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On the energy of unit vector fields

with isolated singularities

by Fabiano G. B. Brito (São Paulo)
and Pawe l G. Walczak ( Lódź)

Abstract. We consider the energy of a unit vector field defined on a compact Rie-
mannian manifold M except at finitely many points. We obtain an estimate of the energy
from below which appears to be sharp when M is a sphere of dimension > 3. In this case,
the minimum of energy is attained if and only if the vector field is totally geodesic with
two singularities situated at two antipodal points (at the “south and north pole”).

1. Introduction. The energy of any smooth map F : M → N between
Riemannian manifolds is defined as (see, for example, [2])

(1) E(F ) =
1

2

\
M

‖dF‖2,

where the integration is performed with respect to the standard measure
induced by the Riemannian structure of M . Any unit vector field V on
M can be considered as a map of M into T 1M , the unit tangent bundle.
The tangent bundle TM (as well as T 1M) carries the natural Riemannian
structure (called the Sasaki metric) inherited from the Riemannian structure
on M with the use of the Levi-Civita connection ∇. With this Riemannian
structure on T 1M , the energy of any unit vector field V can be expressed
by the formula

(2) E(V ) =
1

2

\
M

(n + ‖∇V ‖2) =
n

2
Vol(M) +

1

2

\
M

‖∇V ‖2,

where n = dim M (compare [6]). The last integral in (2), up to some con-
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stants, is called in [4] the total bending B(V ) of V :

(3) B(V ) = cn

\
M

‖∇V ‖2,

where cn = 1/((n−1) Vol(Sn)). In [1], [5] and [6] the problem of minimizing
E(V ) (equivalently, B(V )) was considered. In [1], the first author proved
that the only vector field on S3 minimizing energy and/or total bending
is (up to congruences) the one tangent to the fibres of the standard Hopf
fibration S3 → S2. Wood [6] obtained results which show that this is no
more true for Hopf fibrations of spheres S2n+1, n > 1. In fact, the problem
of minimizing energy on these spheres is still open.

In this paper, we consider the energy of unit vector fields on compact
Riemannian manifolds minus finite sets of points (maybe empty). For such
vector fields, we get an estimate of energy from below which, in the case of
spheres Sn, n > 3, appears to be sharp and is attained by (and only by)
totally geodesic fields with two antipodal singularities.

More precisely, we have the following.

Theorem 1. Let V be a unit vector field on M \A, M being a compact

Riemannian manifold of dimension n + 1 and A a finite subset of M .

(i) If n ≥ 2, then

(4) E(V ) ≥
1

2n − 2

\
M

Ricci(V, V ) +
n + 1

2
Vol(M).

(ii) If n ≥ 3, then equality holds in (4) if and only if V is totally geodesic,
the n-dimensional distribution D orthogonal to V is integrable and defines

a Riemannian totally umbilical foliation F .

Theorem 2. The energy E(V ) of any unit vector field with isolated

singularities on Sn+1, n ≥ 3, satisfies the inequality

(5) E(V ) ≥
n2 + n − 1

2(n − 1)
Vol(Sn+1)

and equality holds in (5) if and only if the flow of V consists of great half-

circles connecting two antipodal singularity points (“south and north pole”).

The proof of the theorems above is given in Section 3. Section 2 contains
two lemmas used in the proof while Section 4 gives some final remarks.

The second author is grateful to the first one for an invitation to the
University of São Paulo.

2.Useful lemmas. Let M be a Riemannian manifold, dim M ≥ 2,
equipped with two complementary distributions D1 and D2. Let Bi (i=1, 2)
be the (non-symmetric) second fundamental form of Di, denote by Ai the
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symmetrization of Bi, by Hi = Trace Ai the mean curvature vector of
Di, and by Ti the integrability tensor of Di (i.e., Ai(X,Y ) = 1

2
(Bi(X,Y )

+ Bi(Y,X)) and Ti(X,Y ) = 1

2
(Bi(X,Y ) − Bi(Y,X)) for X and Y tangent

to Di). In [3], the following formula was derived:

(6) div(H1+H2) = |A1|
2−|H1|

2−|T1|
2+|A2|

2−|H2|
2−|T2|

2+K(D1,D2),

where

(7) K(D1,D2) =
∑

i,α

K(ei ∧ eα),

K is the sectional curvature of M , (ei) is an orthonormal frame of D1 while
(eα) is an orthonormal frame of D2. If D1 is the 1-dimensional distribution
generated by a unit vector field V , then H1 = ∇V V , T1 ≡ 0, |A1| = |H1|,
K(D1,D2) = Ricci(V, V ) and |A2|

2 − |H2|
2 − |T2|

2 = −σ2, where σ2 is the
second mean curvature of D2. Therefore, (6) implies directly the following.

Lemma 1. If V is a unit vector field on a Riemannian manifold M , then

(8) div(∇V V + H) = Ricci(V ) − 2σ2,

where H is the mean curvature vector and σ2 is the second mean curvature

of D, the orthogonal complement of the 1-dimensional distribution spanned

by V .

Assume now that M has bounded geometry (i.e., bounded sectional cur-
vature and injectivity radii rx, x ∈ M , separated away from zero). Let
f : M \ A → [0,∞) be a function defined on M outside a finite set A. Let
x0 ∈ A and denote by Sr (resp. Br), r being positive and small, the geodesic
sphere (resp., ball) on M of radius r and centre x0.

Lemma 2. If lim infr→0+

T
Sr

f > 0, then
T
M

f2 = ∞.

P r o o f. Since the geometry of M is bounded there exists c > 0 such
that Vol Sr ≤ crn, n + 1 = dim M , for sufficiently small r. The assumption
implies that there exists ε > 0 such that\

Sr

f ≥ ε

for small r. Hölder’s inequality implies that
( \

Sr

f2

)1/2

(Vol Sr)1/2 ≥ ε.

Consequently, \
Sr

f2 ≥
ε2

crn
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if r is small enough. Again, if r is small, then, by Fubini’s Theorem,\
Br

f2 =

r\
0

( \
St

f2

)

dt ≥
ε2

c
lim

δ→0+

r\
δ

t−n dt = ∞.

3. Proofs of the theorems. Let V be a unit vector field on
M \ {x1, . . . , xm}, M being a compact Riemannian manifold of dimension
n+1 > 2. Choose a local orthonormal frame e1, . . . , en+1 in such a way that
en+1 = V. Denote by hij , i, j ≤ n, the components of the second fundamen-
tal form of D, the n-dimensional distribution orthogonal to V . Then

(9) ‖∇V ‖2 = ‖∇V V ‖2 +
∑

i,j

h2
ij .

An elementary calculation shows that
∑

i,j

h2
ij =

1

n − 1

∑

i<j

(hii − hjj)2 +
1

n − 1

∑

i<j

(hij + hji)
2(10)

+
n − 2

n − 1

∑

i 6=j

h2
ij +

2

n − 1

∑

i<j

(hiihjj − hijhji).

Since the last sum in (10) equals σ2, the second mean curvature of D, (9)
and (10) imply the inequality

(11) ‖∇V ‖2 ≥
2

n − 1
σ2.

If E(V ) = ∞, there is nothing to prove. So, assume that E(V ) < ∞, take
rk > 0 small enough and denote by Sk and Bk, respectively, the geodesic
sphere and ball of radius rk and centre xk, k = 1, . . . ,m. Then, by Lemma
1 and the Stokes Theorem,

∣

∣

∣

\
M\
⋃

k
Bk

(Ricci(V, V ) − 2σ2)
∣

∣

∣
=

∣

∣

∣

\
M\
⋃

k
Bk

div(∇V V + H)
∣

∣

∣

=
∣

∣

∣

∑

k

\
Sk

〈∇V V + H,Nk〉
∣

∣

∣

≤
∑

k

\
Sk

‖∇V V + H‖ ≤ cn

∑

k

\
Sk

‖∇V ‖.

Here, H is the mean curvature vector of D, Nk is a unit vector field orthog-
onal to Sk and cn is a constant which depends on n only. Now, Lemma 2
applied to f = ‖∇V ‖ yields

(12) lim inf
r→0+

\
Sk

r

‖∇V ‖ = 0, k = 1, . . . ,m,
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where Sk
r is the sphere of centre xk and radius r. This implies that the

integral
T
M

σ2 converges and that

(13) 2
\

M

σ2 =
\

M

Ricci(V, V ).

Inequality (4) in Theorem 1 now follows directly from (2), (11) and (13).

From (9) and (10) it follows that, if n > 3, then equality holds in (11) if
and only if ∇V V = 0, hij = 0 for all i 6= j and hii = hjj for all i, j ≤ n.
These conditions are satisfied if and only if V is geodesic, the distribution
D is integrable and determines a Riemannian totally umbilical foliation F .
This proves Theorem 1.

To prove Theorem 2, observe that in the case M = Sn+1, inequality
(4) reduces to (5). By the second part of Theorem 1, equality holds in (5)
if and only if the foliation F orthogonal to V is Riemannian and totally
umbilical. Leaves of F are round spheres at a constant geodesic distance
from each other. Such spheres have to lie on parallel (n + 1)-dimensional
hyperplanes of R

n+2. In that case, the trajectories of V are contained in
great circles of Sn+1 passing through two fixed antipodal points, as claimed
in Theorem 2.

4. Final remarks. Theorem 2 establishes, in particular, that

4k2 + 2k + 1

4k − 2
Vol(S2k+1)

is a lower bound for the energy of non-singular vector fields on S2k+1. Hopf
vector fields on odd-dimensional round spheres have energy

4k + 1

2
Vol(S2k+1).

Therefore, if k > 1, “north-south” vector fields have less energy than Hopf
ones.

It would be interesting to find the infimum for the energy of non-singular
unit vector fields on S2k+1. It has to lie in the interval

(

4k2 + 2k − 1

4k − 2
,

4k + 1

2

)

.

Note that the problem is completely solved on S3 (see [1]), in particular the
energies of Hopf vector fields and “north-south” ones are the same. Since
the topology of 2-dimensional foliations of S3 is pretty well known, one could
try to find also the infimum for the energy of those unit vector fields on S3

which are orthogonal to integrable distributions.
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