Γ (t)−1ẏ(t) + (
d

dt
Γ (t)−1)y(t)

+ Γ (t)−2Γ̇ (t)y(t)− Γ (t)−1A(t)y(t)

=
d

dt
(Γ (t)−1y(t)) + Γ (t)−2(Γ̇ (t)−A(t)Γ (t))y(t)

for almost all t ∈ J⋆. Hence, taking as Γ the unique absolutely continuous
solution of the problem

(43)

(44)

{
ȧ(t) = A(t)a(t),

a(t0) = I (:= the identity of the algebra A),

(see again (17) and (18)) we get

(45)
d

dτ
(Γ (τ)−1y(τ)) = Γ (τ)−1C(τ) for almost all τ ∈ J⋆.
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The conclusion is correct because Γ takes values in the group of invertible
elements; indeed, denoting by Γ̃ the unique absolutely continuous solution
of the equation

(46) ȧ(t) = −A(t)a(t)

with the initial condition (44), we have

d

dt
(Γ (t)Γ̃ (t)) = 0 for almost all t ∈ J⋆

and, consequently, Γ (t)Γ̃ (t) = I for all t ∈ J⋆ (the equation (46) was sug-
gested here by the relation (42)). For a fixed t ∈ J⋆ we integrate (45) from
t0 to t and get

Γ̃ (t)y(t) − Γ̃ (t0)y(t0) =

t\
t0

Γ̃ (τ)C(τ) dτ,

or

(47) y(t) = Γ (t)(y0 +

t\
t0

Γ̃ (τ)C(τ) dτ).

The element Γ (t) of the algebra A is denoted by
∏t

t0
eA(τ)dτ and called

the product integral of the curve Γ from t0 to t (see Dollard–Friedman [4]).
From (20), it is easy to infer the continuous dependence of the product
integral on the itegrand, namely

(48)

t∏

t0

eAν(τ)dτ
ν→∞
−−→

t∏

t0

eA(τ)dτ in A whenever Aν

ν→∞
−−→ A in L1(J⋆,A).

Thanks to commutativity of A, the integral
∏t

t0
eA(τ)dτ can be “computed”.

We will do this in three steps.

First, assume that A = const, say A ≡ A ∈ A, and that a family L of
non-zero multiplicative linear functionals on A separates points in A. Then
for any l ∈ L the function J⋆ ∋ t 7→ l(

∏t
t0
eA(τ)dτ ) ∈ C is a (classical)

solution of the problem

ż(t) = l(A)z(t), z(t0) = 1 (∈ C),

so, for a fixed t ∈ J⋆ ,

l
( t∏

t0

eA(τ)dτ
)

= e(t−t0)l(A) =

∞∑

ν=0

1

ν!
(l((t− t0)A))ν

= l

( ∞∑

ν=0

((t− t0)A)ν

ν!

)
= l(e(t−t0)A).
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In view of the arbitrariness of l,

(49)

t∏

t0

eA(τ)dτ = e(t−t0)A.

The formula (49) can be proved directly. If, additionally, R is an invertible
element of the algebra A, then the solution of (43) with the initial condition

(50) a(t0) = R,

after multiplying by R−1, becomes a solution of {(43), (44)}; thus,

(51) J⋆ ∋ t 7→ Re(t−t0)A ∈ A is a solution of problem {(43), (50)}.

Next, assume that A is a simple curve, i.e.

∀t ∈ J⋆ : A(t) =
N∑

j=1

χ[tj−1,tj [(t)Aj

for some A1, . . . , AN ∈ A and t0 < t1 < . . . < tN = t⋆ (in the case when
t0 < t⋆). Using (51) successively in the intervals [t0, t1[, [t1, t2[, . . . we get

t∏

t0

eA(τ)dτ = e(t1−t0)A1 . . . e(tj−1−tj−2)Aj−1e(t−tj−1)Aj

for t ∈ [tj−1, tj [, 1 ≤ j ≤ N . In other words,

(52)
t∏

t0

eA(τ)dτ = exp
( t\

t0

A(τ) dτ
)

for all t ∈ J⋆.

The analogous reasoning leads to (52) when t0 > t⋆.

In the general case the sequence of simple curves

Aν(t) :=

ν∑

j=1

χ
[s

(ν)
j−1,s

(ν)
j [

(t)
1

s
(ν)
j − s

(ν)
j−1

s
(ν)
j\

s
(ν)
j−1

A(τ) dτ,

where s
(ν)
j := t0 + j

ν
(t⋆ − t0), converges to A in L1(J⋆,A) as ν → ∞

(which can be easily shown through density of the subspace of continuous
functions in L1(J⋆,A)). Each curve Aν satisfies (52), so, thanks to (48), also
A satisfies (52).

Finally, the formula (47) takes the following concrete form:

(53) y(t) =
(

exp

t\
t0

A(s) ds
)(
y0 +

t\
t0

(
exp

t0\
τ

A(s) ds
)
C(τ) dτ

)
.
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Taking as A the closure of the subalgebra (39) in EndX and putting

M = X, A(t) =
( ∑

α

aα(t)(iξ)α
)∼

, C(t) = ψf̂(t), y0 = x0 = ψû0,

we get

(54) x(t)=e
T
t

t0
(
∑

α
aα(s)(iξ)α)∼ds

(
ψû0+

t\
t0

e
T
t0
τ

(
∑

α
aα(s)(iξ)α)∼dsψf̂(τ) dτ

)
.

Assume that for all t1 ∈ J ,

(55) sup
{

Re
(∑

α

(iξ)α

t\
s

aα(τ) dτ
)

: ξ ∈ R
n, t0 ≤ s ≤ t ≤ t1

}
<∞.

Then, in particular, for any t, s ∈ J satisfying s ∈ [t0, t] the function

ηt
s : R

n ∋ ξ
def
7→ exp

(∑

α

(iξ)α

t\
s

aα(τ) dτ
)
∈ C

is polynomially bounded together with all its derivatives. Since at the same

time eP̃ = (eP )∼ for each P ∈ C∞(Rn), as shown in Holly [7] (Chap. II, Sec.
2), we can get rid of the product integrals in (54):

(56) x(t) = ψηt
t0
û0 +

t\
t0

ψηt
τ f̂(τ) dτ

︸ ︷︷ ︸
integral in X

= ψ
(
ηt

t0
û0 +

t\
t0

ηt
τ f̂(τ) dτ

︸ ︷︷ ︸
integral inD′

temp

)
.

Above, we have additionally factored out the function ψ; it was possible in
view of (35) applied to the operator L : S ∋ ϕ 7→ ϕψ ∈ S. The equality (56)
holds for all t ∈ J⋆. In particular,

ψû(t⋆) = x(t⋆) = ψ
(
ηt⋆

t0
û0 +

t⋆\
t0

ηt⋆
τ f̂(τ) dτ

)
.

In view of the arbitrariness of ψ,

û(t⋆) = ηt⋆

t0
û0 +

t⋆\
t0

ηt⋆
τ f̂(τ) dτ.

In view of the arbitrariness of t⋆,

(57) u(t) = ℑ−1
(
ηt

t0
û0 +

t\
t0

ηt
τ f̂(τ) dτ

)
for all t ∈ J .

The reasoning above is the proof of uniqueness for the Cauchy problem
{(36), (37)} and, simultaneously, it can lead to a construction of solution.
In [7] it was proved that, indeed, the curve given by (57) is the required
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solution. Moreover, in virtue of (35), we have ℑ−1
Tt
t0

=
Tt
t0
ℑ−1. So, finally,

the curve u : J → D′
temp given by

(58) u(t) = ℑ−1(e
∑

α
(iξ)α

T
t

t0
aα(τ)dτ

û0) +

t\
t0

ℑ−1(e
∑

α
(iξ)α

T
t

s
aα(τ)dτ · f̂(s)) ds

is the unique solution of the problem {(36), (37)} whenever (55) holds.
The condition (55) is satisfied e.g. in the case of the heat equation (t0 =

inf J , a2ek
≡ σ > 0 for 1 ≤ k ≤ n and aα ≡ 0 for α ∈ N

n \ {2e1, . . . , 2en})
and in the case of the Schrödinger equation (t0 ∈ J arbitrary, a2ek

≡ iσ for
1 ≤ k ≤ n and aα ≡ 0 for α ∈ N

n \ {2e1, . . . , 2en}).

5. Appendix. In general, if our Banach space X is not reflexive, then
a curve x : [a, b]→ X which is absolutely continuous in the traditional sense
mentioned at the beginning of Section 2 need not be a function of the upper
limit of integration of some summable curve (see Yosida [19]). However, it
is so if x is differentiable almost everywhere. This follows from

Theorem 5.1. Let x : I → X be an absolutely continuous (in the usual

sense) curve mapping a compact interval I ⊂ R into a Banach space X.

Then

(a) the set

dom ẋ := {t ∈ I : the function h 7→ (x(t + h)− x(t))/h satisfies

the Cauchy condition as h→ 0}

is a Borel set (in R), and the curve

ẋ : domx ∋ t
def
7→ lim

h→0

x(t+ h)− x(t)

h
∈ X

is Borel measurable while its range is separable;
(b)

T
dom ẋ

|ẋ(t)| dt < ∞ (so ẋ is summable in the Bochner sense with

respect to the one-dimensional Lebesgue measure);
(c) provided I \ dom ẋ is a set of measure zero, we have

∀t1, t2 ∈ domx, t1 ≤ t2 : x(t2)− x(t1) =
\

[t1,t2]∩dom ẋ

ẋ(t) dt.

The last integral is, for short, usually written as

t2\
t1

ẋ(t) dt.

This abbreviation is often used in the paper, also when talking about ori-
ented integrals (with a minus sign if t1 ≥ t2). The symbol |ẋ(t)| in claim
(b) stands for the norm of the vector ẋ(t). To be completely precise, let
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us finally mention that the difference quotient in (a) is defined in a both-
sided or one-sided neighbourhood of zero, depending on whether t ∈ int I or
t ∈ ∂I. (It is also possible, without losing generality, to regard ẋ(t) only for
t ∈ int I.)

We suspect that the lemma below is known, but, for the reader’s conve-
nience, we give its proof. Our original proof was based on the Hahn–Banach
theorem. The present elementary reasoning is due to J. Mateja [12].

Lemma 5.2. Consider the retraction R of a normed space X onto its unit

ball , given by

R(x) =

{
x if |x| ≤ 1,
x/|x| if |x| ≥ 1,

where | · | is the norm of X. Then R satisfies the Lipschitz condition with

constant 2.

P r o o f. Of course, R satisfies the Lipschitz condition with constant 1 in
the unit ball. Let x1 and x2 be not in the unit ball. Then

|R(x1)−R(x2)| =

∣∣∣∣
|x2|x1 − |x1|x2
|x1| |x2|

∣∣∣∣ =
| |x2|(x1 − x2) + (|x2| − |x1|)x2|

|x1| |x2|

≤
|x1 − x2|+ | |x2| − |x1| |

|x1|
≤ 2|x1 − x2|.

So, it remains to prove |R(a)−R(b)| ≤ 2|a− b| for |a| ≤ 1 and |b| > 1. Let
|a| ≤ 1 and |b| > 1. Then

|R(a)−R(b)| =

∣∣∣∣a−
b

|b|

∣∣∣∣ ≤
∣∣∣∣a−

a

|b|

∣∣∣∣ +

∣∣∣∣
a

|b|
−

b

|b|

∣∣∣∣

≤ |a| ·

∣∣∣∣1−
1

|b|

∣∣∣∣ +
1

|b|
· |a− b| =

1

|b|
(|a|(|b| − 1) + |a− b|)

≤ |a| · |b| − |a|+ |a− b| ≤ |b| − |a|+ |a− b| ≤ 2|a− b|,

which completes the proof.
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