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Convergence of power series along vector fields
and their commutators; a Cartan–Kähler type theorem

by B. Jakubczyk (Warszawa)

The first version of this paper was written in 1995 as a result of a Banach
Center Symposium coorganized by Bogdan Ziemian. I devote the paper to his
memory.

Abstract. We study convergence of formal power series along families of formal or
analytic vector fields. One of our results says that if a formal power series converges
along a family of vector fields, then it also converges along their commutators. Using this
theorem and a result of T. Morimoto, we prove analyticity of formal solutions for a class
of nonlinear singular PDEs. In the proofs we use results from control theory.

1. Convergence along families of vector fields. We denote by R[[x]]
and R{x} the algebras of formal (respectively, converging) power series of n
commuting variables x = (x1, . . . , xn), with real coefficients. A formal (re-
spectively, local analytic) vector field X on Rn is, by definition, a derivation
of this algebra. It can be written in the form

X =
n∑
i=1

ai(x)
∂

∂xi
,

where ai ∈ R[[x]] (respectively, ai ∈ R{x}). The formal (respectively, local
analytic) vector fields on Rn form a Lie algebra with the commutator (Lie
bracket) as product. For h ∈ R[[x]] we denote by h(0) the constant term
of h.

Consider a formal power series h ∈ R[[x]] and a family of formal vector
fields X1, . . . , Xr on Rn. Iterative differentiation of h along the vector fields
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gives the numbers
(Xi1 . . . Xikh)(0)

which can be viewed as coefficients of a noncommutative Taylor series of h
along X1, . . . , Xr. Such series were studied e.g. in [F] and will be described
in Section 3. The following result says that if the above coefficients satisfy
a Cauchy type estimate, then the formal data h and X1, . . . , Xr can be
replaced by local analytic h̃ and X̃1, . . . , X̃r.

Theorem 1. There exist positive constants C and % such that

(A) |(Xi1 . . . Xikh)(0)| ≤ C%kk!,

for any 1 ≤ i1, . . . , ik ≤ r and k ≥ 1, if and only if there are analytic h̃ and
X̃1, . . . , X̃r defined locally around zero such that

(B) (X̃i1 . . . X̃ik h̃)(0) = (Xi1 . . . Xikh)(0)

for any k ≥ 0 and any 1 ≤ i1, . . . , ik ≤ r.

This theorem in a stronger version (with infinite families of vector fields)
will follow from the results of Section 3.

Remark 1. The “if” part of Theorem 1 is classic. Namely, if h and
X1, . . . , Xr are analytic, then the estimate (A) follows for a fixed multiindex
I = (i1, . . . , ik) from the Cauchy inequalities applied to the local analytic
function

(t1, . . . , tk) 7→ h ◦ exp(tkXik) ◦ . . . ◦ exp(t1Xi1)(0)

=
∑

p1,...,pk≥0

(Xp1
i1
. . . Xpk

ik
h)(0)

tp11 . . . tpk

k

p1! . . . pk!

(by exp(tX) we denote the local flow of X). The independence of the con-
stants C and % of the multiindex I can be proved by using complex Cauchy
integrals.

Before we state our next result, let r = 2 and take Z1 = X1, Z2 =
[X1, X2], the commutator of X1 and X2. It is clear that if (A) holds for
the family X1, X2, then a simple substitution of Z2 = X1X2−X2X1 to (A)
implies the following Gevrey type estimate:

|(Zj1 . . . Zjmh)(0)| ≤ C%m1+2m2(m1 + 2m2)!2m2 ,

where mi is the number of occurrences of i in the sequence j1, . . . , jm.
In order to generalize this observation we consider the Lie algebra L =

Lie{X1, . . . , Xr} of formal vector fields on Rn generated by the vector fields
X1, . . . , Xr. Denote by Lq the linear subspace in L spanned by the Lie
brackets of X1, . . . , Xr of order not greater than q (for example we have
Xi ∈ L1 and [Xi, Xj ] ∈ L2).
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Fix a family Z1, . . . , ZN of formal vector fields in Lie{X1, . . . , Xr}. De-
note by w(1), . . . , w(N) the minimal natural numbers such that Zj ∈ Lw(j),
j = 1, . . . , N . For a given multiindex J = (j1, . . . , jr) we define

w(J) = w(j1) + . . .+ w(jr).

One can easily prove the following result.

Proposition 1. If formal vector fields X1, . . . , Xr and a formal power
series h satisfy the estimate (A) then the following Gevrey estimate holds:

|(Zj1 . . . Zjmh)(0)| ≤ C%w(J)
1 (w(J))!,

with some constant %1 > 0.

The above fact being trivial as a corollary of Theorem 1, it turns out
that a much stronger Cauchy type estimate holds.

Theorem 2. If formal vector fields X1, . . . , Xr and a formal power series
h satisfy the estimate (A) and Z1, . . . , ZN are elements of Lie{X1, . . . , Xr},
then there are constants C1 > 0 and %1 > 0 such that

(C) |(Zj1 . . . Zjmh)(0)| ≤ C1%
m
1 m!

for any 1 ≤ j1, . . . , jm ≤ N and m ≥ 1.

P r o o f. We can replace our formal system (h,X1, . . . , Xr) by a local ana-
lytic system (h̃, X̃1, . . . , X̃r), using the “only if” part of Theorem 1. Consider
the vector fields Z̃1, . . . , Z̃N obtained from X̃1, . . . , X̃r by the same brack-
eting pattern as Z1, . . . , ZN were obtained from X1, . . . , Xr. They are also
analytic. Then the equalities (B) yield

(Z̃j1 . . . Z̃jm h̃)(0) = (Zj1 . . . Zjmh)(0)

and the estimate (C) follows from the analyticity of h̃ and Z̃1, . . . , Z̃N , and
the “if” part of Theorem 1.

As a consequence of this theorem we have a result which is analogous
to the following celebrated theorem of Gabrielov [G]: If the composition
h ◦ ψ of a formal power series h ∈ R[[x]] with a germ of an analytic map
ψ is convergent , and the generic rank of ψ is equal to n, then h is also
convergent.

Corollary 1. Suppose that a formal system (h,X1, . . . , Xr) satisfies
the estimate (A). If additionally the vector fields X1, . . . , Xr are convergent
(analytic at zero) and the Lie algebra Lie{X1, . . . , Xr} is of rank n at zero,
then the formal power series h is convergent.

First proof. Our assumption on the rank of the Lie algebra generated by
X1, . . . , Xr says that there are elements Z1, . . . , Zn of this Lie algebra such
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that the vectors Z1(0), . . . , Zn(0) are linearly independent. From Theorem 2
it follows that the function

φ(t1, . . . , tn) = h ◦ exp(t1Z1) ◦ . . . ◦ exp(tnZn)(0)

is analytic as a function of (t1, . . . , tn). Additionally, as the vector fields
X1, . . . , Xr and so Z1, . . . , Zn are analytic, it follows that the local mapping
ψ defined by

(t1, . . . , tn) 7→ exp(t1Z1) ◦ . . . ◦ exp(tnZn)(0)

is analytic. It is also locally invertible at zero, as Z1, . . . , Zn are linearly
independent. Therefore, h = φ ◦ ψ−1 is convergent.

Second proof. We also present another proof which is independent of the
above argument but it uses other results including the nontrivial Gabrielov
theorem.

For any multiindex I = (i1, . . . , ik) we introduce the local map

ψI(t1, . . . , tk) = exp(tkXik) ◦ . . . ◦ exp(t1Xi1)(0).

Each such map is defined on a certain maximal open set. The set R of
points reachable from 0 ∈ Rn piecewise by trajectories of the vector fields
X1, . . . , Xr is equal to the union of the images of these maps,

R =
⋃
I

ImψI .

From our rank assumption on the Lie algebra Lie{X1, . . . , Xr} and the
Chow–Rashevskĭı theorem (cf. [C], [R]) it follows that the set R has
nonempty interior. As the sum defining R is countable, it follows that there
exists a multiindex I0 such that ImψI0 has nonempty interior. It follows
that the rank of the map ψi0 is maximal and equal to n, generically.

Consider now the formal power series

h ◦ ψI0(t1, . . . , tk) =
∑

p1,...,pk≥0

(Xp1
i1
. . . Xpk

ik
h)(0)

tp11 . . . tpk

k

p1! . . . pk!
.

From the estimate (A) it follows that this series is convergent.
As h ◦ ψI0 is convergent and ψI0 has generic rank n, it follows from

Gabrielov’s theorem that h is convergent.

Remark 2. The second proof can be refined so that the estimate (A) is
needed only for sequences of the form

Xp1
i1
. . . Xpn

in
,

where n is the dimension of our space and i1, . . . , in are fixed. Namely, by
an argument of A. Krener [K] there exists a sequence i1, . . . , in of length n
such that ImψI has nonempty interior.
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Our preceding corollary can be generalized to the case when the Lie
algebra generated by our vector fields is not of maximal rank.

We will say that a formal power series h at x0 = 0 ∈ Rn is convergent
on a submanifold S at x0 if the (formal) composition h ◦ ψ is convergent,
where ψ : Rm → Rn is a local analytic immersion defining S, i.e. ψ(0) = x0

and S = Imψ locally.
If the Lie algebra L = Lie{X1, . . . , Xr} generated by analytic vector

fields is not of full rank at x0, then the distribution defined by ∆(x) =
{V (x) : V ∈ L} is integrable (Nagano [N], Sussmann [S1]). This means
that through any point, in particular through x0, there passes an integral
manifold S of ∆. Additionally, it follows from the Chow–Rashevskĭı theorem
that the submanifold S coincides with the orbit Orb(x0) from x0 of the
family {X1, . . . , Xr} (here Orb(x0) is the set of points reachable from x0

piecewise by trajectories of the vector fields X1, . . . , Xr).

Corollary 2. Let h be a formal power series and let X1, . . . , Xr be
vector fields defined and analytic in a neighborhood of x0 = 0 in Rn such
that the estimate (A) is satisfied. Then h is convergent on the submanifold
S = Orb(x0).

One could attempt to analyse “analyticity directions” of a formal power
series, using the above corollary.

2. Analytic solutions of nonlinear singular PDEs. The results
of the preceding section can be used to improve regularity statements for
solutions of a class of nonlinear, singular partial differential equations on
nilpotent Lie groups as considered in Morimoto [Mo1], [Mo2]. We begin by
recalling the notion of a formal Gevrey function as introduced in [Mo1].

Suppose that
g = g1 ⊕ . . .⊕ gs

is a graded nilpotent Lie algebra of finite dimension n, with weighting
w(X) = i if X ∈ gi. Let G be the corresponding nilpotent Lie group. For
any element X ∈ g we denote by X̂ the corresponding left invariant vector
field on G.

Fix a basis X1, . . . , Xn of g adapted to the direct sum, i.e. Xi∈gj(i), for
any i = 1, . . . , n. Consider the corresponding vector fields X̂1, . . . , X̂n on G.

Fix an analytic coordinate system in a neighborhood of the identity
e ∈ G. Consider a formal power series h on G (at the identity). Following
[Mo1] we say that h is in the formal Gevrey class if there exist positive
constants C and % such that the following Gevrey type estimate holds:

(GE) |(X̂i1 . . . X̂ikh)(0)| ≤ C%w(I)w(I)!

for any 1 ≤ i1, . . . , ik ≤ n and k ≥ 1, where w(I) = w(Xi1) + . . .+ w(Xik).
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Corollary 3. If a formal power series h on a nilpotent Lie group G
satisfies a Gevrey estimate (GE), and g1 generates the whole Lie algebra g,
then h is convergent.

P r o o f. After a possible renumbering we may assume that X1, . . . , Xr

span g1. Taking into account that w(Xi) = 1 if Xi ∈ g1, we see that the
Gevrey estimate (GE) implies the estimate (A). The conclusion follows from
Corollary 1.

This corollary implies a theorem on existence of local analytic solutions
of nonlinear systems of partial differential equations, of the type of the
Cartan–Kähler theorem, as stated by T. Morimoto in [Mo2], Theorem EA.
This is an extension of earlier theorems by Malgrange [Ma], Appendix, and
Morimoto [Mo1]. We restate this theorem below and give its proof.

Let X1, . . . , Xn be a basis of the graded Lie algebra g as above. Note that
any left invariant differential operator on G can be written as a polynomial in
the first order differential operators X̂1, . . . , X̂n. For (a germ) of m functions
y = h(x) = (h1(x), . . . , hm(x)) on G and a multiindex I = (i1, . . . , ik) we
define

yI(x) = hI(x) = XIh = (Xi1 . . . Xikh)(x)

(we take the derivatives componentwise) and w(I) = w(Xi1)+ . . .+w(Xik).
We consider the following differential equation on G:

(E) Ψ(x, {yI}w(I)≤p) = 0.

Following Morimoto [Mo1], we define weighted jets of h as follows. Two
functions h, h′ : G → Rm (defined locally around the identity e) are called
q-equivalent at e if (XIh)(e) = (XIh

′)(e) for any I such that w(I) ≤ q. The
equivalence class of h is called the (weighted) jet of order q of h at e and is
denoted by jqh. A q-jet jqh, q ≥ p, is called a q-jet solution of (E) if

(XJΨ(x, {yI}w(I)≤p))(e) = 0

for all multiindices J such that w(J) ≤ q − p.
Following Malgrange [Ma], Appendix, one calls a q-jet solution yq = jqh

of (E) strongly prolongable if for any s-jet extension jsh̃ of jqh, s > q, which
is an s-jet solution of (E) there exists an (s+ 1)-solution js+1ĥ of (E) whose
s-jet is jsh̃.

It was proved by Morimoto [Mo1], as an extension of a theorem by
Malgrange [Ma], that if Ψ is analytic with respect to yI and in the formal
Gevrey class with respect to x then, for any m ≥ p and any finite jet solution
jmh̃ of our equation which is strongly prolongable, there exists a solution h
in the formal Gevrey class with jmh = jmh̃.

From this result and Corollary 2 we obtain the following theorem which
is Theorem EA of [Mo2] (in fact, a slight generalization). Let G0 be the
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subgroup of the Lie group G which corresponds to the Lie subalgebra g0 =
Lie{g1} generated by g1.

Theorem 3. Let Ψ be in the formal Gevrey class with respect to x and
analytic with respect to yI at (e, yp). If yp = {yI}w(I)≤p is a strongly pro-
longable solution of (E), then there exists a solution h in the formal Gevrey
class such that jph = yp, which is convergent on G0. In particular , if g1
generates the whole Lie algebra, then h is convergent.

P r o o f. It follows from [Mo1] that there exists a required infinite jet
solution h which is in the formal Gevrey class. This implies, in particular,
that this solution satisfies our estimate (A) with respect to the vector fields
X̂1, . . . , X̂r generating g1 (since w(X) = 1 if X ∈ g1). To get the result it is
enough to apply Corollary 2 and notice that the orbit of the family of vector
fields X ∈ g1 equals the subgroup G0.

Corollary 3 and Theorem 3 were conjectured (and proved in the case
where g is the Heisenberg algebra) by T. Morimoto during the Banach
Center Symposium on Differential Geometry and Mathematical Physics in
April 1995. Later they were published in [Mo2]. Corollary 3 is stated in
[Mo2] as Theorem G-A and its proof is reduced to two propositions (Propo-
sitions 1 and 2). To our knowledge, the proofs of these propositions have
not been published (the proof of Proposition 2, given in the reference [St1]
cited in [Mo2], is not correct, cf. [St2]).

3. Realizations of noncommutative power series. We will state an
abstract version of Theorem 1, where the initial numbers (Xi1 . . . Xikh)(0)
will be replaced by coefficients of a formal power series Q of noncommutative
variables u (indexing vector fields).

Let U be a set with at least two elements, possibly infinite (we think
of elements of U as letters or noncommutative formal variables). The free
semigroup generated by U is the set of words

U+ = {u1 . . . uk | k ≥ 1, ui ∈ U}

with the natural product (concatenation). The free monoid U∗ is obtained
by adding the empty word λ to U+. A formal power series of noncommuting
variables u ∈ U , with real coefficients 〈Q,w〉, is written as a formal sum∑

w∈U∗

〈Q,w〉w,

with the constant term 〈Q,λ〉λ. The family of all such formal power series
forms an associative algebra denoted by R〈〈U〉〉, with the usual addition and
product. The corresponding algebra of polynomials is denoted by R〈U〉. We
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have the canonical inclusions

U ⊂ U+ ⊂ U∗ ⊂ R〈U〉 ⊂ R〈〈U〉〉.
The commutator [Q,Q′] = QQ′−Q′Q defines Lie algebra structures in R〈U〉
and R〈〈U〉〉. We also have a well defined scalar product

〈Q,Q′〉 =
∑
w∈U∗

〈Q,w〉〈Q′, w〉,

when the series converges (e.g. when one of the series is a polynomial).
We set [u1u2] = u1u2−u2u1. More generally, for a word w = u1 . . . uk ∈

U+ we define a polynomial, called the Lie polynomial , by

[w] = [u1 . . . uk] = [u1, [u2, . . . [uk−1, uk] . . .]].

We can now define the Lie rank (cf. [F], [J4]) of a series Q ∈ R〈〈U〉〉 by

rankLQ = sup rank{〈Q, [wp]zq〉}kp,q=1,

where { }kp,q=1 denotes a k × k matrix, and the supremum is taken over all
k ≥ 1 and all sequences w1, . . . , wk ∈ U+ and z1, . . . , zk ∈ U∗. Similarly, for
a family Q = {Qv}v∈V of formal power series we define its rank by

rankLQ = sup rank{〈Qvq , [wp]zq〉}kp,q=1,

where the supremum is taken over all k ≥ 1 and all sequences w1, . . . , wk ∈
U+, z1, . . . , zk ∈ U∗ and v1, . . . , vk ∈ V .

The following result is an abstract version of Theorem 1.

Theorem 4. The following conditions are equivalent for a given family
of formal power series Q.

(i) The family Q has finite rank and there are positive functions C :
V → R and % : U → R such that

(A′) |〈Qv, u1 . . . uk〉| ≤ C(v)%(u1) . . . %(uk)k! .

(ii) There exists n and a local analytic system ({Xu}u∈U , {hv}v∈V ) de-
fined in a common neighborhood of 0 ∈ Rn such that

〈Qv, u1 . . . uk〉 = (Xu1 . . . Xuk
hv)(0)

for all k ≥ 0, v ∈ V , and u1, . . . , uk ∈ U (one can take n = rankLQ).

In the case of Q consisting of a single series and U finite this theorem
was stated in [F]. However, the proof given in [F] was not correct. Moreover,
the main assumption rankLQ < ∞ was not used in that proof (only the
inequality rankLQ ≥ n was used). We mentioned in [J3], Remark 2, that
Theorem 2 in [J3] implied the analytic version of the main result in [F], and
it implied Theorem 4 above. However, in order to make this implication
explicit one has to show equality of two different ranks used in [F] and [J3].
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In the next two sections we restate a version of a realization theorem
from [J3] and prove equality of both ranks. Another proof of Theorem 4 was
given in [S2].

4. Realizations of causal functionals. Let U and V be fixed
nonempty sets, where U has at least two elements and V is finite. For
t1 ≥ 0, . . . , tk ≥ 0 we denote by

a = (t1, u1) . . . (tk, uk)

the piecewise constant function defined on the interval [0, |a|) and taking
values a(t) = ui ∈ U for t ∈ [Ti−1, Ti), where T0 = 0 and Ti = t1 + . . .+ ti,
i = 1, . . . , k, and |a| = Tk. The set of all such functions is denoted by S.

Note that two functions a, b ∈ S can be concatenated, which defines the
product ab, where

(ab)(t) =
{
a(t) for t ∈ [0, |a|),
b(t− |a|) for t ∈ [|a|, |a|+ |b|).

This means that S forms a semigroup with concatenation as product.
Consider a positive function % : U → R. We define the subset S% ⊂ S by

S% = { (t1, u1) . . . (tk, uk) ∈ S : t1%(u1) + . . .+ tk%(uk) < 1}
(here k is not fixed). Consider a family P = {Pv}v∈V of functions Pv : S% →
R called causal functionals.

In order to have existence of analytic realizations we impose the following
conditions on our family P of causal functionals. Set R+ = [0,∞).

We say that P is analytic (respectively, analytic and analytically extend-
able) if, for any u1, . . . , uk ∈ U and k ≥ 1, the maps

(t1, . . . , tk) 7→ Pv((t1, u1) . . . (tk, uk))

are analytic on the subsets of Rk+ defined by

{(t1, . . . , tk) ∈ Rk+ : t1%(u1) + . . .+ tk%(uk) < 1}
(respectively, they are analytic on these subsets and have analytic extensions
to the subsets of Rk defined by

{(t1, . . . , tk) ∈ Rk : |t1|%̃(u1) + . . .+ |tk|%̃(uk) < 1},
where %̃ : U → R is a positive function which depends on P but is indepen-
dent of the choice of k and u1, . . . , uk).

Above, a function defined on a possibly non-open subset of Rn is called
analytic if it has a Taylor series converging at any point of the set and is given
by this series in a neighborhood of this point. In particular, analyticity of P
means that the above maps have analytic extensions to open neighborhoods
of the origin in Rk. Thus, the expressions Pv((t1, u1) . . . (tk, uk)) are also
well defined for small negative t1, . . . , tk. Analytic extendability is a slightly
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stronger property requiring some uniformity of the domains of the extended
maps.

We define the rank of the family P of causal functionals by

rankP = sup rank
{
∂

∂ti
Pvj

(abj)
}k
i,j=1

,

where the supremum is taken over all k ≥ 1, all a = (t1, u1) . . . (tk, uk) ∈ S
and all b1, . . . , bk ∈ S and v1, . . . , vk ∈ V such that abj ∈ S%, j = 1, . . . , k.
Consider a quadruple Γ = (M,X, h, x0), where M = Rn, x0 is a point in
M , and X = {Xu}u∈U , h = {hv}v∈V are families of germs at x0 of analytic
vector fields on M and of analytic functions on M , respectively. We say that
Γ is a local analytic realization of P = {Pv}v∈V if

Pv(a) = hv ◦ exp(tkXuk
) ◦ . . . ◦ exp(t1Xu1)(x0)

for any v ∈ V , for any k ≥ 1 and u1, . . . , uk ∈ U , with ti ≥ 0 small enough.
Here exp(tX) denotes the local flow of X.

The realization Γ is called locally minimal if dimM = rankP .

Theorem 5 ([J2], [J3]). A family P of causal functionals has a local an-
alytic realization Γ if and only if P is analytic, analytically extendable, and
rankP is finite. Then there exists a locally minimal , local analytic realization
of P .

For global versions of this theorem, with M an arbitrary differentiable
manifold, the reader may consult [J1], [CGM] and [J4].

Remark 3. If the set U is finite then the requirement of analytic extend-
ability is superfluous, which follows from the proof of Theorem 2 in [J3] and
was independently proved in [CGM]. Theorem 5 remains true when the set V
is infinite. This can be proved by choosing a finite subset V0 ⊂ V on which
the rank of P is realized, constructing the realization Γ = (Rn, X, h, x0)
with h = {hv}v∈V0 , and showing that the remaining observation functions
hv, with v ∈ V \V0, can be constructed without changing the other elements
of Γ .

Remark 4. The family P of causal functionals defines a causal op-
erator F by F ((t1, u1) . . . (tk, uk)v) = Pv((t1, u1) . . . (tk, uk)), in the ter-
minology used in [J3] and [J4]. For simplicity of notation the function %
used here in the definition of causal functionals was taken to be constant,
equal to 1/T , in [J3] (this implies that the operator F is defined on func-
tions on the interval [0, T )). In the proofs in [J3] this assumption is not
needed.
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5. Equivalent ranks. Our family P = {Pv}v∈V of analytic causal func-
tionals defines a family Q = {Qv}v∈V of formal power series via the formula

(1) 〈Qv, u1 . . . uk〉 =
∂

∂t1
. . .

∂

∂tk
Pv((t1, u1) . . . (tk, uk))

∣∣∣∣
t1=...=tk=0

.

The following fact holds for this family of formal power series.

Lemma 1. If P is analytic, then both ranks defined above coincide, i.e.

rankP = rankLQ.

Before we prove the lemma we make the following observations.

Observation 1. The semigroup S can be extended to a group G defined
as follows. Consider formal products

a = (t1, u1) . . . (tk, uk),

where t1, . . . , tk ∈ R, u1, . . . , uk ∈ U , and k ≥ 0. We introduce the relations

(t1, u)(t2, u) = (t1 + t2, u), (0, u) = e,

where e is the empty product (i.e. k = 0). The set of formal products
factorized with respect to the equivalence relation generated by the above
relations forms a group G, with multiplication defined by concatenation of
products, and with inverse

((t1, u1) . . . (tk, uk))−1 = (−tk, uk) . . . (−t1, u1)

(for simplicity we omit equivalence classes in our notation). It is easy to
see that the semigroup S defined in the preceding section can be identified
with the set of equivalence classes of formal products (t1, u1) . . . (tk, uk) with
t1 ≥ 0, . . . , tk ≥ 0.

Observation 2. If P is a family of analytic causal functionals Pv :
S% → R then the expressions Pv((t1, u1) . . . (tk, uk)) are well defined for
nonnegative t1, . . . , tk and, by uniqueness of analytic extensions, they are
also well defined for (t1, . . . , tk) in a neighborhood of the origin in Rk. The
equalities

Pv((t1, u1) . . . (t′, u)(t′′, u) . . . (tk, uk)) = Pv((t1, u1) . . . (t′+t′′, u) . . . (tk, uk))

and

Pv((t1, u1) . . . (ti, ui)(0, u)(ti+1, ui+1) . . . (tk, uk))
= Pv((t1, u1) . . . (ti, ui)(ti+1, ui+1) . . . (tk, uk))

extend, by uniqueness of analytic extensions, from a set of nonnegative
values of t1, . . . , tk, t′, t′′ ∈ R+, to arbitrary small values in R. (This roughly
means that the causal functionals P : S% → R have well defined extensions
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to a “neighborhood” of the identity in G.) In particular, our equations imply

Pv(abb−1c) = Pv(ac)

for arbitrary elements a = (t1, u1) . . . (tk, uk), b = (τ1, v1) . . . (τm, vm), and
c = (s1, w1) . . . (sr, wr), with ti, τj , sj small.

Observation 3. From the definition (1) of the series Qv we easily see
that
〈Qv, [u1u2]v1〉 = 〈Qv, u1u2v1〉 − 〈Qv, u2u1v1〉

=
∂

∂t1

∂

∂t2

∂

∂τ1
Pv((t1, u1)(t2, u2)(−t1, u1)(τ1, v1))

∣∣∣∣
t1=t2=τ1=0

and, by easy induction,

(2) 〈Qv, [u1 . . . uk+1]v1 . . . vm〉

=
∂

∂t1
. . .

∂

∂tk+1

∂

∂τ1
. . .

∂

∂τm
Pv(a(tk+1, uk+1)a−1b)

∣∣∣∣
t1=...=tk+1=τ1...=τm=0

,

where
a = (t1, u1) . . . (tk, uk), b = (τ1, v1) . . . (τm, vm)

and 〈·, ·〉 denotes the scalar product while [u1 . . . uk+1] denotes the Lie poly-
nomial, both defined in Section 3. Using formula (2), the definition of the
Lie polynomial [(u1)i1 . . . (uk)ikuk+1], and the property

dr

dsr
f(s)

∣∣∣∣
s=0

=
∂

∂s1
. . .

∂

∂sr
f(s1 + . . .+ sr)

∣∣∣∣
s1=...=sr=0

we obtain the more general equalities

(3) 〈Qv, [(u1)i1 . . . (uk)ikuk+1](v1)j1 . . . (vm)jm〉

=
(
∂

∂t1

)i1
. . .

(
∂

∂tk

)ik ∂

∂tk+1

(
∂

∂τ1

)j1
. . .

(
∂

∂τm

)jm
Pv(a(tk+1, uk+1)a−1b),

where a = (t1, u1) . . . (tk, uk), b = (τ1, v1) . . . (τm, vm), and the derivatives
on the right side are taken at t1 = . . . = tk+1 = 0 and τ1 = . . . = τm = 0.

Proof of Lemma 1. The following remark will be used in the proof.
In the definitions of both ranks there appear ranks of finite-dimensional
matrices. In order to show that rankP = rankLQ it is enough to show that
for any p ≥ 1 the following statement holds. If all the minors of order p of
the matrices involved in the definition of the first rank vanish, then all the
minors of order p of the matrices involved in the definition of the second
rank vanish, and vice versa.

The matrices which appear in the definition of rankP depend analyti-
cally on some real parameters. We will use the following general property of
determinants of matrices with coefficients depending on real parameters. Let
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φ = det{aij}pi,j=1, where the coefficients aij = aij(ti, τ j) depend smoothly
(analytically) on the parameters ti = (ti1, . . . , t

i
ki

) and τ j = (τ j1 , . . . , τ
j
mj

).
Since determinant is a multilinear function with respect to rows, it follows
that

∂

∂tks
φ = det{ãij},

where

aij = ãij for i 6= k, and ãij =
∂

∂tks
aij for i = k.

A similar property holds for columns. Assume that

(4) det{aij} ≡ 0.

By consecutive differentiation of this identity and application of the above
mentioned property of determinant we obtain

(5) det{ãij} ≡ 0,

where

(6) ãij =
∂ki+mj

∂ti1 . . . ∂t
i
ki
∂τ j1 . . . ∂τ

j
mj

aij .

We are ready for the main part of the proof.
We define

(7) aij =
∂

∂t
Pvj

(ai(t, wiki+1)(ai)−1bj)
∣∣∣∣
t=0

,

where

ai = (ti1, w
i
1) . . . (tiki

, wiki
), bj = (τ j1 , v

j
1) . . . (τ jmj

, vjmj
)

and i, j = 1, . . . , p.
In order to prove rankLQ ≤ rankP we assume that rankP = n < ∞.

Choosing the element a in the definition of rankP to be

(8) a = a1(s1, w1
k1+1)(a1)−1 . . . ap(sp, w

p
kp+1)(ap)−1

we have

(9)
∂

∂si
Pvj

(abj)
∣∣∣∣
s1=0,...,sp=0

=
∂

∂si
Pvj

(ai(si, wiki+1)(ai)−1bj)
∣∣∣∣
si=0

= aij

and so we get det{aij} = 0 if p > n. This implies (5). Using the definition
(7) and formula (2) we see that equality (5) takes the form

(10) det{〈Q, [wi]vj〉}pi,j=1 = 0,

where wi = wi1 . . . w
i
ki+1 and vj = vj1 . . . v

j
mj

. As wi ∈ ∆+ and vj ∈ ∆∗ are
arbitrary, and p is any number > n, we conclude that rankLQ ≤ n.
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In order to prove the converse inequality rankP ≤ rankLQ assume that
rankLQ = n <∞. Then we have (10) for any p > n. Taking aij defined by
(7), and then applying formula (2), we deduce from (10) that (5) holds at
the origin (i.e., for all parameters equal to zero). The same can be proved
with ãij given by

ãij =
(
∂

∂ti1

)pi
1

. . .

(
∂

∂tiki

)pi
ki
(

∂

∂τ j1

)qj
1

. . .

(
∂

∂τ jmj

)qj
mj

aij

instead of (6). In this case one should start with

wi = (wi1)p
i
1 . . . (wiki

)p
i
kiwiki+1, vj = (vj1)q

j
1 . . . (vjmj

)q
j
mj

in (10), and use formula (3).
In this way we deduce that any partial derivative of det{aij} with respect

to the parameters ti1, . . . , t
i
ki

and τ j1 , . . . , τ
j
mj

is equal to zero at the origin.
This and analyticity give det{aij} ≡ 0 for any p× p matrix with p > n and
aij given by (7).

Now we shall choose ai and bj in a special way. Take a = (t1, u1) . . .
. . . (tk, uk) and

ai = (t1, u1) . . . (ti, ui), bj = ab̃j and wiki+1 = ui.

Then we obtain

aij =
∂

∂t
Pvj

(ai(t, ui)(ai)−1ab̃j)
∣∣∣∣
t=0

=
∂

∂t
Pvj

((t1, u1) . . . (ti, ui)(t, ui)(ti+1, ui+1) . . . (tk, uk )̃bj)
∣∣∣∣
t=0

=
∂

∂ti
Pvj

((t1, u1) . . . (tk, uk )̃bj),

with i, j = 1, . . . , p. (With the above choice of ai and bj some of the earlier
independent parameters are identified but our earlier conclusion det{aij}
≡ 0 still holds.) Thus det{aij} = 0 means that rankP ≤ n.

6. Proof of Theorem 4. (i)⇒(ii). We will show that the data of our
theorem allow us to construct a family P = {Pv}v∈V of causal functionals
which is analytic, analytically extendable, and has finite rank. We define

Pv((t1, u1) . . . (tk, uk)) =
∑

i1≥0,...,ik≥0

〈Qv, ui11 . . . uikk 〉
ti11 . . . tikk
i1! . . . ik!

.

From the estimate (A′) it follows that the series is majorized by the series∑
j≥0

C(v)(|t1|%(u1) + . . .+ |tk|%(uk))j
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and so it is convergent for %(u1)|t1| + . . . + %(uk)|tk| < 1. It follows that
Pv are well defined analytic, analytically extendable (with the function %̃
equal to %) causal functionals S% → R. From our assumption rankLQ <
∞ and Lemma 1 it follows that rankP = rankLQ < ∞. Thus, Theo-
rem 5 is applicable here and there exists a local analytic realization Γ =
(Rn, {Xu}u∈U , {hv}v∈V , x0) of P . We may take n = rankP = rankLQ and
x0 = 0 and the equality in the statement (ii) of Theorem 4 follows by con-
secutive differentiation of the equality

Pv(a) = hv ◦ exp(tkXuk
) ◦ . . . ◦ exp(t1Xu1)(x0).

The proof of the implication (ii)⇒(i) uses Cauchy type estimates and is
straightforward.
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