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Existence criteria for positive solutions of a
nonlinear difference inequality

by Sui Sun Cheng (Hsinchu) and Guang Zhang (Datong)

Abstract. This paper is concerned with a class of nonlinear difference inequalities
which include many different classes of difference inequalities and equations as special
cases. By means of a Riccati type transformation, necessary and sufficient conditions
for the existence of eventually positive solutions and positive nonincreasing solutions are
obtained. Various type of comparison theorems are also derived as applications, which
extends many theorems in the literature.

1. Introduction. This paper is concerned with a class of delay difference
inequalities of the form

(1.1) ∆xn + a(n)xn − b(n)∆xn−σ

+
k∑
i=1

pi(n)
mi∏
j=1

|xn−τij(n)|αij sgnxn−τij(n) ≤ 0,

where {a(n)}, {b(n)}, {p1(n)}, . . . , {pk(n)} are real sequences, α11, . . . , αkmk

are nonnegative numbers, and σ, τ11(n), . . . , τkmk
(n) are nonnegative inte-

gers. Additional conditions related to these parameters will be given later.
Here, we briefly explain the motivations behind our investigations.

First note that when b(n) ≡ 0, m1 = . . . = mk = 1, and τi1(n) ≡ τi for
1 ≤ i ≤ k, (1.1) reduces to the linear difference inequality

∆xn + a(n)xn +
k∑
i=1

pi(n)xn−τi
≤ 0, n ≥ 0,
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two particular cases of which are the linear recurrence relation

xn+1 + p0(n)xn + p1(n)xn−1 + . . .+ pk(n)xn−k = 0,

and the second order difference equation

∆2xn−1 + q(n)xn = 0.

Such relations have been studied in some depth by a number of authors (see
e.g. [1, 2, 8, 10]). In particular, Yan and Qian in [8] study the difference
equation

∆xn +
k∑
i=1

pi(n)xn−τi
= 0,

and obtain several useful limit comparison theorems.
When b(n) ≡ 0, the relation (1.1) can be considered as a discrete analog

of the first order nonlinear delay differential inequality of the form [7, 9]

y′(t) + a(t)y(t) +
k∑
j=1

pj(t)
mj∏
i=1

|y(t− τij(t)|αij sgn y(t− τij(t)) ≤ 0.

A closely related equation [7] and particular cases of this inequality including

y′(t) + p(t)y(t− τ(t)) = 0

have been extensively studied [2] and a variety of oscillation and stability
criteria have been demonstrated.

Next note that when b(n) ≡ b, a(n) ≡ 0, m1 = . . . = mk = 1, and
τi1(n) ≡ τi for 1 ≤ i ≤ k, (1.1) reduces to the linear difference inequality

∆(xn − bxn−σ) +
k∑
i=1

pi(n)xn−τi
≤ 0, n ≥ 0.

Such a neutral type relation has also been studied by a number of authors,
and related results can be found in [4, 5].

A particular case of (1.1) also arises when neutral difference equations
of the form

∆(yn − pnyn−σ) + qnyn−τ = 0,

are considered. More precisely, let us assume that such an equation has a
solution {yn}. Then the sequence {zn} defined by

zn = yn − pnyn−σ
will satisfy

∆zn + qnyn−τ = ∆zn + qnzn−τ + qnpn−τyn−τ−σ = 0,

and
∆zn−σ + qn−σyn−τ−σ = 0.
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Thus {zn} is a solution of

qn−σ∆zn − qnpn−τ∆zn−σ + qnqn−σzn−τ = 0,

or
∆zn −

qnpn−τ
qn−σ

∆zn−σ + qnzn−τ = 0

in case qn 6= 0 for all large n. The last equation is also a special case of (1.1).
Finally, note that discrete Emden–Fowler type equations of the form

∆2xn−1 +
k∑
i=1

pi(n)xαi
n−τi

= 0

are also special cases of our equation (1.1). A number of papers are devoted
to such equations, see for example [6].

In view of the above discussion, we expect that a variety of information
can be drawn by studying relation (1.1). In this paper, we will be concerned
with the existence of positive and positive nonincreasing solutions of this
relation. It turns out that if we are concerned with the existence of positive
solutions, then it is more convenient to assume that b(n) ≡ 0; while if we
are concerned with the existence of positive nonincreasing solutions, that
a(n) ≡ 0. For this reason, we will study this relation in two separate parts,
even though parallel developments will be presented. We remark that some
of the notations will be repeated in both parts. Confusion should not arise,
however, since both parts are self-contained. We also remark that if we are
concerned with positive solutions, then there is no need to deal with (1.1),
but to study the simpler relation

∆xn + a(n)xn − b(n)∆xn−σ +
k∑
i=1

pi(n)
mi∏
j=1

x
αij

n−τij(n) ≤ 0.

Indeed, this assertion follows from the fact that a positive sequence that sat-
isfies (1.1) must also satisfy the simpler relation and vice versa. There are
technical conveniences, however, if we are also concerned with a parallel de-
velopment for the existence of negative or negative nondecreasing solutions
of the dual relation of (1.1):

∆xn + a(n)xn − b(n)∆xn−σ +
k∑
i=1

pi(n)
mi∏
j=1

|xn−τij(n)|αij sgnxn−τij(n) ≥ 0,

even though this relation may not allow the negative of a solution of (1.1)
as its own solution. For this reason, we will keep the original form of (1.1),
although the reader may disregard the absolute functions and sign functions
in all the relations or equations that follow.
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For convenience, a real number x will be called subnormal if x ≤ 1
and strictly subnormal if x < 1. Hence a real sequence {xk} is said to be
eventually subnormal if xk ≤ 1 for all large k. A sequence x = {xk}∞n=a

is said to dominate the sequence y = {yk}∞n=a if xk ≥ yk for n ≥ a. As is
customary, an empty product will be taken to be 1.

2. Part 1

2.1. Assumptions. This part is concerned with the class of delay differ-
ence inequalities of the form

(2.1) ∆xn + a(n)xn

+
k∑
i=1

pi(n)
mi∏
j=1

|xn−τij(n)|αij sgnxn−τij(n) ≤ 0, n = 0, 1, 2, . . . ,

where

(H1) {a(n)}∞n=0 is a real sequence,
(H2) {p1(n)}∞n=0, . . . , {pk(n)}∞n=0 are nonnegative sequences,
(H3) α11, . . . , αkmk

are nonnegative numbers such that
mi∑
j=1

αij = 1, i = 1, . . . , k,

(H4) τ11(n), . . . , τkmk
(n) are nonnegative integers for n ≥ 0 such that

τij(n) ≤ n for 1 ≤ i ≤ k, 1 ≤ j ≤ mk, n ≥ 0 and

lim
n→∞

(n− τij(n)) =∞, 1 ≤ i ≤ k, 1 ≤ j ≤ mk,

(H5) τ∗ = sup{τij(n) | 1 ≤ i ≤ k, 1 ≤ j ≤ mk, n ≥ 0} is a finite
nonnegative integer.

A solution of (2.1) is a real sequence {xn}∞n=−τ∗ which satisfies (2.1) for
n≥0. Since (2.1) can be written in the form xn+1≤F (xn−α(n), . . . , xn−β(n)),
it is easy to formulate an existence theorem for this relation. We will be con-
cerned with necessary and sufficient conditions for the existence of eventually
positive solutions of (2.1). For this reason, we will also relax the definition
of a solution to mean one that satisfies (2.1) for all large n, instead of for
n ≥ −τ∗.

2.2. Necessary and sufficient conditions. Let {xk} be an eventually pos-
itive solution of (2.1). Then there is an integer N ≥ τ∗ such that xn > 0 for
n ≥ N − τ∗. Define a sequence {wn} by

wn = −∆xn
xn

, n ≥ N − τ∗.
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Then {wn} is strictly subnormal for n ≥ N − τ∗:

0 <
xn+1

xn
= 1− wn, n ≥ N − τ∗,

and
xn

xn−τij(n)
= (1− wn−1) . . . (1− wn−τij(n)), n ≥ N.

Substituting these equalities into (2.1), we obtain, for n ≥ N ,

(2.2) wn ≥ a(n) +
k∑
i=1

pi(n)
mi∏
j=1

n−1∏
s=n−τij(n)

1
(1− ws)αij

.

Theorem 2.2.1. Suppose (2.1) has an eventually positive solution. Then
(2.2) has an eventually strictly subnormal solution which eventually domi-
nates {a(n)}. The converse also holds.

P r o o f. It suffices to directly verify that if {wn} is a solution of (2.2)
which is strictly subnormal for n ≥ N − τ∗ ≥ 0 and dominates {a(n)}, then
the sequence {xn} defined by xN = 1 and

(2.3) xn+1 =
n∏

i=N

(1− wi), n ≥ N,

is an eventually positive solution of (2.1).

Let us now formally define a sequence {w(t)} of sequences as follows: Let
N ≥ τ∗ be a nonnegative integer. We define w(0)

n = a(n) for n ≥ 0, and for
t = 0, 1, 2, . . . , we inductively define

(2.4) w(t+1)
n = a(n) +

k∑
i=1

pi(n)
mi∏
j=1

n−1∏
s=n−τij(n)

1

(1− w(t)
s )αij

, n ≥ N,

and
w(t+1)
n = w(t)

n , n < N.

For convenience, the sequence {w(t)} just defined will be called the compan-
ion sequence of (2.1) relative to the nonnegative integer N.

Theorem 2.2.2. The relation (2.2) has a solution {wn} which is strictly
subnormal and dominates {a(n)} for n ≥ N − τ∗ ≥ 0 if , and only if , each
term of the companion sequence {w(t)} of (2.1) relative to the integer N is
strictly subnormal for n ≥ N, and {w(t)} converges pointwise to a sequence
{un} which is eventually strictly subnormal.

P r o o f. Let {wn} be a solution of (2.2) such that a(n) ≤ wn < 1 for
n ≥ N − τ∗ ≥ 0. Then the companion sequence of (2.1) relative to the
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integer N satisfies

a(n) = w(0)
n ≤ wn < 1, n ≥ N − τ∗.

Therefore,
1

(1− w(0)
s )αij

≤ 1
(1− ws)αij

, s ≥ N − τ∗,

so that

w(0)
n = a(n) ≤ a(n) +

k∑
i=1

pi(n)
mi∏
j=1

n−1∏
s=n−τij(n)

1

(1− w(0)
s )αij

= w(1)
n(2.5)

≤ a(n) +
k∑
i=1

pi(n)
mi∏
j=1

n−1∏
s=n−τij(n)

1
(1− ws)αij

≤ wn, n ≥ N.

Similarly, we have

w(1)
n = a(n) +

k∑
i=1

pi(n)
mi∏
j=1

n−1∏
s=n−τij(n)

1

(1− w(0)
s )αij

≤ a(n) +
k∑
i=1

pi(n)
mi∏
j=1

n−1∏
s=n−τij(n)

1

(1− w(1)
s )αij

= w(2)
n ≤ wn

for n ≥ N. Inductively, we may show that w(0)
n ≤ w

(1)
n ≤ w

(2)
n ≤ . . . ≤ wn

< 1 for n ≥ N.
Conversely, if each w(t) is strictly subnormal and {w(t)} is pointwise

convergent to a strictly subnormal sequence {un} for n ≥ N , then as before,
we may show that w(0)

n ≤ w
(1)
n ≤ w

(2)
n ≤ . . . ≤ un < 1 for n ≥ N. By the

Lebesgue dominated convergence theorem, we may take limits on both sides
of (2.4) as t tends to infinity to obtain

(2.6) un = a(n) +
k∑
i=1

pi(n)
mi∏
j=1

n−1∏
s=n−τij(n)

1
(1− us)αij

, n ≥ N.

The proof is complete.

We pause to make two important observations here. Note first that the
companion sequence {w(t)} is nondecreasing in t (so that a(n) ≤ w

(t)
n ≤

w
(t+1)
n for n ≥ N) provided each w(t) is strictly subnormal. We will refer

to this property as the monotone nature of the companion sequence {w(t)}.
Note further that the sequence {un} in the above theorem satisfies (2.6),
which is a system of equalities (cf. (2.2)). Since we may easily verify that
the sequence {xn} defined by xN = 1 and (2.3) is an eventually positive
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solution of

(2.7) ∆xn+a(n)xn+
k∑
i=1

pi(n)
mi∏
j=1

|xn−τij(n)|αij sgnxn−τij(n) = 0, n ≥ 0,

and since every solution of (2.7) is also a solution of (2.1), we see that the
following result must hold.

Theorem 2.2.3. The relation (2.1) has an eventually positive solution
if , and only if , (2.7) has an eventually positive solution.

In case a(n) ≡ a, pi(n) ≡ pi > 0 for 1 ≤ i ≤ k, and τij(n) ≡ τij for
1 ≤ i ≤ k and 1 ≤ j ≤ mi, the relation (2.1) reduces to

(2.8) ∆xn + axn +
k∑
i=1

pi

mi∏
j=1

|xn−τij
|αij sgnxn−τij

≤ 0, n ≥ 0,

and for large N, the sequence {w(0)
n }∞n=N becomes the constant sequence

{a}, and the sequence {w(1)
n }∞n=N becomes the constant sequence {w(1)}

defined by w(1) = a+ λ1, where

λ1 =
k∑
i=1

pi(1− a)−
∑mi

j=1 αijτij .

Inductively, we see that if we define λ0 = 0 and

(2.9) λt+1 =
k∑
i=1

pi(1− a− λt)−
∑mi

j=1 αijτij , t = 0, 1, 2, . . . ,

then the sequence {w(t)
n }∞n=N is equal to the constant sequence {a + λt}

for each t ≥ 1. If (2.8) has an eventually positive solution, then by The-
orem 2.2.2, a + λt < 1 for t = 0, 1, 2, . . . , 0 < λ1 ≤ λ2 ≤ . . . , and {λt}
converges to a number in (0, 1− a). The converse clearly holds.

Theorem 2.2.4. The relation (2.8) has an eventually positive solution
if , and only if , a < 1 and the sequence {λt} defined by λ0 = 0 and (2.9)
satisfies

a+ λ1 ≤ a+ λ2 ≤ . . . < 1

and converges to a number in (0, 1− a).

Therefore if (2.8) has an eventually positive solution, then by taking
limits on both sides of (2.9), we see that the associated “characteristic equa-
tion”

(2.10) λ =
k∑
i=1

pi(1− a− λ)−
∑mi

j=1 αijτij
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has a real root λ = λ∗ in (0, 1 − a). Conversely, if (2.10) has a real root
λ = λ∗ in (0, 1− a), then a < 1 so that λ1 > 0. Furthermore,

0 < λ1 =
k∑
i=1

pi(1− a)−
∑mi

j=1 αijτij ≤
k∑
i=1

pi(1− a− λ∗)−
∑mi

j=1 αijτij = λ∗,

and inductively, λt < λ∗ for all t ≥ 2. By the monotone nature of the
sequence {w(t)}, we see that {λt} is also monotone and hence it converges
to a number in (0, λ∗]. Thus, (2.8) has an eventually positive solution by
Theorem 2.2.2.

To summarize, (2.8) has an eventually positive solution if, and only if,
the characteristic equation (2.10) has a real root in (0, 1− a).

2.3. Consequences. As an immediate corollary of Theorem 2.2.1, we seek
a constant solution {w} of (2.2) and come up with the following result.

Theorem 2.3.1. If there is a number w < 1 and an integer N such that

(2.11) w ≥ a(n) +
k∑
i=1

pi(n)(1− w)−
∑mi

j=1 αijτij(n), n ≥ N,

then (2.1) has an eventually positive solution.

Therefore, if a(n) ≡ 0, and
mi∑
j=1

αijτij(n) ≡ τ > 0, 1 ≤ i ≤ k,

then (2.1) will have an eventually positive solution provided that

(2.12)
k∑
i=1

pi(n) ≤ τ τ

(1 + τ)τ+1
, n ≥ N.

Indeed, (2.11) will be satisfied if
k∑
i=1

p(n) ≤ max
0<w<1

w(1− w)τ =
τ τ

(1 + τ)τ+1
,

which leads to the fact that {1/(1 + τ)} is a strictly subnormal constant
solution of (2.11).

As an immediate corollary of Theorems 2.2.1 and 2.2.2, we have the
following result.

Theorem 2.3.2. The relation (2.1) cannot have an eventually positive
solution if for any integer N ≥ τ∗, there is some integer n ≥ N such that
the companion sequence of (2.1) relative to N satisfies w(t)

n ≥ 1 for some
t ≥ 0.
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Therefore, if for any N ≥ τ∗, there is some integer n ≥ N such that
w

(0)
n = a(n) ≥ 1, or

w(1)
n = a(n) +

k∑
i=1

pi(n)
mi∏
j=1

n−1∏
i=n−τij(n)

1
(1− a(i))αij

≥ 1,

then (2.1) cannot have an eventually positive solution.
Next, we find more sophisticated conditions under which (2.1) cannot

have an eventually positive solution.

Theorem 2.3.3. Suppose there is an integer N ≥ τ∗ and there are
constants τ and a∗ such that

inf
n≥N−τ∗

a(n) ≥ a∗ > −∞,

0 ≤
mi∑
j=1

αijτij(n) ≤ τ, n ≥ N − τ∗ > 0, 1 ≤ i ≤ k,

and

(2.13) inf
n≥N−τ∗, 0<µ<1−a∗

{
1
µ

k∑
i=1

pi(n)(1− a∗ − µ)−
∑mi

j=1 αijτij(n)

}
> 1,

then (2.1) cannot have an eventually positive solution.

P r o o f. Let {w(t)} be the companion sequence of (2.1). In view of Theo-
rem 2.3.2 and the monotone nature of {w(t)}, we may assume without loss of
generality that each w(t) dominates {a(n)} and is strictly subnormal. Note
that if a∗ ≥ 1, then w

(0)
n ≥ a(n) ≥ a∗ ≥ 1, which implies (see Theorem

2.2.2) that the nondecreasing sequence {w(t)} cannot converge to a strictly
subnormal limiting sequence and hence our assertion is true.

Next, note that w(0)
n = a(n) ≥ a∗ for n ≥ N − τ∗, and

w(1)
n = a(n) +

k∑
i=1

pi(n)
mi∏
j=1

n−1∏
s=n−τij(n)

1

(1− w(0)
s )αij

≥ a(n) +
k∑
i=1

pi(n)
mi∏
j=1

n−1∏
s=n−τij(n)

1
(1− a∗)αij

= a(n) +
k∑
i=1

pi(n)(1− a∗)−
∑mi

j=1 αijτij(n)

≥ a(n) + µ1

for n ≥ N, and
w(1)
n ≥ a∗ + µ1
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for n ≥ N − τ∗, where

µ1 = inf
n≥N−τ∗

k∑
i=1

pi(n)(1− a∗)−
∑mi

j=1 αijτij(n).

If a∗ + µ1 ≥ 1, then Theorem 2.3.2 again implies the truth of our assertion.
Inductively, if we define

(2.14) µt+1 = inf
n≥N−τ∗

k∑
i=1

pi(n)(1−a∗−µt)−
∑mi

j=1 αijτij(n), t = 1, 2, . . . ,

then

(2.15) w(t)
n ≥ a(n) + µt, n ≥ N, t ≥ 1,

and
w(t)
n ≥ a∗ + µt, n ≥ N − τ∗, t ≥ 1.

Similarly, (2.15) shows that if a∗ + µt ≥ 1 for any t ≥ 1, then our assertion
is true by Theorem 2.3.2.

Assume that a∗ < 1 and a∗ + µt < 1 for t ≥ 1. We assert that 0 < µ1 ≤
µ2 ≤ . . . ≤ 1− a∗. Indeed, note first that µ1 ≥ 0. If µ1 = 0, then there is a
sequence of integers {ns} such that

lim
s→∞

k∑
i=1

pi(ns)(1− a∗)−
∑mi

j=1 αijτij(ns) = 0.

Take µ′ = (1− a∗)/2, then 0 < µ′ < 1− a∗ and

lim
s→∞

1
µ′

k∑
i=1

pi(ns)(1− a∗ − µ′)−
∑mi

j=1 αijτij(ns)

≤ lim
s→∞

2τ

µ′

k∑
i=1

pi(ns)(1− a∗)−
∑mi

j=1 αijτij(ns) = 0,

contrary to (2.13). Since µ1 > 0, we have

µ2 = inf
n≥N−τ∗

k∑
i=1

pi(n)(1− a∗ − µ1)−
∑mi

j=1 αijτij(n)

≥ inf
n≥N−τ∗

k∑
i=1

pi(n)(1− a∗)−
∑mi

j=1 αijτij(n) = µ1.

Inductively, we see that 0 < µ1 ≤ µ2 ≤ . . . ≤ 1 − a∗ as required. Let
µ∗ = limt→∞ µt. If µ∗ < 1− a∗, then in view of (2.14), we have

µ∗ = inf
n≥N−τ∗

k∑
i=1

pi(n)(1− a∗ − µ∗)−
∑mi

j=1 αijτij(n),
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contrary to (2.13). Hence µ∗ = 1 − a∗. But then by (2.15), we see that
w

(∞)
n ≥ a(n) + 1− a∗ ≥ 1. This shows, in view of Theorem 2.2.2, that (2.1)

cannot have an eventually positive solution. The proof is complete.

Note that for each fixed n ≥ N − τ∗,

inf
0<µ<1−a∗

{
1
µ
pi(n)(1− a∗ − µ)−

∑mi
j=1 αijτij(n)

}
is attained at

µi = (1− a∗)
(

1 +
mi∑
j=1

αijτij(n)
)−1

and is equal to
pi(n)(1 + τi(n))1+τi(n)

(1− a∗)1+τi(n)(τi(n))τi(n)
,

where

(2.16) τi(n) =
mi∑
j=1

αijτij(n) <∞, 1 ≤ i ≤ k, n ≥ 0.

Therefore, if

(2.17) lim inf
n→∞

k∑
i=1

pi(n)(1 + τi(n))1+τi(n)

(1− a∗)1+τi(n)(τi(n))τi(n)
> 1,

then, by Theorem 2.3.3, (2.1) cannot have an eventually positive solution.
In particular, when a(n) ≡ 0 and τi(n) ≡ τ for 1 ≤ i ≤ k, the condition
(2.17) is equivalent to

lim inf
n→∞

k∑
i=1

pi(n) >
τ τ

(1 + τ)1+τ
.

This shows that condition (2.12) is sharp.

Next, note that the arithmetic mean-geometric mean inequality implies

1
µ

k∑
i=1

pi(n)(1− a∗ − µ)−τi(n)

≥ k

µ

{ k∏
i=1

pi(n)
}1/k{ k∏

i=1

(1− a∗ − µ)−τi(n)
}1/k

= k
{ k∏
i=1

pi(n)
}1/k

{ k∏
i=1

1
µ(1− a∗ − µ)τi(n)

}1/k

,
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where τi(n) is defined by (2.16). Since

inf
0<µ<1−a∗

1
µ(1− a∗ − µ)τi(n)

=
1

(1− a∗)2
· (τi(n) + 1)τi(n)+1

τi(n)τi(n)
,

it follows that if

lim inf
n→∞

k
{ k∏
i=1

pi(n)
}1/k

{ k∏
i=1

1
(1− a∗)2

(τi(n) + 1)τi(n)+1

τi(n)τi(n)

}1/k

> 1,

then, by Theorem 2.3.3, (2.1) cannot have an eventually positive solution.

Next, we find conditions under which the companion sequence {w(t)} of
(2.1) is pointwise convergent to a strictly subnormal sequence.

Theorem 2.3.4. Suppose supn≥N−τ∗ a(n) = a∗ < 1 such that

sup
n≥N−τ∗

k∑
i=1

pi(n)(1− a∗)−
∑mi

j=1 αijτij(n) > 0,

and suppose further that there is a constant ψ ∈ (0, 1− a∗) such that

(2.18) sup
n≥N−τ∗

{
1
ψ

k∑
i=1

pi(n)(1− a∗ − ψ)−
∑mi

j=1 αijτij(n)

}
≤ 1.

Then (2.1) has an eventually positive solution.

P r o o f. Let {w(t)} be the companion sequence of (2.1). Note that

w(1)
n = a(n) +

k∑
i=1

pi(n)
mi∏
j=1

n−1∏
s=n−τij(n)

1

(1− w(0)
s )αij

≤ a(n) + ψ1

for n ≥ N, and
w(1)
n ≤ a∗ + ψ1

for n ≥ N − τ∗, where

ψ1 = sup
n≥N−τ∗

k∑
i=1

pi(n)(1− a∗)−
∑mi

j=1 αijτij(n).

By our assumptions,

0 < ψ1 ≤ sup
n≥N−τ∗

k∑
i=1

pi(n)(1− a∗ − ψ)−
∑mi

j=1 αijτij(n) ≤ ψ.

Inductively, if we define

(2.19) ψt+1 = sup
n≥N−τ∗

k∑
i=1

pi(n)(1−a∗−ψt)−
∑mi

j=1 αijτij(n), t = 1, 2, . . . ,
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then

(2.20) w(t)
n ≤ a(n) + ψt, n ≥ N, t ≥ 1,

and

w(t)
n ≤ a∗ + ψt, n ≥ N − τ∗, t ≥ 1.

Under the condition (2.18), it is easily verified that 0 < ψ1 ≤ ψ2 ≤ . . . ≤ ψ.
Thus, in view of (2.20), we see that the companion sequence of (2.1) satisfies
w

(t)
n ≤ a∗ + ψt ≤ a∗ + ψ, which implies w(∞)

n ≤ a∗ + ψ < 1 (since ψ ∈
(0, 1− a∗)) for n ≥ N. The assertion now follows from Theorem 2.2.2.

As further applications of the previous results, we will derive a compar-
ison theorem for relation (2.1). Let us consider a majorant inequality of the
form

(2.21) ∆yn +A(n)yn

+
k∑
i=1

Pi(n)
mi∏
j=1

|yn−σij(n)|αij sgn yn−σij(n) ≤ 0, n ≥ 0,

where {A(n)}∞n=0 is a real sequence, {P1(n)}∞n=0, . . . , {Pk(n)}∞n=0 are non-
negative sequences, σ11(n), . . . , σkmk

(n) are nonnegative integers which sat-
isfy conditions similar to those satisfied by τij(n), and the other parameters
or parameter sequences are the same as those in (2.1). Also let the sequence
{W (t)} of sequences be the companion sequence of (2.21) relative to N ≥ τ∗:
W

(0)
n = A(n) for n ≥ 0, and for t = 0, 1, 2, . . . ,

W (t+1)
n = A(n) +

k∑
i=1

Pi(n)
mi∏
j=1

n−1∏
s=n−σij(n)

1

(1−W (t)
s )αij

, n ≥ N,

and W
(t+1)
n = W

(t)
n for n < N.

Theorem 2.3.5. Suppose a(n) ≤ A(n), τij(n) = σij(n) and pi(n) ≤
Pi(n) for 1 ≤ i ≤ k, 1 ≤ j ≤ mk and n ≥ 0. If (2.21) has an eventually
positive solution, then so does (2.1).

Indeed, if (2.21) has an eventually positive solution, then the relation

(2.22) Wn ≥ A(n) +
k∑
i=1

Pi(n)
mi∏
j=1

n−1∏
s=n−σij(n)

1
(1−Ws)αij

has an eventually strictly subnormal solution {Wn}. Since
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Wn ≥ A(n) +
k∑
i=1

Pi(n)
mi∏
j=1

n−1∏
s=n−σij(n)

1
(1−Ws)αij

≥ a(n) +
k∑
i=1

pi(n)
mi∏
j=1

n−1∏
s=n−σij(n)

1
(1−Ws)αij

,

we see that {Wn} is also an eventually subnormal solution of (2.2). Our
assertion now follows from Theorem 2.2.1 (cf. [8, Theorem 2], see also [3]).

Finally, we remark that if the condition τij(n) = σij(n) in the above
theorem is changed to τij(n) ≤ σij(n), then under the additional condition
that (2.21) has an eventually positive and eventually nonincreasing solution,
(2.1) will have an eventually positive solution. This is due to the fact that
(2.22) will have an eventually strictly subnormal and eventually nonnegative
solution {Wn}, which implies

Wn ≥ a(n) +
k∑
i=1

pi(n)
mi∏
j=1

n−1∏
s=n−τij(n)

1
(1−Ws)αij

.

3. Part 2

3.1. Assumptions. This part is concerned with the class of delay differ-
ence inequalities of the form

(3.1) ∆xn − b(n)∆xn−σ

+
k∑
i=1

pi(n)
mi∏
j=1

|xn−τij(n)|αij sgnxn−τij(n) ≤ 0, n ≥ 0,

where

(H0) σ is a positive integer,
(H1) {b(n)}∞n=0 is a nonnegative sequence,
(H2) {p1(n)}∞n=0, . . . , {pk(n)}∞n=0 are nonnegative sequences,
(H3) α11, . . . , αkmk

are nonnegative numbers such that
mi∑
j=1

αij = 1, i = 1, . . . , k,

(H4) τ11(n), . . . , τkmk
(n) are nonnegative integers for n ≥ 0 such that

τij(n) ≤ n for 1 ≤ i ≤ k, 1 ≤ j ≤ mk, n ≥ 0 and

lim
n→∞

(n− τij(n)) =∞, 1 ≤ i ≤ k, 1 ≤ j ≤ mk,

(H5) τ∗ = max{σ, {τij(n) | 1 ≤ i ≤ k, 1 ≤ j ≤ mk, n ≥ 0}} is a finite
nonnegative integer.
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A solution of (3.1) is a real sequence {xn}∞n=−τ∗ which satisfies (3.1) for
n≥0. Since (3.1) can be written in the form xn+1≤F (xn−α(n), . . . , xn−β(n)),
it is easy to formulate an existence theorem for this relation. We will be con-
cerned with necessary and sufficient conditions for the existence of eventually
positive nonincreasing solutions of (3.1). For this reason, we will also relax
the definition of a solution to mean one that satisfies (3.1) for all large n,
instead of for n ≥ −τ∗.

3.2. Necessary and sufficient conditions. Let {xk} be an eventually pos-
itive solution of (3.1). Then there is an integer N ≥ τ∗ such that xn > 0 for
n ≥ N − τ∗. Define a sequence {wn} by

wn = −∆xn
xn

, n ≥ N − τ∗.

Then {wn}∞n=N is strictly subnormal for n ≥ N − τ∗:

0 <
xn+1

xn
= 1− wn, n ≥ N − τ∗,

and
∆xn−σ
xn

= −wn−σ(1− wn−σ)−1 . . . (1− wn−1)−1, n ≥ N,
xn

xn−τij(n)
= (1− wn−1) . . . (1− wn−τij(n)), n ≥ N.

Substituting these equalities into (3.1), we obtain

(3.2) wn ≥ b(n)wn−σ
n−1∏
t=n−σ

1
1− wt

+
k∑
i=1

pi(n)
mi∏
j=1

n−1∏
s=n−τij(n)

1
(1− ws)αij

for n ≥ N.

Theorem 3.2.1. The relation (3.1) has an eventually positive nonincreas-
ing solution if , and only if , (3.2) has an eventually strictly subnormal and
eventually nonnegative solution.

P r o o f. It suffices to verify directly that if {wn} is a solution of (3.2)
which is strictly subnormal and eventually nonnegative for n ≥ N, then the
sequence {xn} defined by xN = 1 and

(3.3) xn+1 =
n∏

i=N

(1− wi), n ≥ N,

is an eventually positive solution of (3.1) which satisfies

∆xn = −wn
n−1∏
i=N

(1− wi) ≤ 0.
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We remark that in the proof of Theorem 2.2.1, the inequality ∆xn ≤ 0
does not hold in general since {wn} is not nonnegative. This is one of the
reasons for dealing with (1.1) in two parts.

Let us now formally define a sequence {w(t)} of sequences as follows: Let
N ≥ τ∗. We define w(0)

n = 0 for n ≥ 0; and for t = 0, 1, 2, . . . , we inductively
define

w(t+1)
n = b(n)w(t)

n−σ

n−1∏
i=n−σ

1

1− w(t)
i

(3.4)

+
k∑
i=1

pi(n)
mi∏
j=1

n−1∏
s=n−τij(n)

1

(1− w(t)
s )αij

for n ≥ N, and w
(t+1)
n = 0 for n < N. For convenience, the sequence {w(t)}

just defined will be called the companion sequence of (3.1) relative to the
integer N .

Theorem 3.2.2. The relation (3.2) has a solution {wn} which is nonneg-
ative and strictly subnormal for n ≥ N−τ∗ ≥ 0 if , and only if , each w(t) of
the companion sequence {w(t)} of (3.1) relative to N is strictly subnormal
for n ≥ N , and {w(t)} is pointwise convergent to a sequence {un} which is
nonnegative and strictly subnormal for n ≥ N.

P r o o f. If 0 ≤ wn < 1 for n ≥ N − τ∗, then the companion sequence
{w(t)} of (3.1) satisfies

w(0)
n = 0 ≤ wn < 1, n ≥ N − τ∗.

Therefore,
1

(1− w(0)
s )αij

≤ 1
(1− ws)αij

, n ≥ N − τ∗,

so that

w(0)
n = 0 ≤ w(1)

n = b(n)w(0)
n−σ

n−1∏
i=n−σ

1

1− w(0)
i

(3.5)

+
k∑
i=1

pi(n)
mi∏
j=1

n−1∏
s=n−τij(n)

1

(1− w(0)
s )αij

≤ b(n)wn−σ
n−1∏
i=n−σ

1
1− wi

+
k∑
i=1

pi(n)
mi∏
j=1

n−1∏
s=n−τij(n)

1
(1− ws)αij

≤ wn
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for n≥N. Inductively, we may show that w(0)
n ≤w(1)

n ≤w(2)
n ≤ . . . ≤wn < 1

for n ≥ N.
Conversely, if each w(t) is strictly subnormal and {w(t)} is pointwise

convergent to a sequence {un} which is nonnegative and strictly subnormal
for n ≥ N , then as before, we may show that w(0)

n ≤ w
(1)
n ≤ w

(2)
n ≤ . . . ≤

un < 1 for n ≥ N. By the Lebesgue dominated convergence theorem, we
may take limits on both sides of (3.4) as t tends to infinity to obtain

(3.6) un = b(n)un−σ
n−1∏
i=n−σ

1
(1− ui)

+
k∑
i=1

pi(n)
mi∏
j=1

n−1∏
s=n−τij(n)

1
(1− us)αij

for n ≥ N. The proof is complete.

We pause to make two important observations here. Note first that the
companion sequence {w(t)} is nondecreasing in t (so that 0 ≤ w(t)

n ≤ w(t+1)
n

for n ≥ N) provided each w(t) is strictly subnormal. We will refer to this
property as the monotone nature of the companion sequence {w(t)}. Note
further that the proof of Theorem 3.2.2 shows that {un} satisfies (3.6) for
n≥N, which is a system of equalities (cf. (3.2)). Since we may easily verify
that the sequence {xn} defined by xN = 1 and (3.3) is an eventually positive
solution of

(3.7) ∆xn − b(n)∆xn−σ

+
k∑
i=1

pi(n)
mi∏
j=1

|xn−τij(n)|αij sgnxn−τij(n) = 0, n ≥ 0,

and since every solution of (3.7) is also a solution of (3.1), we see that the
following result must hold.

Theorem 3.2.3. The relation (3.1) has an eventually positive nonincreas-
ing solution if , and only if , (3.7) has an eventually positive nonincreasing
solution.

In case b(n) ≡ b, pi(n) ≡ pi > 0 for 1 ≤ i ≤ k, and τij(n) ≡ τij for
1 ≤ i ≤ k and 1 ≤ j ≤ mi, the relation (3.1) reduces to

(3.8) ∆xn − b∆xn−σ +
k∑
i=1

pi

mi∏
j=1

|xn−τij
|αij sgnxn−τij

≤ 0, n ≥ 0,

and for large N, the sequence {w(0)
n }∞n=N becomes the constant sequence

{0}, and the sequence {w(1)
n }∞n=N becomes the constant sequence {w(1)}

defined by w(1) = λ1, where

λ1 =
k∑
i=1

pi > 0.
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Inductively, we see that if we define λ0 = 0 and

(3.9) λt+1 = b
λt

(1− λt)σ
+

k∑
i=1

pi(1− λt)−
∑mi

j=1 αijτij , t = 0, 1, 2, . . . ,

then {w(t)
n } is the constant sequence {λt} for each t ≥ 1. If (3.8) has

an eventually positive and nonincreasing solution, then by Theorem 3.2.2,
λt < 1 for t = 0, 1, 2, . . . , 0 < λ1 ≤ λ2 ≤ . . . < 1, and {λt} converges to a
number in (0, 1). The converse clearly holds.

Theorem 3.2.4. The relation (3.8) has an eventually positive nonincreas-
ing solution if , and only if , the sequence {λt} defined by λ0 = 0 and (3.9)
satisfies

0 = λ0 ≤ λ1 ≤ λ2 ≤ . . . < 1

and converges to a number in (0, 1).

Therefore if (3.8) has an eventually positive nonincreasing solution, then
by taking limits on both sides of (3.9), we see that the associated “charac-
teristic equation”

(3.10) λ =
bλ

(1− λ)σ
+

k∑
i=1

pi(1− λ)−
∑mi

j=1 αijτij

has a real root λ = λ∗ in (0, 1). Conversely, if (3.10) has a real root λ = λ∗

in (0, 1), then

0 < λ1 =
k∑
i=1

pi ≤
k∑
i=1

pi(1− λ∗)−
∑mi

j=1 αijτij ≤ λ∗,

and inductively, λt ≤ λ∗ for all t ≥ 2. By the monotone nature of the
sequence {w(t)}, we see that {λt} is also monotone and hence it converges
to a number in (0, λ∗]. Thus, (3.8) has an eventually positive nonincreasing
solution by Theorem 3.2.2.

To summarize, (3.8) has an eventually positive nonincreasing solution if,
and only if, the characteristic equation (3.10) has a real root in (0, 1).

We remark that if we assume that pi = 0 for 1 ≤ i ≤ k in the above
theorem, the assertion remains true if we change (0, 1) to [0, 1). Indeed, the
corresponding {λt} ≡ {0} and the corresponding relation is

∆xn − b∆xn−σ ≤ 0, n ≥ 0,

which has the nonnegative and nonincreasing solution {1}.

3.3. Consequences. As an immediate corollary of Theorem 3.2.1, we seek
a constant solution {w} of (3.2) and come up with the following result.
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Theorem 3.3.1. If there is a number w ∈ [0, 1) and an integer N ≥ τ∗

such that

(3.11) w ≥ b(n)w
(1− w)σ

+
k∑
i=1

pi(n)(1− w)−
∑mi

j=1 αijτij(n), n ≥ N,

then (3.1) has an eventually positive nonincreasing solution.

Therefore, if σ = 1, b(n) ≡ 1/2, and
mi∑
j=1

αijτij(n) ≡ τ > 1, 1 ≤ i ≤ k, n ≥ 0,

then (3.1) will have an eventually positive nonincreasing solution provided
that

(3.12)
k∑
i=1

pi(n) ≤ w∗(1− 2w∗)(1− w∗)τ−1

2
, n ≥ N,

where w∗ = 1−
√

1− 1/(2(1 + τ)). Indeed, (3.11) will be satisfied if
k∑
i=1

pi(n) ≤ w(1−w)τ − bw(1− w)τ

(1− w)σ
=
w(1− 2w)(1− w)τ−1

2
, 0 ≤ w < 1,

which in turn will be satisfied if
k∑
i=1

pi(n) ≤ max
0≤w<1

w(1− 2w)(1− w)τ−1

2
,

where the positive maximum is attained at w = w∗, which is a positive and
strictly subnormal constant solution of (3.11).

As an immediate corollary of Theorems 3.2.1 and 3.2.2, we have the
following result.

Theorem 3.3.2. The relation (3.1) cannot have an eventually positive
and nonincreasing solution if for any integer N ≥ τ∗, there is some integer
n ≥ N such that w(t)

n ≥ 1 for some t ≥ 0.

Therefore, if for any N ≥ τ∗, there is some integer n ≥ N such that

w(1)
n =

k∑
i=1

pi(n) ≥ 1,

then (3.1) cannot have an eventually positive nonincreasing solution.

Theorem 3.3.3. Suppose there is a constant τ such that

0 ≤
mi∑
j=1

αijτij(n) ≤ τ, n ≥ N − τ∗ ≥ 0, 1 ≤ i ≤ k.
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Suppose further that

µ1 = inf
n≥N−τ∗

k∑
i=1

pi(n) > 0

and

(3.13) inf
n≥N−τ∗, 0<µ<1

1
µ

{
b(n)µ

(1− µ)σ
+

k∑
i=1

pi(n)(1− µ)−
∑mi

j=1 αijτij(n)

}
> 1.

Then (3.1) cannot have an eventually positive nonincreasing solution.

P r o o f. Let {w(t)} be the companion sequence of (3.1). In view of Theo-
rem 3.3.2, we may assume without loss of generality that each w(t) is non-
negative and is subnormal for n ≥ N. Let

µ1 = inf
n≥N−τ∗

w(1)
n = inf

n≥N−τ∗

k∑
i=1

pi(n) ≥ 0,

where N − τ∗ ≥ 0. Then

w(2)
n = b(n)w(1)

n−σ

n−1∏
i=n−σ

1

1− w(1)
i

+
k∑
i=1

pi(n)
mi∏
j=1

n−1∏
s=n−τij(n)

1

(1− w(1)
s )αij

≥ b(n)µ1

(1− µ1)σ
+

k∑
i=1

pi(n)(1− µ1)−
∑mi

j=1 αijτij(n)

for n ≥ N, and
w(2)
n ≥ µ2

for n ≥ N − τ∗, where

µ2 = inf
n≥N−τ∗

{
b(n)µ1

(1− µ1)σ
+

k∑
i=1

pi(n)(1− µ1)−
∑mi

j=1 αijτij(n)

}
.

Inductively, if we define

(3.14) µt+1 = inf
n≥N−τ∗

{
b(n)µt

(1− µt)σ
+

k∑
i=1

pi(n)(1− µt)−
∑mi

j=1 αijτij(n)

}
for t = 0, 1, . . . , then

(3.15) w(t)
n ≥ µt, n ≥ N − τ∗, t ≥ 1.

In view of (3.15), if µt ≥ 1 for any t ≥ 1, then our assertion is true. Assume
that µt < 1 for t ≥ 1. We assert that 0 < µ1 ≤ µ2 ≤ . . . < 1. Indeed, µ1 > 0
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by assumption. Thus

µ2 = inf
n≥N−τ∗

{
b(n)µ1

(1− µ1)σ
+

k∑
i=1

pi(n)(1− µ1)−
∑mi

j=1 αijτij(n)

}

≥ inf
n≥N−τ∗

k∑
i=1

pi(n) = µ1.

Inductively, we see that 0 < µ1 ≤ µ2 ≤ . . . < 1 as required. Let µ∗ =
limt→∞ µt. If µ∗ < 1, then in view of (3.14), we have

µ∗ = inf
n≥N−τ∗

{
b(n)µ∗

(1− µ∗)σ
+

k∑
i=1

pi(n)(1− µ∗)−
∑mi

j=1 αijτij(n)

}
contrary to (3.13). Hence µ∗ = 1. But then by means of (3.15), we see that
w

(∞)
n ≥ 1. This shows, in view of Theorem 3.2.2, that (3.1) cannot have an

eventually positive nonincreasing solution. The proof is complete.

Note that for each fixed n ≥ N,

inf
0<µ<1

{
1
µ
pi(n)(1− µ)−

∑mi
j=1 αijτij(n)

}
is attained at

µi =
(

1 +
mi∑
j=1

αijτij(n)
)−1

and is equal to
pi(n)(1 + τi(n))1+τi(n)

(τi(n))τi(n)
,

where

(3.16) τi(n) =
mi∑
j=1

αijτij(n) <∞, 1 ≤ i ≤ k.

Note further that for each fixed n ≥ N,

inf
0<µ<1

b(n)
(1− µ)σ

is attained at b(n). Thus, if

(3.17) lim inf
n→∞

{
b(n) +

k∑
i=1

pi(n)(1 + τi(n))1+τi(n)

(τi(n))τi(n)

}
> 1,

then, by Theorem 3.3.3, (3.1) cannot have an eventually positive nonincreas-
ing solution.
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Next, note that the arithmetic mean-geometric mean inequality implies

1
µ

k∑
i=1

pi(n)(1− µ)−τi(n) ≥ k

µ

{ k∏
i=1

pi(n)
}1/k{ k∏

i=1

(1− µ)−τi(n)
}1/k

= k
{ k∏
i=1

pi(n)
}1/k

{ k∏
i=1

1
µ(1− µ)τi(n)

}1/k

,

where τi(n) is defined by (3.16). Since

inf
0<µ<1

1
µ(1− µ)τi(n)

=
(τi(n) + 1)τi(n)+1

τi(n)τi(n)
,

it follows that if p1(n) + . . .+ pk(n) does not vanish identically for all large
n and

lim inf
n→∞

{
b(n) + k

[ k∏
i=1

pi(n)
]1/k[ k∏

i=1

(τi(n) + 1)τi(n)+1

τi(n)τi(n)

]1/k}
> 1,

then, by Theorem 3.3.3, (3.1) cannot have an eventually positive nonincreas-
ing solution.

Theorem 3.3.4. Suppose there is a constant ψ ∈ (0, 1) such that

(3.18) sup
n≥N−τ∗≥0

1
ψ

{
b(n)ψ

(1− ψ)σ
+

k∑
i=1

pi(n)(1− ψ)−
∑mi

j=1 αijτij(n)

}
≤ 1.

Then (3.1) has an eventually positive nonincreasing solution.

P r o o f. Let {w(t)} be the companion sequence of (3.1). Let

ψ1 = sup
n≥N−τ∗

w(1)
n = sup

n≥N−τ∗

k∑
i=1

pi(n) ≥ 0,

where N − τ∗ ≥ 0. By (3.18), 0 ≤ ψ1 ≤ ψ. Next,

w(2)
n = b(n)w(1)

n−σ

n−1∏
i=n−σ

1

1− w(1)
i

+
k∑
i=1

pi(n)
mi∏
j=1

n−1∏
s=n−τij(n)

1

(1− w(1)
s )αij

≤ b(n)ψ1

(1− ψ1)σ
+

k∑
i=1

pi(n)(1− ψ1)−
∑mi

j=1 αijτij(n)

for n ≥ N and
w(2)
n ≤ ψ2

for n ≥ N − τ∗, where

ψ2 = sup
n≥N−τ∗

{
b(n)ψ1

(1− ψ1)σ
+

k∑
i=1

pi(n)(1− ψ1)−
∑mi

j=1 αijτij(n)

}
.
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Inductively, if we define

(3.19) ψt+1

= sup
n≥N−τ∗

{
b(n)ψt

(1− ψt)σ
+

k∑
i=1

pi(n)(1− ψt)−
∑mi

j=1 αijτij(n)

}
, t ≥ 0,

then

(3.20) w(t)
n ≤ ψt, n ≥ N − τ∗, t ≥ 1.

Under the condition (3.18), it is easily verified that 0 ≤ ψ1 ≤ ψ2 ≤ . . . ≤ ψ.
Thus, in view of (3.20), we see that the companion sequence {w(t)} satisfies
w

(t)
n ≤ ψt ≤ ψ, which implies w(∞)

n ≤ ψ < 1 for n ≥ N. The proof is
complete.

As further applications of the previous results, we will derive a compar-
ison theorem for the relation (3.1). Let us consider a majorant inequality of
the form

(3.21) ∆yn −B(n)∆yn−ξ

+
k∑
i=1

Pi(n)
mi∏
j=1

|yn−σij(n)|αij sgn yn−σij(n) ≤ 0, n ≥ 0,

where {B(n)}∞n=0 is a real sequence, {P1(n)}∞n=0, . . . , {Pk(n)}∞n=0 are non-
negative sequences, ξ is a positive integer, and σ11(n), . . . , σkmk

(n) are non-
negative integers which satisfy conditions similar to those satisfied by τij(n),
and the other parameters or parameter sequences are the same as those in
(3.1). Also let the sequence {W (t)} of sequences be the companion se-
quence of (3.21) relative to a large integer n: W (0)

n = 0 for n ≥ 0; and for
t = 0, 1, 2, . . . ,

W (t+1)
n = B(n)W (t)

n−ξ

n−1∏
i=n−ξ

1

1−W (t)
i

+
k∑
i=1

Pi(n)
mi∏
j=1

n−1∏
s=n−σij(n)

1

(1−W (t)
s )αij

for n ≥ N and W
(t+1)
n = 0 for n < N.

Theorem 3.3.5. Suppose σ ≤ ξ, b(n) ≤ B(n), τij(n) ≤ σij(n) for n ≥ 0
and pi(n) ≤ Pi(n) for 1 ≤ i ≤ k, 1 ≤ j ≤ mk and n ≥ 0. If (3.21) has an
eventually positive nonincreasing solution, then so does (3.1).

Indeed, if (3.21) has an eventually positive solution, then the relation

Wn ≥ B(n)Wn−ξ

n−1∏
t=n−ξ

1
1−Wt

+
k∑
i=1

Pi(n)
mi∏
j=1

n−1∏
s=n−σij(n)

1
(1−Ws)αij
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has an eventually strictly subnormal and eventually nonnegative solution
{Wn}. Thus

Wn ≥ b(n)Wn−σ

n−1∏
t=n−σ

1
1−Wt

+
k∑
i=1

pi(n)
mi∏
j=1

n−1∏
s=n−τij(n)

1
(1−Ws)αij

,

which shows that {Wn} is also an eventually subnormal and eventually
nonnegative solution of (3.2). Our assertion now follows from Theorem 3.2.1.
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