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Extreme and exposed representing measures

of the disk algebra

by Alex Heinis (Leiden) and Jan Wiegerinck (Amsterdam)

Abstract. We study the extreme and exposed points of the convex set consisting of
representing measures of the disk algebra, supported in the closed unit disk. A boundary
point of this set is shown to be extreme (and even exposed) if its support inside the open
unit disk consists of two points that do not lie on the same radius of the disk. If its support
inside the unit disk consists of 3 or more points, it is very seldom an extreme point. We
also give a necessary condition for extreme points to be exposed and show that so-called
BSZ-measures are never exposed.

1. Introduction and notational matters. In a previous paper [2]
Brummelhuis and the second author studied representing measures for the
disk algebra

A = A(D) = {f ∈ C(D) | f is holomorphic on D},

where D is the unit disk in C. As usual A is endowed with the structure
of a uniform algebra. Its spectrum equals D. That is, every homomorphism
φ : A → C is of the form f 7→ f(x) for some x ∈ D. The Hahn–Banach
theorem allows for a multitude of extensions of φ as a continuous linear
functional on C(D). The dual space C(D)∗ can be identified with M , the
space of complex Borel measures on D endowed with the weak∗ topology by
the Riesz representation theorem. A representing measure µ for x∈D is a
positive Borel measure on D such that\

f dµ = f(x) ∀f ∈ A.

So µ represents some extension of f 7→ f(x) (f ∈ A) to C(D). Setting
f = 1, we find that µ is a probability measure. Let M0 denote the set of
positive representing measures for 0 for A(D). Clearly, M0 is a convex and
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weak∗-compact subset of M . For the above and for more background in
uniform algebras the reader may consult [3].

Let E be a relatively closed subset of D and let T denote the boundary
of D. By ME we denote the subset of M0 of representing measures µ with
T ⊂ suppµ ⊂ T ∪ E. Clearly, ME is an extreme set of M0, i.e. if a point
in ME is an interior point of a line segment in M0, this line segment is
contained in ME . M0 is very large and it is reasonable (cf. [2]) to consider
only representing measures µ with T ⊂ suppµ.

The following result was obtained in [2].

Theorem 1.1. Let µ be an extreme point of M0. Suppose that µ ∈ ME

where E is a compact subset of D. Then E is a finite set.

Also, it was shown that for each z0 ∈ D \ {0} there exists one extreme
point µ ∈ M0 with suppµ = T ∪ {z0}. Recently Izzo [5] showed that these
µ are also exposed in M0.

Most of the present paper is concerned with the case when E is finite. We
thoroughly investigate the situation where E consists of two points. Then
ME is a strictly convex subset of M0 if and only if these points are not on
a diameter of D; moreover, extreme points in ME are exposed.

When E consists of more than 2 points, the situation becomes much more
complicated. We give examples of sets E consisting of n points in general
position in D that are subsets of the support of an extremal element of M0

and examples of sets E for which this is not the case. We present a sufficient
condition for extreme points of ME to be exposed and give examples of
extreme points of ME that are not exposed.

In passing we show that measures µ in MD such that µ(T ) = 0 cannot
be exposed. From [2] we know that such measures can be extreme points
of M0.

Acknowledgments. We are grateful to Erik Hendriksen and Chris
Klaassen for their useful remarks on this work.

2. Preliminary observations. The Poisson transform or balayage or
sweep of ν is defined for any finite measure ν on D as the L1-function on T
given by

(1) 〈ν, P (ζ)〉 =
\
D

1 − |z|2

|ζ − z|2
dν(z).

Here P (ζ) = P (ζ, z) = (1 − |z|2)/|ζ − z|2, the Poisson kernel. The notation
is chosen to stress the fact that for fixed ζ ∈ T , P (ζ) may be viewed as a
functional on spaces of compactly supported complex Borel measures on D.
See e.g. [6] or [4] for more details. We recall from [2] the following
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Theorem 2.1. If µ ∈M0, ν = µ|D then

(2) µ = ν + (1 − 〈ν, P (ζ)〉)
dθ

2π
(ζ = eiθ)

and 0 ≤ 〈ν, P (ζ)〉 ≤ 1. Conversely , if ν is a positive Borel measure such

that 0 ≤ 〈ν, P (ζ)〉 ≤ 1 then the measure defined by (2) is in M0.

The function f = (2π)−1(1 − 〈ν, P (ζ)〉) will be referred to as the trace

of µ, f = Trµ. For µ ∈M0 we will write

µ = µ0 + µ1, µ0 = µ|D, µ1 = f
dθ

2π
,

to indicate the decomposition (2).
From all this it follows that M0 ↔ {ν ∈ M | ν ≥ 0, ν(T ) = 0, 〈ν, P (ζ)〉

≤ 1}, which describes M0 more concretely. Moreover, this shows that even
MD is huge. We quote from [2]:

Theorem 2.2. If µ ∈ M0 is extreme, T ⊂ suppµ and Trµ has a real-

analytic minorant h which is ≥ 0 but not identically 0, then E := suppµ∩D
is finite.

Corollary 2.3. If µ ∈ ME is extreme with E compact , then E is

finite.

Indeed, Pν is clearly real-analytic and if Trµ ≡ 0 then µ would be
supported by a compact subset of D, contradicting T ⊂ suppµ.

The following trivial observations will be used later on.

Lemma 2.4. Let µ be a positive measure with bounded Poisson transform.

Suppose that suppµ ⊂ [0, eiθ0 ]. If µ has support outside 0, then 〈µ,P (eiθ)〉
is decreasing on (θ0, θ0 + π) and increasing on (θ0 − π, θ0). Moreover , with

σ denoting reflection in the line teiθ0 , we have

〈µ,P (ζ)〉 = 〈µ,P (σ(ζ))〉.

Lemma 2.5. If µ(0) > 0 and µ is extreme then µ = δ0.

P r o o f. Suppose that 0< µ(0) < 1; put µ(0) = c, ν = µ − cδ0, ν
∗ =

ν/(1 − c). Then ν∗ is representing, ν∗ 6= δ0, 0< c< 1 and µ = (1−c)ν∗+cδ0,
hence µ is not extremal.

Lemma 2.6. If E ⊂ [0, 1] and µ is extreme, then |E| ≤ 1.

P r o o f. Suppose there exist two relatively open disjoint sets U, V ⊂ E
of positive µ-measure. Let

δ1 = 〈µ|U , P (1)〉, δ2 = 〈µ|V , P (1)〉, W = D \ (U ∪ V )

and define

νt = (1 + tδ2)µ|U + (1 − tδ1)µ|V + µ|W , |t| ≤
1

δ1
,

1

δ2
.
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Then νt is a positive measure on D and

〈νt, P (ζ)〉 ≤ 〈νt, P (1)〉 = (1 + tδ2)δ1 + (1 − tδ1)δ2 + 〈µ|W , P (1)〉

= (〈µ|U , P 〉 + 〈µ|V , P 〉 + 〈µ|W , P 〉)(1) = 〈ν, P (1)〉 ≤ 1,

hence

(3) µt = νt +
1

2π
(1 − 〈νt, P (ζ)〉)dθ ∈M0.

With |t| ≤ 1/δ1, 1/δ2 we have µ = µ0 = (µt + µ−t)/2 and since µt 6= µ−t,
we find that µ is not an extreme point of M0.

Notation 2.7. For finite E we will use the following notation. Let
E = {a1, . . . , an} ⊂D. With a positive measure µ =

∑n
i=1

ciδai
on E we

associate c = c(µ) = (c1, . . . , cn)∈R
n. We write pi(θ) = P (eiθ, ai), p(θ) :=

(p1(θ), . . . , pn(θ)). Then 〈µ,P (ζ)〉 =
∑n

i=1
ciP (ζ, ai) =: 〈c, p(θ)〉, ζ = eiθ ∈T .

Let ΛE = {(c1, . . . , cn) ∈ R
n | ci ≥ 0, 〈c, p(θ)〉 ≤ 1 ∀ζ = eiθ ∈ T}.

The setME is mapped by c isomorphically to ΛE and, denoting by Ex(A)
the set of extreme points of a set A, we have

Ex(ME) = Ex(M0) ∩ME ↔ Ex(ΛE) ⊂ R
n.

We conclude this section with the case where E consists of one point
(cf. [2]). If E={z} then such a measure is completely determined by µ(z)=c
and µ ∈M0 if and only if

0 ≤ c
1 − |z|2

|ζ − z|2
≤ 1 for all ζ ∈ T,

if and only if

0 ≤ c ≤
(1 − |z|)2

1 − |z|2
=

1 − |z|

1 + |z|
.

Then c = 0 gives us our well known µ = dθ/(2π) and c = (1 − |z|)/(1 + |z|)
gives us an extreme µ with support T ∪ {z}.

3. Two-point interior supports. Suppose that E={a1, a2}⊂D \{0}.
Without loss of generality we will assume that a1 = x and a2 = yeiα,
0 < x, y < 1, 0 ≤ α ≤ π. In the previous section ME was identified with

(4) Λ = ΛE = {c ∈ R
2

≥0
: 〈c, p(θ)〉 ≤ 1 ∀θ ∈ [0, 2π)}.

In view of Lemma 2.4 the function 〈c, p(θ)〉 assumes its maximum on the
interval S = [0, α]. It follows that

Λ = {c ∈ R
2

≥0
: ∀θ ∈ S 〈c, p(θ)〉 ≤ 1}.

Let

A(θ) =

(
p1(θ) p2(θ)
p′
1
(θ) p′

2
(θ)

)
.
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Then

(5) detA(θ) =
2(1 − x2)2(1 − y2)2

|ζ − x|2|ζ − a2|2

(
y sin(α− θ)

|ζ − a2|2
+

x sin θ

|ζ − x|2

)
,

with ζ = eiθ. For θ in the interior of S, (5) is positive, while if a2 6∈ R, i.e.
α 6= 0, π, then (5) is positive on all of S. Thus a real-analytic map γ(θ) can
be defined on the interior of S (and if a2 6∈ R even on a neighborhood of S)
by solving

(6) A(θ)γ(θ) =

(
1

0

)
.

For points where γ′(θ) 6= 0 the map γ defines a smooth curve. We will
identify γ with its image in R

2. In fact, γ describes the envelope of the
family of lines

(7) lθ = {c ∈ R
2

≥0 | 〈c, p(θ)〉 = 1}.

Thus if γ′(θ) 6= 0, then lθ is the tangent to γ at γ(θ).
From (4) it is clear that boundary points (c1, c2) ∈ R

2

>0
of Λ are con-

tained in γ.

Lemma 3.1. The derivative of γ is given by

(8) γ′i(θ) =
(−1)ip3−i(θ) detA′

detA2
.

If 0 < α < π then

(a) γ′ has no zeros on S, or

(b) γ′ has precisely two zeros on S (counting multiplicity).

Moreover , γ is strictly concave where γ′1 < 0 and strictly convex where

γ′1 > 0. If γ′1 ≤ 0 then γ is a concave curve. Otherwise there exist 0 < s <
θ1 < θ2 < t < α such that γ is concave on [0, θ1) ∪ (θ2, α] and convex on

(θ1, θ2), while γ(s) = γ(t).

P r o o f. Differentiating (6), we obtain the following system for γ and γ′:

(9)

(
A(θ) 0
A′(θ) A(θ)

)(
γ(θ)
γ′(θ)

)
=




1
0
0
0


 .

From Cramer’s rule we obtain the expression for γ′i.
We now determine the number of zeros of detA′. After some computa-

tions we find

detA′ =
4xy

|ζ − x|4|ζ − a2|4
(10)

×

[
sinα− 4 sin θ sin(α− θ)

(
y sin(α− θ)

|ζ − a2|2
+

x sin θ

|ζ − x|2

)]
.
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As the other factors are positive, we only have to study the number of zeros of
the factor [. . .] of (10). Let u = 2x/(1+x2) ∈ (0, 1), v = 2y/(1+y2) ∈ (0, 1).
Multiply [. . .] by its denominators and call the result ψ = ψu,v,a. Then

ψ(θ) = sinα− u[sinα cos θ + 2 sin2 θ sin(α− θ)](11)

− v[sinα cos(α− θ) + 2 sin θ sin2(α− θ)]

+ uv sinα[cos θ cos(α− θ) + 2 sin θ sin(α− θ)].

Inspection shows that ψ(0) > 0, ψ(α) > 0. Furthermore, ψ′ is given by

3 sin(α− 2θ)[−u sin θ − v sin(α− θ) + uv sinα].

The first factor has one zero at θ = α/2, the final factor is convex and
easily seen to be negative. So ψ′ has one zero on S. The conclusion is that
ψ and therefore detA′ both have on S either none or two zeros, counting
multiplicity. We compute the slope of the tangent lθ to γ at γθ. It equals

(12) slope lθ = γ′
2
(θ)/γ′

1
(θ) = −p1(θ)/p2(θ).

We see that slope lθ is negative and strictly increasing on S. If we keep in
mind that γ′1(θ) is negative for θ ∈ S close enough to 0 or α, the lemma
follows.

Remark 3.2. The sign of the second derivative of 〈γ(θ0), p(θ)〉 at θ0
equals the sign of γ′1(θ0). A maximum (resp. minimum) of 〈γ(θ0), p(θ)〉
at θ0 corresponds to concavity (convexity) of γ at θ0. Indeed, (11) gives
〈γ(θ), p′′(θ)〉 = −〈γ′(θ), p′(θ)〉 =: g(θ). This gives the matrix equality

A(γ, γ′) =

(
1 0
0 −g(θ)

)
.

Since detA > 0, for every θ ∈ S we have sign det(γ, γ′) = − sign γ1(θ)
′ =

− sign g(θ).

Theorem 3.3. We keep the notation as above. If 0 < α < π and

γ′ is zero free, then the extreme points of Λ are formed by the origin and

the smooth curve γ, while in case γ′ has two zeros on S, the extreme points

are formed by the origin and a piecewise smooth curve contained in γ which

connects ((1 − x)/(1 + x), 0) and (0, (1 − y)/(1 + y)) and consists of two

smooth parts. If α = π, then ME is a quadrangle in R
2

≥0
with boundary

determined by the two axes and the lines l0 and lπ.

P r o o f. We keep a1 > 0 and assume 0 < α < π first. Let ∂Λ de-
note the intersection of the boundary of Λ and R

2

>0
. Observe that by (6),

γ(0) = (1/p1(0), 0) and γ(α) = (0, 1/p2(α)) in conformity with the |E| = 1
situation; moreover, these are the only points of intersection of γ with the
positive axes. We know that Λ is a convex set in the first quadrant with
∂Λ contained in γ. If detA′ ≥ 0 on S then γ is a concave curve in the first
quadrant connecting γ(0) and γ(α) and strictly concave except for maybe
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one point θ0 with detA′(θ0) = 0. We conclude that ∂Λ = γ and γ consists
of extreme points.

On the other hand, if detA′ is negative somewhere, then keeping the
notation of Lemma 3.1 we have γ(s) = γ(t) and

∂Λ = {γ(θ) : θ ∈ [0, s] ∪ [t, α]}.

This part of γ is strictly concave, so again all points of ∂Λ = γ are extreme.
If α = π then it is clear that 〈c, p(θ)〉 has extreme points at θ = 0, π. Because
of the remark after 3.1, γ is convex and so, by symmetry, a stationary point
θ 6∈{0, π} of 〈c, p(θ)〉 must be a minimum. It follows that at 0, π, the function
〈c, p(θ)〉 has two maxima. They must both be ≤ 1, soME is indeed described
by {c ∈ R≥0 : l0(c) ≤ 1, lπ(c) ≤ 1}.

The next theorem will show that both cases of Theorem 3.3 can occur.

Definition 3.4. Let a1, a2 ∈ D \ {0}. The pair {a1, a2} is called good if
a1, a2 are positively dependent or if they are not collinear and det(Ȧ) ≥ 0
on S, bad otherwise.

Theorem 3.5. (a) (Noncollinear) bad pairs exist.

(b) If (a1, a2) is good then (λa1, µa2) is good for λ, µ ∈ (0, 1].
(c) For every α ∈ (0, π) there is a constant 0 < δ < 1 such that all pairs

{a1, a2} in a sector of aperture α and radius δ are good. Hence (nontrivial)
good pairs exist.

P r o o f. We may assume a1 = x > 0, a2 = yeiα, 0 < α < π.
(a) Suppose that all pairs were good; then (10) would be nonnegative for

all 0 ≤ θ ≤ α, 0 < x, y < 1. Then this is also valid for x = 1 = y, θ = α/2
by continuity. Substituting in (11) gives, however,

ψ1,1,α(α/2) = sinα− 4 sin(α/2) + sin(α)(1 + sin2(α/2)),

which is negative if 0 < α < π. Therefore, there exist bad pairs.
(b) This follows from (10) since the factor [. . .] is decreasing as x, y

increase.
(c) This follows from (10) since the terms other than sinα in [. . .] can

be made arbitrarily small.

4. Finite interior support. In case |E| ≥ 3 we have only fragmentary
results.

Definition 4.1. A finite subset {a1, . . . , an} of D is called good if every
pair {ai, aj}, 1 ≤ i < j ≤ n, is good.

One might wonder if every finite set in D that is not contained in an
interval [0, eiθ] (cf. Lemma 2.6) is full support for some extreme measure
µ ∈M0. The answer is no, as we will now see.
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Theorem 4.2. Let n ≥ 3 and let E = {a1, . . . , an} ⊂ D \ {0} be good

and suppose E is contained in a sector of aperture ≤ π. Then there is no

extreme µ ∈M0 with suppµ0 = E.

P r o o f. Let µ∈ME be extreme. Put c = c(µ) as introduced in 2.7 and
suppose ci>0 for all i. Let θi = arg ai. We may assume that 0= θ1≤ θ2≤
. . . ≤ θn < π. Using Lemma 2.4 one easily sees that 〈c, p(θ)〉 assumes its
maximum only on the arc [0, θn].Moreover, since µ is a boundary point ofM0

this maximum equals 1. Also, if 〈c, p(θ)〉 = 1 for c ∈ ΛE , then 〈c, p′(θ)〉 = 0
and 〈c, p′′(θ)〉 ≤ 0.

Let Vθ be the part of the hyperplane 〈x, p(θ)〉 = 1, 〈x, p′(θ)〉 = 0 defined
by Vθ ⊂ R

n
≥0

. It is clear that there exists a θ ∈ [0, θn] such that c ∈ Vθ. If
we are able to show that Vθ ⊂ ΛE , then we find that c ∈ Ex(ΛE) ⇒ c ∈
Ex(Vθ), which implies that at least one of the ci vanishes. This leads to a
contradiction. The following lemma complets the proof.

Lemma 4.3. Vθ ⊂ ΛE if ζ ∈ [0, θn].

P r o o f. For n = 2 this follows from the previous theory by distinguishing
two cases: If θ2 = 0, then θ = 0, and p′(0) = 0 so V0 = R

2

≥0
∩ 〈c, p(0)〉 = 1}

⊂ ΛE . In the second case we have Vθ = {γ(θ)} ⊂ ΛE because every pair is
good by hypothesis. We will proceed by induction, supposing n ≥ 3. Note
that Vθ ⊂ ΛE ⇔ Ex(Vθ) ⊂ ΛE .

Let q be an extreme point of Vθ. Then qk = 0 for a certain 1 ≤ k ≤ n.
We can apply the induction hypothesis as soon as we know that θ is in the
interval determined by the remaining θj (j 6= k). This is certainly the case
if 1 < k < n. We next deal only with k = n, observing that k = 0 can be
treated similarly.

Assume that qn = 0. In view of Lemma 2.4, qjpj(θ) is decreasing on

(θj , π+θj), hence 〈q, p(θ)〉 =
∑n−1

j=0
qjpj(θ) is decreasing on (θn−1, π]. There-

fore 〈q, p′(ϕ)〉 6= 0 for ϕ ∈ (θn−1, π]. Thus q ∈ Vθ ⇒ θ ∈ [0, θn−1].

On the other hand, there may also be extreme points supported on all
of E, if |E| = 3.

Theorem 4.4. Let E = {a1, a2, a3} ⊂ D \ {0} with 0 in the interior of

CH(E). Then there exists an extreme µ ∈M0 with supp(µ) = T ∪ E.

P r o o f. We may assume that arg a1 = 0 < arg a2 < arg a3 < 2π.
Let F be the orthogonal complement of p(0) and p′(0) in R

3. Then F
is one-dimensional, spanned by a single vector f . Because p′1(0) = 0 and
p′
2
(0)p′

3
(0) < 0, we may assume that f2, f3 > 0 and, consequently, f1 < 0.

Define

c̃ =

(
1 − a1

1 + a1

, 0, 0

)
,



Extreme and exposed representing measures 113

the extreme point of ΛE on the positive c1 axis. Let cλ = c̃+ λf for λ ≥ 0.
Notice that all c ∈ R

3 with the property that 〈c, p(0)〉 = 1, 〈c, p′(0)〉 = 0 are
of the form cλ. Now we have

cλ ∈ ΛE ⇔ ∀θ ∈ [0, 2π) λ〈f, p(θ)〉 ≤ 1 − 〈c̃, p(θ)〉.

Observe that the right-hand side of the second inequality is positive on
(0, 2π) and has a double zero at θ=0. Its left-hand side also has (at least)
a double zero at θ = 0. Thus for sufficiently small but positive λ the last
inequality is satisfied and cλ belongs to ΛE . If we let λ increase, then cλ,1

decreases while cλ,2, cλ,3 increase. Let λ1 be the largest value such that cλ1
∈

ΛE . Then all coordinates of cλ1
are positive. Otherwise, cλ1,1 would be 0.

We show that that this would imply cλ1
6∈ ΛE . Indeed, 〈cλ1

, p(0)〉 = 1, but
the maximum of 〈cλ1

, p(θ)〉 is attained on (arg a2, arg a3), which does not
contain 0 because arg a3 − arg a2 < π by the convexity assumption. The
point cλ1

is an extreme point of ΛE . If cλ1
could be written as a convex

combination of d, e ∈ ΛE , then d, e would be of the form cλ because of the
behavior at 0 and this implies that d = e = cλ1

.

Remark 4.5. The preceding theorem is based on the fact that there is
a θ such that the half-line Vθ, introduced in the proof of Theorem 4.2, has a
segment in common with ΛE such that one of the endpoints is in R

3
>0. This

happens precisely in the following situation. Let Ei =E \{ai}. Theorem 3.3
describes the extreme points of ΛEi

as points of the form γi(θ), θ ∈ Ai ⊂
[0, 2π). If we can choose θ in Ai but outside the other Aj ’s, then Vθ has the
required property. Such a choice of θ is certainly possible if all 3 pairs are
bad.

5. Exposed points of M0. Recall that if p ∈ C is a boundary point of a
convex set C in some topological vector space, then there exists a supporting
hyperplane at p. If the hyperplane H can be chosen with H ∩C = {p} then
p is called an exposed point of C. In our case the vector space is M , the
space of complex Borel measures on D endowed with the weak* topology,
and hyperplanes are sets of the form H = {µ :

T
f dµ = c} where c ∈ C and

f ∈ C(D) \ {0}.

Again we consider relatively closed subsets E of D and the subsets ME

of M0 of representing measures defined in the introduction.

Let X be the closure of the convex hull of {P (ζ) | |ζ| > 1}∪{f ∈ C(D) |
f ≤ 0} in C(D). Introduce M0 = {µ ∈ M | µ(T ) = 0, 〈µ, x〉 ≤ 1, x ∈ X}
and its weak* closure is M = {µ ∈ M | 〈µ, x〉 ≤ 1, x ∈ X}.

Lemma 5.1. Suppose that h ∈ C(D) has the property that 〈µ, h〉 ≤ 1 for

all µ ∈ M0. Then h ∈ X.
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P r o o f. This is a simple application of the Hahn–Banach theorem. X is
a closed convex neighborhood of 0. If h 6∈ X, then the Minkowski functional
p of X is larger than 1 at h. Its restriction to the half-line {th | t > 0} can be
extended to a linear functional µ ∈ M that is bounded by p. Then µ ∈ M
and 〈µ, h〉 > 1, a contradiction.

Because M0 is starshaped with respect to 0 (i.e. µ ∈ M0 implies tµ ∈
M0 for 0 ≤ t ≤ 1) a supporting hyperplane for a nonzero measure µ ∈ M0

cannot pass through 0. We can thus assume that c = 1 and H is of the form
〈µ, f〉 = 1, f ∈ C(D), and 〈ν, f〉 ≤ 1 for ν ∈ M0. We call f the supporting

functional .

Lemma 5.2. Suppose µ ∈ M0 is a (non-zero) boundary point with sup-

porting functional h ∈ C(D). Then there exists a probability measure σ
such that h ≤ P [σ] with equality on D ∩ suppµ and σ is concentrated on

{ζ ∈ T | 〈µ,P (ζ)〉 = 1}.

P r o o f. By Lemma5.1 we see that h is a uniform limit onD of continuous
functions GN , where GN = HN − fN with fN ∈ C(D) nonnegative and

(13) HN(z) =

M∑

j=1

cjP (ζj , z)

with cj > 0,
∑
cj ≤ 1, |ζj | > 1 and all depending on N . Observe that HN

are positive harmonic functions on D with

HN (0) =
\
T

HN(eiθ)
dθ

2π
≤ 1.

After taking a subsequence if necessary, we may assume that HN converges
weak* to some positive measure σ on T . The harmonic functions HN will
then converge uniformly on compact sets in D to a continuous function.
Uniform convergence of the GN then implies that fN converges weak* to
some nonnegative measure on D and uniformly on compact sets to some
continuous f ≥ 0 on D. We have

1 =
\
D

lim
N→∞

GN dµ = lim
N→∞

(\
HN dµ −

\
fN dµ

)
(14)

≤ lim inf
N→∞

(
HN(0) −

\
fN dµ

)

≤ lim
N→∞

HN(0) − lim sup
N→∞

\
fN dµ ≤ 1.

We conclude that HN(0) → 1, which implies |σ| = 1, and fN → 0 in L1(µ)
and uniformly on compact sets in D∩ suppµ as N→∞. It also follows that
h ≤ limHN as measures on D with equality at least on D ∩ suppµ.
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Now recall that 〈µ,P (ζ)〉 is a nonnegative lower semicontinuous function
≤ 1 which gives meaning to

T
〈µ,P (ζ)〉 dσ. Using the fact that h = P [σ] on

D ∩ suppµ we obtain

(15) 1 =
\
D

P [σ] dµ =
\
T

〈µ,P (ζ)〉 dσ.

From this we infer that σ is concentrated on {ζ ∈ T | 〈µ,P (ζ)〉 = 1}.

Lemma 5.3. If µ = µ0 + µ1 is an exposed point of M0 with µ0 6= 0,
then µ0 is an exposed point of M0. The exposing functional can be chosen

to be a continuous function f on D such that f = 0 on T and f = P [σ]
on D ∩ suppµ0 for some probability measure σ concentrated on {ζ ∈ T |
〈µ,P (ζ)〉 = 1}.

P r o o f. Let h be an exposing functional for µ. Then

〈µ,P [h]〉 =

〈
dθ

2π
, P [h]

〉
=

〈
dθ

2π
, h

〉
< 〈µ, h〉.

Set c = 1/〈µ, h − P [h]〉 and

f(z) = c(h− P [h])(z).

Then for ν 6= µ in M0,

〈ν, f〉 = c(〈ν, h〉 − 〈ν, P [h]〉) = c(〈ν, h〉 − P [h](0))

< c(〈µ, h〉 − 〈µ,P [h]〉) = 〈µ, f〉.

Thus 〈µ, f〉 = 1, f is an exposing functional, and f |T = 0. Now

〈µ0, f〉 = 〈µ, f〉 > 〈ν, f〉 = 〈ν0, f〉

for all ν0 6= µ0 in M0. This shows that µ0 is exposed in M0 and the final
statements follow from Lemma 5.2.

Let A = {an}n be a sequence in D without interior limit points and
with the property that almost every point of T is a nontangential limit
point of A. Brown, Shields and Zeller showed that there exist representing
measures µ with µ(A) = 1 (see [1]). Let us call such representing measures
BSZ measures. In [2] it was shown that there exist BSZ measures that are
extreme in M0. However:

Proposition 5.4. No BSZ measure is exposed in M0, nor in M0.

P r o o f. To reach a contradiction, suppose that µ is a BSZ measure with
mass on the sequence A that is exposed in M0. Then it would be exposed
in M0 by the previous lemma. If µ is exposed in M0, then the exposing
functional may be assumed of the form h = P [σ] on a. On a small enough
tail of A there exists a BSZ measure µ′ not equal to µ. However, 〈h, µ′〉 =
〈P [σ], µ′〉 = 1, contradicting h being the exposing functional.
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Remark 5.5. A little more generally we may consider a closed subarc
J of T of length ≤ π and a sequence A in D without limit points in D \ J
and such that almost every point of J is a nontangential limit point of a
subsequence of A. Then one can see that the proof of [1] gives representing
measures µ such that µ(J) = 0 and µ(a ∪ T ) = 1. If A is contained in the
sector determined by J , then µ0 is real-analytic and zero free on T \J . The
proof of Proposition 5.4 applies (with the note that l = σ on T \ J) and
shows that such measures cannot be exposed in M0.

We will now turn to the case where E is finite and study ME and the
associated subsets Λ = ΛE of R

n. Izzo proved the following Theorem 5.8
for the case where E consists of one point (cf. [5]).

Proposition 5.6. Let E be finite in D and let ν0 be a positive measure

on E. The following are equivalent :

(i) ν0 is an exposed point of ΛE.

(ii) ν0 is an exposed point of M0.

(iii) ν0 + (1/(2π) − Pν0
)dθ is an exposed point of M0.

P r o o f. (i)⇒(iii). The methods of Lemmas 5.1, 5.2 readily imply that
the exposing functional h on E must be of the form P [σ], with suppσ ⊂
{ζ | P (ζ, ν0) = 1}. This is a finite set, therefore σ is singular and P [σ] = 0

a.e. on T . We now choose h̃ in C(D) such that h̃ ≤ P [σ] on D with equality

only on E, while h̃ = 0 on T . We claim that h̃ exposes ν in M0. Indeed, for
µ ∈M0,

〈h̃, µ〉 = 〈h̃, µ0〉 ≤ 〈P [σ], µ0〉 ≤ 1.

To have equality in the first inequality, we must have suppµ0 ⊂ E. But
then equality in the last inequality can only occur if µ0 = ν0. It follows that
µ = ν. Lemma 5.3 states that (iii)⇒(ii); finally, (ii)⇒(i) is obvious.

Definition 5.7. We will call an extreme point µ0 ∈ ME regular if µ1

has only zeros of order 2.

Theorem 5.8. Suppose that E is finite. Then every regular extreme point

of ME is an exposed point of ME.

P r o o f. Let E = {a1, . . . , an} ⊂ D. As in the previous section we may
identify ME with a convex subset Λ = ΛE in the positive octant:

(16) ΛE = {c ∈ R
n
≥0

| 〈c, p(θ)〉 ≤ 1 ∀θ ∈ [0, 2π)}.

The proof is by induction on n, starting at n = 3. For n = 1 it is clear that
an extreme m0 is exposed in ME , if n = 2 it follows from the description
of the boundary of ME in Theorem 3.3, as a concave curve which does
not contain intervals, that every extreme point is exposed in ΛE and by
Proposition 5.6 also in ME . Suppose c0 is an extreme point of Λ. We may
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assume that all components of c0 are positive, otherwise we could reduce n
and apply Proposition 5.6 to show that such a point is exposed within M0,
hence also in ME . Consider the set

S = {ζ ∈ T | 〈c0, P (ζ)〉 = 1}.

Clearly, S is a finite subset of T since 〈c0, P (ζ)〉 is real-analytic and non-
constant on T . Also, S contains at least one point, otherwise c0 is not even
in the boundary of ME . Now let

XS = {c ∈ ΛE | 〈c, P (ζ)〉 = 1, ζ ∈ S}.

We claim that XS = {c0}. Obviously, c0 ∈ XS . If there exists an additional
point c ∈ XS , then XS would be a convex subset of ΛE that contains the
interval [c0, c] Consider cε = c0 + ε(c0 − c), where ε will be chosen positive.
For ζ∈S, ζ=eiθ, we have 〈cε, p(θ)〉 = 1 and 〈cε, p

′(θ)〉=0. Moreover, since
c0 is regular, we have 〈c0, p

′′(θ)〉 > δ > 0 on a neighborhood of S. Therefore,
for 0 < ε < ε0 sufficiently small, 〈cε, p

′′(θ)〉 > δ/2 for ζ = eiθ in a smaller
neighborhood V only depending on ε0. Thus on V we have 〈cε, P (ζ)〉 < 1.
On T \ V we have 〈c0, P (ζ)〉 ≤ 1 − η, hence for ε sufficiently small we have
〈cε, P (ζ)〉 < 1 on T \ V . The conclusion is that cε ∈ ΛE . We can now write
c0 as a convex combination of cε and c, contradicting that c0 is extreme.
For the exposing functional for c0 we may now take

w =
1

n

∑

ζ∈S

P (ζ),

where n = #S. We have 〈c0, w〉 = 1 and 〈c, w〉 = 1 implies that for all
ζ ∈ S, 〈c, P (ζ)〉 = 1, hence c ∈ XS , that is, c = c0.

Remark 5.9. What will happen if c0 is extreme but not regular?We keep
the notation of the previous theorem. It is clear, from the proof and the fact
that exposing functionals must be of the form P [σ] with σ supported in S,
that {c0} = XS is equivalent to c0 being exposed. If n = 2 this will always be
the case, although c0 is nonregular precisely in the borderline case when γ′

has one zero with multiplicity 2 (cf. Lemma 3.1). On the other hand, a little
experimenting with Maple gives the following example of an extreme point
which is not exposed. Take three points: a1 = 1/10, a2 = 3

20
eiπ/3, a3 = a2.

Put weight c1 =1710234/42508549 at a1 and equal weights c2 = c3 = 1 at a2

and a3. We obtain a point in the boundary of Λ=Λ{a1,a2,a3} by multiplying
by a suitable positive constant. Call this point c. Then the Poisson transform
〈c, p(θ)〉 will have its only maximum at θ = 0 with the property that the
first three θ-derivatives vanish at θ = 0. The point c is an extreme point
of Λ. It is, however, not exposed, because XS is the convex hull of c and
((1 − a1)/(1 + a1), 0, 0).
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