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Chaos in some planar nonautonomous polynomial
differential equation

by Klaudiusz Wójcik (Kraków)

Abstract. We show that under some assumptions on the function f the system
ż = z(f(z)eiφt + ei2φt) generates chaotic dynamics for sufficiently small parameter φ. We
use the topological method based on the Lefschetz fixed point theorem and the Ważewski
retract theorem.

1. Introduction. In this note we prove that the nonautonomous peri-
odic system on the plane

ż = z(f(z)eiφt + ei2φt)

generates chaotic dynamics for sufficiently small parameter φ (under some
assumptions on the function f). The existence of a nonzero 2π/φ-periodic
solution of this system in case φ 6= 0 follows from [S]. The problem of
existence of periodic solutions of planar polynomial differential equations
with periodic coefficients was also studied in [S1], [Ma], [MMZ]. The method
presented in [S], [S1] is based on the Lefschetz Fixed Point Theorem and
the Ważewski Retract Theorem. The results in [Ma] use classical topological
degree techniques and a simple a priori bounds argument. Our result follows
by the topological method for detecting chaotic dynamics introduced in [SW]
and improved in [W1], [W2]. By chaos we mean the existence of a compact
invariant set such that the Poincaré map is semiconjugate to the shift on
two symbols and the counterimage (by the semiconjugacy) of any periodic
point in the shift contains a periodic point of the Poincaré map. A similar
definition of chaos was used in [MM] (compare also [W]). In order to apply
this method we have to show the existence some sets, called periodic isolating
segments. In all practical applications isolating segments are manifolds with
corners. A basic property of such a segment is that at any point on the
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boundary of the segment the vector field is directed either outward or inward
with respect to the segment. We will impose only topological conditions on
the segments and their exit sets and we do not require any information on
the particular solution inside the segments.

2. Chaotic systems. Consider the system

(1) ż = (f(z)eiφt + ei2φt)z.

Assume that:

(A) f : C→ [0,∞) is continuous,
(B) f(0) = 0,
(C) lim|z|→∞ f(z) =∞.

We denote by Φ the local flow on R × R2 generated by the system (1),
i.e. Φτ (t0, x0) = (t0 + τ, ϕ(t0,τ)(x0)), where ϕ(t0,τ)(x0) is the value of the
solution of the Cauchy problem associated with (1) at time t0 + τ . The map
ϕ is called the local process generated by (1) (cf. [S]). It is continuous with
respect to (t0, τ, x0) and satisfies

ϕ(σ,0) = idR2 ,

ϕ(σ,t+s) = ϕ(σ+t,s) ◦ ϕ(σ,t),

ϕ(σ+T,t) = ϕ(σ,t), T = 2π/φ.

In order to determine all T -periodic solutions of (1) it suffices to look for
the fixed points of ϕ(0,T ) (the latter function is called the Poincaré map).

Let Σ2 denote the set of bi-infinite sequences of two symbols and let σ
be the shift map on Σ2 (see [W]). We say that the equation (1) is Σ2-chaotic
if there exist a compact set I invariant with respect to the Poincaré map
ϕ(0,T ) and a continuous surjective map g : I → Σ2 such that:

(j) σ ◦ g = g ◦ ϕ(0,T ), i.e. ϕ(0,T ) is semiconjugate to the shift map σ :
Σ2 → Σ2 in the set I,

(jj) for every n-periodic sequence s ∈ Σ2 its counterimage g−1(s) con-
tains at least one n-periodic point of ϕ(0,T ).

It follows in particular that a Σ2-chaotic equation has periodic solutions
with primitive period kT for every k ∈ N and the topological entropy of
ϕ(0,T ) is positive.

Remark 1. Since I is compact and the set of periodic points is dense in
Σ2, the condition (jj) implies that the semiconjugacy g must be a surjection.

The main result of this paper is the following

Theorem 1. There is φ0 > 0 such that for all 0 < φ < φ0 the equation
(1) is Σ2-chaotic.
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Remark 2. Let
ż = (f(z)eikφt + eilφt)z,

where f satisfies (A), (B), (C) and k, l ∈ N are such that k+ l = 1 (mod 2).
Using similar arguments to our proof of Theorem 1 one can check that this
system also generates chaotic dynamics for sufficiently small φ.

The proof of Theorem 1 will be presented in the last section. First we re-
call the notion of periodic isolating segments and the geometric method for
detecting chaotic behaviour introduced in [SW] and improved in [W1], [W2].

3. Periodic isolating segments. Put M = R × R. Let f be a time
dependent vector field on M . Consider the local process generated by the
system

(2)
{
ṫ = 1,
ẋ = f(t, x).

We let π1 : [0, T ] × M → [0, T ] and π2 : [0, T ] × M → M denote the
projections, and for Z ⊂ R×M and t ∈ R we put Zt = {x ∈M : (t, x) ∈ Z}.

Let (W,W−) be a pair of subsets of [0, T ] ×M . We call W a periodic
isolating segment over [0, T ] (for the equation (2)) and W− the exit set of
W if:

(i) W and W− are compact ENR’s, W0 = WT and W−0 = W−T ,
(ii) there exists a homeomorphism

h : [0, T ]× (W0,W
−
0 )→ (W,W−)

such that π1 = π1 ◦ h,
(iii) for every σ ∈ [0, T ) and x ∈ ∂Wσ there exists a δ > 0 such that for

every t ∈ (0, δ) either ϕ(σ,t)(x) 6∈Wσ+t or ϕ(σ,t)(x) ∈ intWσ+t,
(iv) W− ∩ ([0, T ) ×M) = {(σ, x) ∈ W : σ < T, ∃δ > 0 ∀t ∈ (0, δ) :

ϕ(σ,t)(x) 6∈Wσ+t}.
The above definition introduced in [SW] is an inessential modification of

the notion of periodic isolating block in [S]. Notice that a T -periodic isolating
block (in the sense of [S]) can be easily obtained by gluing translated copies
of periodic isolating segments over [0, T ].

Define a homeomorphism

h̃ : (W0,W
−
0 )→ (WT ,W

−
T ) = (W0,W

−
0 )

by h̃(x) = π2(h(T, π2h
−1(0, x))) for x ∈W0. Geometrically, h̃ moves a point

x ∈ W0 to WT = W0 along the arc h([0, T ] × {π2h
−1(0, x)}). A different

choice of the homeomorphism h in (ii) leads to a map which is homotopic
to h̃ (see [S]), hence the automorphism

µW = h̃∗ : H(W0,W
−
0 )→ H(W0,W

−
0 )
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induced by h̃ in singular homology is an invariant of the segment W . Recall
that its Lefschetz number is defined as

Lef(µW ) =
∞∑
n=0

(−1)n tr h̃∗n.

In particular, if µW = idH(W0,W
−
0 ) then Lef(µW ) is equal to the Euler char-

acteristic χ(W0,W
−
0 ).

Let Z, W be two periodic isolating segments over [0, T ] for the equa-
tion (2). Assume that:

(a) Z ⊂W , Z0 = W0, Z−0 = W−0 ,
(b) µZ = idH(W0,W

−
0 ).

The following result was proved in [SW]:

Theorem 2. Assume that the conditions (a), (b) hold and moreover :

(1) µ2
W = idH(Z0,Z

−
0 ),

(2) Lef(µW ) 6= χ(Z0, Z
−
0 ),

(3) χ(Z0, Z
−
0 ) 6= 0.

Then the equation (2) is Σ2-chaotic.

4. Proof of Theorem 1. Our proof consists in the construction of
two periodic isolating segments Z and W over [0, 2π/φ] satisfying the as-
sumptions of Theorem 2. We describe briefly what the segments look like.
The smaller segment Z is a twisted prism with a square base centered
at the origin. Its cross-sections Zt are obtained by rotating the base with
angle velocity φ over the t-interval [0, 2π/φ]. The exit set Z− consists of two
ribbons winding around the prism. The larger segment W is also a twisted
square based prism, but the sections Wt are obtained by rotating the base
with angle velocity φ/2 over the t-interval [0, 2π/φ]. Its exit set W− consists
of two ribbons winding around the prism.

We denote by F the vector field in the extended phase space R3 generated
by the right-hand side of the system (1), i.e.

F (t, x, y) =

 1
xf(z) cos(φt) + yf(z) sin(φt) + x cos(2φt) + y sin(2φt)
xf(z) sin(φt)− yf(z) cos(φt) + x sin(2φt)− y cos(2φt)

 .

Assume that R > 0. Put

Λ1
R(t, x, y) =

1
R2

(x cos(φt/2) + y sin(φt/2))2 − 1,

Λ2
R(t, x, y) =

1
R2

(x sin(φt/2)− y cos(φt/2))2 − 1,
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and

LR = {(t, x, y) ∈ R3 : ΛiR(t, x, y) ≤ 0, i = 1, 2},
L−R = {(t, x, y) ∈ R3 : Λ1

R(t, x, y) = 0, Λ2
R(t, x, y) ≤ 0},

L+
R = {(t, x, y) ∈ R3 : Λ1

R(t, x, y) ≤ 0, Λ2
R(t, x, y) = 0}.

Lemma 1. If φ > 0 is sufficiently small and R is large enough then

F (t, x, y) · ∇Λ1
R(t, x, y) > 0 ((t, x, y) ∈ L−R),(3)

F (t, x, y) · ∇Λ2
R(t, x, y) < 0 ((t, x, y) ∈ L+

R).(4)

P r o o f. A direct calculation shows that

(5) F (t, x, y) · ∇Λ1
R(t, x, y) =

2
R2

(x cos(φt/2) + y sin(φt/2))

× (f(z)(x cos(φt/2) + y sin(φt/2))− (φx/2) sin(φt/2) + (φy/2) cos(φt/2)

+ x cos(φt/2) cos(2φt) + y cos(φt/2) sin(2φt)

+ x sin(2φt) sin(φt/2)− y cos(2φt) sin(φt/2)),

(6) F (t, x, y) · ∇Λ2
R(t, x, y) =

2
R2

(x sin(φt/2)− y cos(φt/2))

× (−f(z)(−y cos(φt/2)+x sin(φt/2))+(φy/2) sin(φt/2)+(φx/2) cos(φt/2)

+ x sin(φt/2) cos(2φt) + y sin(φt/2) sin(2φt)

− x sin(2φt) cos(φt/2) + y cos(2φt) cos(φt/2)).

It is easy to check that x2 +y2 ≥ R2, |x| ≤ R
√

2 and |y| ≤ R
√

2 if (t, x, y) ∈
∂LR for some t. Let R be so large that

inf
∂LR

f > 10.

If (t, x, y) ∈ L−R, then |x cos(φt/2) + y sin(φt/2)| = R and, by (5),

F (t, x, y) · ∇Λ1
R(t, x, y) ≥ 2f(z)− 2φ

√
2− 8

√
2 > 0

for sufficiently small φ ≤ 1/(2
√

2), hence (3) follows. In the same manner we
see that if (t, x, y) ∈ L+

R, then |x sin(φt/2)− y cos(φt/2)| = R and, by (6),

F (t, x, y) · ∇Λ2
R(t, x, y) ≤ −2f(z) + 2φ

√
2 + 8

√
2 < 0

for small φ, so (4) is also satisfied.

For r > 0 we put

Ξ1
r (t, x, y) =

1
r2

(x cos(φt) + y sin(φt))2 − 1,

Ξ2
r (t, x, y) =

1
r2

(x sin(φt)− y cos(φt))2 − 1,
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and
Kr = {(t, x, y) ∈ R3 : Ξir(t, x, y) ≤ 0, i = 1, 2},
K−r = {(t, x, y) ∈ R3 : Ξ1

r (t, x, y) = 0, Ξ2
r (t, x, y) ≤ 0},

K+
r = {(t, x, y) ∈ R3 : Ξ1

r (t, x, y) ≤ 0, Ξ2
r (t, x, y) = 0}.

Lemma 2. For φ > 0, r > 0 sufficiently small ,

F (t, x, y) · ∇Ξ1
r(t, x, y) > 0 ((t, x, y) ∈ K−r ),(7)

F (t, x, y) · ∇Ξ2
r(t, x, y) < 0 ((t, x, y) ∈ K+

r ).(8)

P r o o f. A direct calculation shows that

(9) F (t, x, y) · ∇Ξ1
r (t, x, y) =

2
r2

(x cos(φt/2) + y sin(φt/2))

× ((x cos(φt/2) + y sin(φt/2))− φx sin(φt) + φy cos(φ)

+ f(z)(x cos(φ) cos(φt) + y cos(φ) sin(φt)

+ x sin(φt) sin(φt)− y cos(φt) sin(φt))),

(10) F (t, x, y) · ∇Ξ2
r (t, x, y) =

2
r2

(x sin(φt/2)− y cos(φt/2))

× (−(−y cos(φt) + x sin(φt)) + φy sin(φt) + φx cos(φt)

+ f(z)(x sin(φt) cos(φt) + y sin(φt) sin(φt)

− x sin(φt) cos(φt) + y cos(φt) cos(φt))).

It is easy to check that x2 + y2 ≥ r2, |x| ≤ r
√

2 and |y| ≤ r
√

2 if (t, x, y) ∈
∂Kr for some t. Let r be so small that

max
∂Kr

f < 1/10.

If (t, x, y) ∈ K−r , then |x cos(φt) + y sin(φt)| = r and, by (9),

F (t, x, y) · ∇Ξ1
r (t, x, y) ≥ 2− 4φ

√
2− 8

√
2f(z) > 0

for sufficiently small φ, hence (7) follows. In the same manner we see that
if (t, x, y) ∈ K+

r , then |x sin(φt)− y cos(φt)| = r and, by (10),

F (t, x, y) · ∇Ξ2
r (t, x, y) ≤ −2 + 4φ

√
2 + 8

√
2f(z) < 0

for small φ, so (8) is also satisfied.

Let ω > 0 be another parameter. For t < R/ω put

Π1
R,ω(t, x, y) =

1
(R− ωt)2

(x cos(φt) + y sin(φt))2 − 1,

Π2
R,ω(t, x, y) =

1
(R− ωt)2

(x sin(φt)− y cos(φt))2 − 1,

and

Pr,R,ω = {(t, x, y) ∈ [0, (R− r)/ω]× R2 : Πi
R,ω(t, x, y) ≤ 0, i = 1, 2},
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P−r,R,ω = {(t, x, y) ∈ [0, (R− r)/ω]× R2 :
Π1
R,ω(t, x, y) = 0, Π2

R,ω(t, x, y) ≤ 0},
P+
r,R,ω = {(t, x, y) ∈ [0, (R− r)/ω]× R2 :

Π1
R,ω(t, x, y) ≤ 0, Π2

R,ω(t, x, y) = 0}.

Lemma 3. If φ and ω ≤ r/2 are sufficiently small then

F (t, x, y) · ∇Π1
R,ω(t, x, y) > 0 ((t, x, y) ∈ P−r,R,ω),(11)

F (t, x, y) · ∇Π2
R,ω(t, x, y) < 0 ((t, x, y) ∈ P+

r,R,ω).(12)

P r o o f. We have

(13) F (t, x, y) · ∇Π1
R,ω(t, x, y) =

2(x cos(φt) + y sin(φt))
(R− ωt)3

× ((−φx sin(φt) + φy cos(φt))(R− ωt) + (x cos(φt) + y sin(φt))ω)

+
2(x cos(φt) + y sin(φt))

(R− ωt)2
(xf(z) + (x cos(φt) + y sin(φt))),

(14) F (t, x, y) · ∇Π2
R,ω(t, x, y) =

2(x sin(φt)− y cos(φt))
(R− ωt)3

× ((φx cos(φt) + φy sin(φt))(R− ωt) + (x sin(φt)− y cos(φt))ω)

+
2(x sin(φt)− y cos(φt))

(R− ωt)2
(yf(z)− (x sin(φt)− y cos(φt))).

Let (t, x, y) ∈ P−R,ω, hence |x cos(φt) + y sin(φt)| = R− ωt. Because cos(φt)
> 0 for small φ and t ∈ [0, (R− r)/ω], it follows by (13) that

F (t, x, y) · ∇Π1
R,ω(t, x, y)

≥ 2ω
R− ωt

+ 2− 2φ+
2xf(z)(x cos(φt) + y sin(φt))

(R− ωt)2

≥ 2− 2φ+
2xyf(z) sin(φt)

(R− ωt)2

≥ 2− 2φ− 4φtf(z) ≥ 2− 2φ− 4φ
R− r
ω

f(z) > 0

for sufficiently small φ. By a similar argument we conclude that if (t, x, y) ∈
P+
R,ω then

F (t, x, y) · ∇Π2
R,ω(t, x, y) ≤ −2 +

2ω
r

+
2yf(z)(x sin(φt)− y cos(φt))

(R− ωt)2
+ 2φ

≤ −2 + 1 +
2xy sin(φt)f(z)

(R− ωt)2
+ 2φ

≤ −1 + 2φ+ 2φ
R− r
ω

f(z) < 0,

for sufficiently small φ, so the proof of Lemma 3 is finished.
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The next family of functions and sets is obtained from the previous one
by symmetry with respect to the hyperplane {(t, x, y) ∈ R3 : t = π/φ}, i.e.

Σ1
R,ω(t, x, y) = Π1

R,ω

(
2π
φ
− t, x, y

)
=

1
(ωt+R− 2π(ω/φ))2

(x cos(φt) + y sin(φt))2 − 1,

Σ2
R,ω(t, x, y) = Π2

R,ω

(
2π
φ
− t, x, y

)
=

1
(ωt+R− 2π(ω/φ))2

(x sin(φt)− y cos(φt))2 − 1,

Sr,R,ω =
{

(t, x, y) ∈
[
2π
φ −

R−r
ω , 2π

φ

]
× R2 : Σi

R,ω(t, x, y) ≤ 0, i = 1, 2
}
,

S−r,R,ω =
{

(t, x, y) ∈
[
2π
φ −

R−r
ω , 2π

φ

]
× R2 :

Σ1
R,ω(t, x, y) = 0, Σ2

R,ω(t, x, y) ≤ 0
}
,

S+
r,R,ω =

{
(t, x, y) ∈

[
2π
φ −

R−r
ω , 2π

φ

]
× R2 :

Σ1
R,ω(t, x, y) ≤ 0, Σ2

R,ω(t, x, y) = 0
}
.

Lemma 4. Under the assumptions of Lemma 3 we have

F (t, x, y) · ∇Σ1
R,ω(t, x, y) > 0 ((t, x, y) ∈ S−r,R,ω),(15)

F (t, x, y) · ∇Σ2
R,ω(t, x, y) < 0 ((t, x, y) ∈ S+

r,R,ω).(16)

P r o o f. By symmetry, the proof of Lemma 3, up to inessential changes,
also applies to Lemma 4.

Lemma 5. If φ < ω/(4
√

2R) then Pr,R,ω ⊂ LR and Sr,R,ω ⊂ LR.

P r o o f. Again by symmetry, it suffices to prove that Pr,R,ω ⊂ LR. If
(t, x, y) ∈ Pr,R,ω then

|x cos(φt) + y sin(φt)| ≤ R− ωt

and

|x sin(φt)− y cos(φt)| ≤ R− ωt,
so

|x cos(φt)| ≤ R− ωt+ |y sin(φt)|.
Because 1− |sin(φt)| ≤ |cos(φt)|, hence

|x|(1− |sin(φt)|) ≤ R− ωt+ |y||sin(φt)|

and finally

|x| ≤ R− ωt+ (|x|+ |y|)|sin(φt)| ≤ R− ωt+ 2
√

2Rφt ≤ R− ωt/2.



Chaos in some polynomial equation 167

Similarly |y| ≤ R− ωt/2, so we obtain

|x cos(φt/2) + y sin(φt/2)| ≤ (R− ωt/2)(|sin(φt/2)|+ |cos(φt/2)|)
and

|x sin(φt/2)− y cos(φt/2)| ≤ (R− ωt/2)(|sin(φt/2)|+ |cos(φt/2)|).
We have

|sin(φt/2)|+ |cos(φt/2)| ≤ φ

2
t+ 1 ≤ ωt

2R
+ 1 ≤ ωt

2R− ωt
+ 1 =

R

R− ωt/2
,

hence |x cos(φt/2) + y sin(φt/2)| ≤ R and |x sin(φt/2) − y cos(φt/2)| ≤ R
and thus (t, x, y) ∈ LR.

Proof of Theorem 1. Let R, r, ω and φ be such that the conclusions of
the lemmas hold. Define

Z = Pr,R,ω ∪
(
Kr ∩

([
R− r
ω

,
2π
φ
− R− r

ω

]
× R2

))
∪ Sr,R,ω,

W = LR ∩ ([0, 2π/φ]× R2).

Lemmas 1–4 show that U and W are isolating segments over [0, 2π/φ],

Z− = P−r,R,ω ∪
(
K−r ∩

([
R− r
ω

,
2π
φ
− R− r

ω

]
× R2

))
∪ S−r,R,ω,

W− = L−R ∩ ([0, 2π/φ]× R2)

are their exit sets, and

Z0 = W0 = {(x, y) ∈ R2 : |x| ≤ R, |y| ≤ R},
Z−0 = W−0 = {(x, y) ∈ R2 : |x| = R, |y| ≤ R}.

Thus

µW ◦ µW = idH(U0,U
−
0 ), Lef(µW ) = 1, µZ = idH(Z0,Z

−
0 ).

Moreover, Z ⊂W because Kr ⊂ LR and Lemma 5 holds. Since χ(Z0, Z
−
0 ) =

−1, all conditions (a), (b), and (c) are satisfied, hence Theorem 2 implies
the result.
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