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On CLUR points of Orlicz spaces
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Liang Zhao (Harbin) and Tingfu Wang (Harbin)

Abstract. Criteria for compactly locally uniformly rotund points in Orlicz spaces are
given.

Let [X, ‖ · ‖] be a Banach space. S(X) and B(X) are the unit sphere
and unit ball of X respectively. A point x on S(X) is said to be a locally

uniformly rotund point (LUR point) provided that {xn} ⊂ X, ‖xn‖ → 1
and ‖xn + x‖ → 2 imply ‖xn − x‖ → 0. Recently Y. A. Cui, H. Hudzik and
C. Meng [2] introduced the concept of compactly locally uniformly rotund
point (CLUR point for short). x ∈ S(X) is said to be a CLUR point provided
that {xn} ⊂ X, ‖xn‖ → 1 and ‖xn + x‖ → 2 imply that {xn} is a compact
set. Obviously, if every point on S(X) is LUR (CLUR) then X is a LUR
(CLUR) space. In 1975, B. B. Panda and O. P. Kapoor [4] proved that
CLUR implies the Kadec–Klee property and X is LUR iff X is CLUR and
strictly rotund. In 1984, J. Y. Fu and W. Y. Zhang [3] showed that if X∗∗

is CLUR and K is a non-null closed, convex Chebyshev set in X then the
projection on K is continuous. Y. A. Cui et al. [2] obtained a criterion for a
point to be CLUR in Orlicz sequence spaces equipped with the Luxemburg
norm.

In this paper we will discuss the CLUR points in Orlicz sequence spaces
equipped with the Orlicz norm and in Orlicz function spaces equipped with
both the Luxemburg and Orlicz norm.

A mapping M : (−∞,∞) → [0,∞) is said to be an N -function if it
is even, convex, vanishing only at zero and such that limu→0 M(u)/u = 0
and limu→∞ M(u)/u = ∞. An interval [a, b] is called a structurally affine

interval (SAI for short) of M provided that M is affine on [a, b] and it is
not affine on [a − s, b] or [a, b + s] for any s > 0. For an N -function M we
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define its complementary function by

N(v) = sup
u>0
{u|v| −M(u)} (v ∈ (−∞,∞)).

This is again an N -function (see [1]). Denote by p(u), p−(u) the right and left
derivative of M(u) respectively. We have [1] the so-called Young inequality

uv ≤M(u) + N(v)

for any u, v ≥ 0, and uv = M(u) + N(v) iff p−(u) ≤ v ≤ p(u).

M is said to satisfy the ∆2-condition (M ∈ ∆2, for short) provided there
are k > 2 and u0 > 0 such that M(2u) ≤ kM(u) for u satisfying u ≥ u0.
M ∈ ∇2 means that N ∈ ∆2.

Let (T,Σ, µ) be a nonatomic finite measure space and L0 the set of all
Σ-measurable functions x : T → (−∞,∞). For a given N -function M , the
modular of x with respect to M is ̺M (x) =

T
T

M(x(t)) dµ. The linear set

{x ∈ L0 : ∃λ > 0 such that ̺M (λx) <∞}

equipped with the Luxemburg norm

‖x‖M = inf{λ > 0 : ̺M (x/λ) ≤ 1}

or Orlicz norm

‖x‖0M = sup
{\

T

x(t)y(t) dµ : ̺N (y) ≤ 1
}

= inf
k>0

1

k
(1 + ̺M (kx))

is a Banach space and is called an Orlicz space denoted by LM or L0
M

respectively.

For 0 6= x ∈ L0
M , define

k∗
x = inf

{

k > 0 : ̺N (p(k|x|)) =
\
T

N(p(k|x(t)|)) dµ ≥ 1
}

,

k∗∗
x = sup{k > 0 : ̺N (p(k|x|)) ≤ 1}.

It is known that ‖x‖0M = k−1(1+̺M (kx)) iff k ∈ [k∗
x, k∗∗

x ] (see [1], Th. 1.31).

Similarly we denote by IM and I0
M the Orlicz sequence spaces equipped

with the Luxemburg norm and Orlicz norm respectively. We only need to
notice that M ∈ ∆2 in the sequence case means that there exist k > 2 and
u0 > 0 such that M(2u) ≤ kM(u) for all u satisfying |u| ≤ u0.

The following is known ([2], Th. 6): x ∈ S(IM ) is a CLUR point iff
(a) M ∈ ∆2, (b) M ∈ ∇2 or {i : |x(i)| ∈ (a, b]} = ∅ for any SAI [a, b] of M .

A criterion for CLUR points in I0
M is different.

Theorem 1. Let x ∈ S(I0
M ). Then x is a CLUR point iff (a) M ∈ ∆2,

(b) M ∈ ∇2.
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P r o o f. Necessity. Suppose that 1 = ‖x‖0M = k−1(1+̺M (kx)). Assume
M 6∈ ∆2. If limn→∞ ‖x− [x]n‖

0
M = 0, we take

z ∈ B(IM ), lim
n→∞

∥
∥
∥
∥

z − [z]n
k

∥
∥
∥
∥

0

M

> 0;

if limn→∞ ‖x− [x]n‖
0
M > 0, we take z = 0. Then we always have

lim
n→∞

∥
∥
∥
∥

(

x−
z

k

)

−

[

x−
z

k

]

n

∥
∥
∥
∥

0

M

> 0,

where [x]n = (x(1), . . . , x(n), 0, 0, . . .). Let

xn =

(

x(1), . . . , x(n),
z(n + 1)

k
,
z(n + 2)

k
, . . .

)

(n = 1, 2, . . .).

Then

‖xn‖
0
M ≤

1

k
(1 + ̺M (kxn))

=
1

k

(

1 +

n∑

i=1

M(kx(i)) +
∑

i>n

M(z(i))
)

→
1

k
(1 + ̺M (kx)) = 1

and

‖xn + x‖0M ≥ 2‖[x]n‖
0
M → 2‖x‖0M = 2.

Clearly if {xn} has a convergent subsequence {xnj
}, then (xnj

) has to con-
verge to x. But

lim
j→∞

‖x− xnj
‖0M = lim

j→∞

∥
∥
∥
∥

(

x−
z

k

)

−

[

x−
z

k

]

nj

∥
∥
∥
∥

0

M

> 0,

which is a contradiction. Thus (a) is true.
If M 6∈ ∇2, then there exist

vn < N−1

(
1

n + 1

)

, N

((

1 +
1

n

)

vn

)

> (n + 1)N(vn) (n = 1, 2, . . .).

Take the positive integer mn satisfying

1

n + 1
< mnN(vn) ≤

1

n
(n = 1, 2, . . .).

Let

yn = (

m1+...+mn−1

︷ ︸︸ ︷

0, . . . , 0 ,

mn
︷ ︸︸ ︷
vn, . . . , vn, 0, 0, . . .) (n = 1, 2, . . .).

Then supp yn ∩ supp yj = ∅ (n 6= j). Since ̺N (yn) = mnN(vn) < 1 and

̺N ((1 + 1/n)yn) = mnN((1 + 1/n)vn) > (n + 1)mnN(vn) > 1,
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we have

1 ≥ ‖yn‖N ≥
1

1 + 1/n
(n = 1, 2, . . .).

From [1], Prop. 1.83, yn has a supporting function xn on S(I0
M ), i.e. ‖xn‖

0
M

= 1,

〈xn, yn〉 =
∑

i

xn(i)yn(i) = ‖yn‖N >
1

1 + 1/n

and suppxn = supp yn (n = 1, 2, . . .).

From [1], Th. 1.45, there is y ∈ S(LN ) with 〈x, y〉 = ‖x‖0M = 1. Let

zn =
1

1 + 1/n

(

y(1), . . . , y
( n−1∑

k=1

mk

)

,

mn
︷ ︸︸ ︷
vn, . . . , vn, y

( n∑

k=1

mk + 1
)

, . . .
)

.

Then

̺N (zn) ≤
1

1 + 1/n
(̺N (y) + mnN(vn))

≤
1

1 + 1/n
(1 + 1/n) = 1 (n = 1, 2, . . .).

Hence

‖x + xn‖
0
M ≥ 〈x + xn, zn〉

=
1

1 + 1/n

( ∞∑

i=1

x(i)y(i)

−
m1+...+mn∑

i=m1+...+mn−1+1

(x(i)y(i) − x(i)vn − xn(i)yn(i))
)

≥
1

1 + 1/n

(

〈x, y〉+ 〈xn, yn〉

−
m1+...+mn∑

i=m1+...+mn−1+1

(|x(i)y(i)| + |x(i)|vn)
)

≥
1

1 + 1/n

(

1 +
1

1 + 1/n

−
m1+...+mn∑

i=m1+...+mn−1+1

(2M(x(i)) + N(y(i))) −mnN(vn)

)

→ 1 (n→∞).

But since suppxn∩ suppxj = ∅ (n 6= j), we have ‖xn−xj‖
0
M ≥ ‖xn‖

0
M = 1.

This means {xn} is not a compact set. Thus (b) is true.
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Sufficiency. Assume

1 = ‖x‖0M =
1

k
(1+ ̺M (kx)) = ‖xn‖

0
M =

1

kn
(1+ ̺M (knxn)) (n = 1, 2, . . .)

and ‖xn + x‖0M → 2. Firstly we will prove that

(1) lim
j0→∞

sup
n

∑

j>j0

M(knxn(j)) = 0.

Otherwise there exist jn →∞ and ε > 0 such that
∑

j>jn
M(knxn(j)) ≥ ε

(n = 1, 2, . . .). From M ∈ ∇2 and [1], Th. 1.35, k = max{k, supn kn} < ∞.
Again from M ∈ ∇2 and [1], Th. 1.13, there exists δ ∈ (0, 1) such that

(2) M(λu) ≤ (1− δ)λM(u)

(

λ ≤
k

1 + k
, |u| ≤ kM−1(1)

)

.

From M ∈ ∆2 and [1], Th. 1.40, there exists η > 0 such that for ̺M (x) ≤ k
and ̺M (y) ≤ η,

(3) |̺M (x + y)− ̺M (x)| ≤
δε

2(1 + k)
.

Since kkn/(k + kn) ≤ k/2 and M ∈ ∆2,

(4)
∑

j>jn

M

(
kkn

k + kn
x(j)

)

<
∑

j>jn

M

(
k

2
x(j)

)

< η

for n large enough. Hence for n large enough, by (2)–(4),

0← ‖xn‖
0
M + ‖x‖0M − ‖x + xn‖

0
M

≥
1

kn
(1 + ̺M (knxn)) +

1

k
(1 + ̺M (kx))

−
k + kn

kkn

(

1 + ̺M

(
kkn

k + kn
(x + xn)

))

=
k + kn

kkn

∞∑

j=1

(
k

k + kn
M(knxn(j)) +

k

k + kn
M(kx(j))

−M

(
kkn

k + kn
(x(j) + xn(j))

))

≥
k + kn

kkn

(
∑

j>jn

(
k

k + kn
M(knxn(j)) +

k

k + kn
M(kx(j))

)

−
∑

j>jn

M

(
kkn

k + kn
(x(j) + xn(j))

))
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≥
k + kn

kkn

(
∑

j>jn

k

k + kn
M(knxn(j))

−

(
∑

j>jn

M

(
kkn

k + kn
xn(j)

)

+
δε

2(1 + k)

))

≥
k + kn

kkn

(
∑

j>jn

k

k + kn
M(knxn(j))

−
∑

j>jn

(1− δ)
k

k + kn
M(knxn(j)) −

δε

2(1 + k)

)

=
k + kn

kkn

(

δ
∑

j>jn

k

k + kn
M(knxn(j)) −

δε

2(1 + k)

)

≥
2

k

(
δε

1 + k
−

δε

2(1 + k)

)

=
δε

k(1 + k)
,

which is a contradiction. So (1) is true.

Since kn > 1, we have

lim
j0→∞

sup
n

∑

j>j0

M(xn(j)) = 0.

Again from M ∈ ∆2 and [3], Th. 1.23,

(5) lim
j0→∞

sup
n
‖xn − [xn]j0‖

0
M = 0.

For arbitrary ε > 0, take j0 such that

sup
n
‖xn − [xn]j0‖

0
M < ε/3.

Since {[xn]j0}
∞
n=1 is a bounded set in a j0-dimensional space, there exist

{xi}
i0
i=1 ⊂ {xn} such that for any n, there is i, 1 ≤ i ≤ i0, satisfying

‖[xn]j0 − [xi]j0‖
0
M < ε/3. Hence

‖xn − xi‖
0
M ≤ ‖[xn]j0 − [xi]j0‖

0
M + ‖xn − [xn]j0‖

0
M + ‖xi − [xi]j0‖

0
M < ε,

that is, {xi}
i0
i=1 is an ε-net of {xn}. Thus {xn} is a compact set.

For Orlicz function spaces, criteria for CLUR points are more compli-
cated.

Theorem 2. Let x ∈ S(L0
M ). Then x is a CLUR point iff

(a) M ∈ ∆2;

(b) M ∈ ∇2;

(c) µ{t ∈ T : k|x(t)| ∈ (a, b)} = 0, where k ∈ [k∗
x, k∗∗

x ] and [a, b] is an

arbitrary SAI of M ;
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(d) µ{t ∈ T : k|x(t)| = a′ or k|x(t)| = b′} = 0, where a′ (resp. b′) is the

left (resp. right) endpoint of an arbitrary SAI of M satisfying p−(a′) = p(a′)
(resp. p−(b′) = p(b′));

(e) If µ{t ∈ T : k|x(t)| = a} > 0, where a is the left endpoint of some

SAI of M satisfying p−(a) < p(a), then ̺N (p−(k|x|)) = 1;
(f) If µ{t ∈ T : k|x(t)| = b} > 0, where b is the right endpoint of some

SAI of M satisfying p−(b) < p(b), then ̺N (p(k|x|)) = 1.

P r o o f. Without loss of generality, assume x(t) ≥ 0 (t ∈ T ).
Necessity. The proof of (a), (b) is similar to (a), (b) of Theorem 1.
If (c) is not true then there is an SAI [a, b] of M such that µ{t ∈ T :

kx(t) ∈ (a, b)} > 0. Take ε > 0 so small that the set E = {t ∈ T :
kx(t) ∈ [a + ε, b − ε]} has positive measure. Divide E into two disjoint
measurable subsets E1

1 and E1
2 such that µE1

1 = µE1
2 ; divide E1

1 and E1
2

into disjoint measurable subsets E2
1 , E2

2 and E2
3 , E2

4 respectively such that
µE2

1 = µE2
2 and µE2

3 = µE2
4 , . . . ; divide En−1

i into two disjoint measurable
subsets En

2i−1, En
2i such that µEn

2i−1 = µEn
2i (i = 1, . . . , 2n−1). Let

xn = x|T\E + (x + ε/(2k))|⋃2n−1

i=1
En

2i−1

+ (x− ε/(2k))|⋃2n−1

i=1
En

2i

.

It is easy to see ̺N (p−(kxn)) = ̺N (p−(kx)) and ̺N (p(kxn)) = ̺N (p(kx)).
Hence k ∈ [k∗

xn
, k∗∗

xn
] (n = 1, 2, . . .). Therefore

‖xn‖
0
M =

1

k
(1 + ̺M (kxn))

=
1

k

(

1 + ̺M (kx|T\E) +
\

⋃
2n−1

i=1
En

2i−1

M(kx(t) + ε/2) dµ

+
\

⋃
2n−1

i=1
En

2i

M(kx(t) + ε/2)dµ

)

=
1

k

(

1 + ̺M (kx) + p(a)
ε

2
·
µE

2
− p(a)

ε

2
·
µE

2

)

= ‖x‖0M = 1.

Obviously k ∈ [k∗
(x+xn)/2, k

∗∗
(x+xn)/2] (n = 1, 2, . . .). We have

∥
∥
∥
∥

x + xn

2

∥
∥
∥
∥

0

M

=
1

k

(

1 + ̺M

(

k
x + xn

2

))

= ‖x‖0M = 1.

That is, ‖x + xn‖
0
M = 2. But for m 6= n,

‖xn − xm‖
0
M =

ε

2k
·
µE

2
N−1

(
2

µE

)

(see [1], Ex. 1.22). Thus {xn} is not a compact set.
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If (d) is not true then there is a SAI [a′, b′] of M with p−(a′) = p(a′)
and E = {t ∈ T : kx(t) = a′} of positive measure. Take c′ with a′ < c′ < b′.
Divide E as above and put

xn = x|T\E +
a′

k

∣
∣
∣
∣⋃

2n−1

i=1
En

2i−1

+
c′

k

∣
∣
∣
∣⋃

2n−1

i=1
En

2i

(n = 1, 2, . . .).

We have ̺N (p−(kxn)) = ̺N (p−(kx)) and ̺N (p(kxn)) = ̺N (p(kx)). So k∈
[k∗

xn
, k∗∗

xn
] (n = 1, 2, . . .). Since M ∈ ∆2 there is y ∈ S(IN ) such that 〈x, y〉 =

‖x‖0M = 1. From [1], Th. 1.80, we have ̺N (y) = 1 and p−(kx(t)) ≤ y(t) ≤
p(kx(t)) (a.e. t∈T ). Now p−(kxn(t))≤ y(t)≤ p(kxn(t)) (n = 1, 2, . . .) too.
Again by [1], Th. 1.80, y is a supporting functional of xn (n = 1, 2, . . .).
Thus

2 ≥

∥
∥
∥
∥
x +

xn

‖xn‖0M

∥
∥
∥
∥

0

M

≥
\
T

(

x(t) +
xn(t)

‖xn‖0M

)

y(t) dµ = 2 (n = 1, 2, . . .),

i.e. ‖x + xn/‖xn‖
0
M‖

0
M = 2. Clearly ‖xn‖

0
M = A <∞ (n = 1, 2, . . .) and for

m 6= n,
∥
∥
∥
∥

xn

‖xn‖0M
−

xm

‖xm‖0M

∥
∥
∥
∥

0

M

=
c′ − a′

A
·
µE

2
N−1

(
2

µE

)

.

Hence {xn/‖xn‖
0
M} is not a compact set.

Similarly we can prove that µ{t ∈ T : kx(t) = b′} = 0.

If (e) is not true then there is a SAI [a, b] of M with p−(a) < p(a),
E0 = {t ∈ T : kx(t) = a} of positive measure and ̺N (p−(kx)) < 1 (notice
that we always have ̺N (p−(kx)) ≤ 1 by the definition of k). Take E ⊂ E0

with µE > 0 such that\
T\E

N(p−(kx(t))) dµ +
\
E

N(p(kx(t))) dµ

=
\

T\E

N(p−(kx(t))) dµ + N(p(a))µE ≤ 1.

Divide E as above. Take c with a < c < b and put

xn = x|T\E +
a

k

∣
∣
∣
∣⋃

2n−1

i=1
En

2i−1

+
c

k

∣
∣
∣
∣⋃

2n−1

i=1
En

2i

(n = 1, 2, . . .).

Then

̺N (p−(kxn)) =
\

T\E

N(p−(kx(t))) dµ + N(p(a))µE ≤ 1

and

̺N (p(kxn)) = ̺N (p(kx)) ≥ 1.
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So k ∈ [k∗
xn

, k∗∗
xn

] (n = 1, 2, . . .). Since\
T\E

N(p−(kx(t))) dµ + N(p(a))µE ≤ 1,\
T\E

N(p(kx(t))) dµ + N(p(a))µE = ̺N (p(kx(t))) ≥ 1,

there is y ∈ LN such that

y(t) = p(a) (t ∈ E), p−(kx(t)) ≤ y(t) ≤ p(kx(t)) (t ∈ T \E)

and ̺N (y) = 1. By [1], Th. 1.80, y is a supporting functional of x. Obviously
p−(kxn(t)) ≤ y(t) ≤ p(kxn(t)) (a.e. t ∈ T , n = 1, 2, . . .), so y is a supporting
functional of xn (n = 1, 2, . . .) too. Thus

∥
∥
∥
∥
x +

xn

‖xn‖0M

∥
∥
∥
∥

0

M

≥
\
T

(

x(t) +
xn(t)

‖xn‖0M

)

y(t) dµ = 2 (n = 1, 2, . . .).

Assume ‖xn‖
0
M = A (n = 1, 2, . . .). Then for m 6= n,
∥
∥
∥
∥

xn

‖xn‖0M
−

xm

‖xm‖0M

∥
∥
∥
∥

0

M

=
c− a

A
·
µE

2
N−1

(
2

µE

)

,

which means {xn/‖xn‖
0
M} is not a compact set.

The proof of (f) is similar to (e).

Sufficiency. By [6], x is a LUR point. Then of course it is a CLUR point.

Finally, we discuss a criterion for CLUR points in Orlicz function spaces
with Luxemburg norm.

Theorem 3. Let x ∈ S(LM ). Then x is a CLUR point iff

(a) M ∈ ∆2;

(b) µ{t ∈ T : |x(t)| ∈ (a, b)} = 0, where [a, b] is an arbitrary SAI of M ;

(c) µ{t ∈ T : |x(t)| = b} = 0 for the right endpoint b of any SAI of M ,
or µ{t ∈ T : |x(t)| = a} = 0 for the left endpoint a of any SAI of M , and

M ∈ ∇2.

P r o o f. Still assume x(t) ≥ 0 (t ∈ T ).

Sufficiency. By [5], x is a LUR point. Then certainly it is a CLUR point.

Necessity. The proofs of (a) and (b) are similar to (a) and (c) in Theo-
rem 2, respectively.

If (c) is not true, we consider the following two cases:

I. Both E = {t ∈ T : x(t) = b} and F = {t ∈ T : x(t) = c} have
positive measure, where (a, b) and (c, d) are two SAI of M . Take s ∈ (a, b)
and r ∈ (c, d) satisfying (M(b) −M(s))µE = (M(r) −M(c))µF . Divide E
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and F as above and put

xn = x|T\(E∪F ) + b|⋃2n−1

i=1
En

2i−1

+ s|⋃2n−1

i=1
En

2i

+ r|⋃2n−1

i=1
F n

2i−1

+ c|⋃2n−1

i=1
F n

2i

(n = 1, 2, . . .).

We have

̺M (xn) = ̺M (x|T\(E∪F )) + (M(b) + M(s))
µE

2
+ (M(r) + M(c))

µF

2
= ̺M (x|T\(E∪F )) + M(b)µE + M(c)µF = ̺M (x) = 1.

So ‖xn‖M = 1 (n = 1, 2, . . .). Moreover

̺M

(
xn + x

2

)

= ̺M (x|T\(E∪F )) + M

(
b + s

2

)

µE + M

(
r + c

2

)

µF

= ̺M (x|T\(E∪F )) +
M(b) + M(s)

2
µE +

M(r) + M(c)

2
µF = 1.

So ‖x + xn‖M = 2 (n = 1, 2, . . .). But for m 6= n,

̺M (xn − xm) = M(c− a)
µE

2
+ M(b− d)

µF

2
.

Therefore {xn} is not a compact set.

II. E = {t ∈ T : x(t) = b} has positive measure, where [a, b] is a SAI of
M and M 6∈ ∇2.

By [1], Th. 1.13, there exist un →∞ such that

M

(
un

2

)

>

(

1−
1

n

)
M(u)

2
(n = 1, 2, . . .).

Since ̺M (x|T\E) + M(b)µE = ̺M (x) = 1, we can take En ⊂ E such that

̺M (x|T\E) + M(un − b)µEn + M(a)µ(E \ En) = 1 (n = 1, 2, . . .).

It is easy to see that µEn → 0 (n→∞). Without loss of generality we can
assume that En ∩ Em = ∅ (m 6= n). Put

xn = x|T\E + a|E\En
+ (un − b)|En

(n = 1, 2, . . .).

Then ̺M (xn) = 1 and

̺M

(
xn + x

2

)

= ̺M (x|T\E) + M

(
b + a

2

)

µ(E \En) + M

(
un

2

)

µEn

≥ ̺M (x|T\E)+
M(b) + M(a)

2
µ(E \ En)+

(

1−
1

n

)
M(un)

2
µEn

=
1

2

[

̺M (x|T\E) + M(b)µ(E \ En)

+ ̺M (x|T\E) + M(a)µ(E \ En) +

(

1−
1

n

)

M(un)µEn

]

→ 1 (n→∞).
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Hence ‖xn‖M = 1 (n = 1, 2, . . .), ‖xn + x‖M → 2 (n → ∞). But for any
n,m, m 6= n,

̺M (xn − xm) ≥ ̺M ((xn − xm)|En
)

= M(un − b− a)µEn = M(un − b)µEn − o(1/n)

= (1− ̺M (x|T\E))−M(a)µ(E \ En)− o(1/n)

= M(b)µE −M(a)µ(E \ En)− o(1/n)

≥ (M(b) −M(a))µE − o(1/n)

≥
1

2
(M(b)−M(a))µE

for n large enough. This means {xn} is not a compact set.

Combining Theorems 1–3 of this paper and Theorem 6 of [2] we see that
being a CLUR point is equivalent to being a LUR point in Orlicz function
spaces, while in Orlicz sequence spaces a CLUR point does not even have
to be an extreme point. Furthermore we can get

Corollary 1. L0
M (and LM ) is CLUR iff it is LUR.

Corollary 2. I0
M is CLUR iff it is reflexive.
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Révisé le 27.10.1999


