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Abstract. Solutions to singular linear ordinary differential equations with analytic
coefficients are found in the form of Laplace type integrals.

Introduction. Let

(1) P

(
x,

d

dx

)
=

n∑

i=0

ai(x)
di

dxi

be a linear differential operator of order n ∈ N with coefficients ai(x) =∑∞
j=0 a

i
jx

j convergent for |x|<r, i = 0, . . . , n−1, and an(x) = xm with some
m ∈ N0. Let κP be the Katz invariant for P , i.e. the smallest κ∈R such that
there are no points of NP below the line {(i, j)∈N0×Z : j = κ(i−n)+m−n}
where

NP = {(i, j) ∈ N0 × Z : ai
i+j 6= 0}

is the Newton diagram for P . If κP ≤ 0 then zero is a regular or regular
singular point for P , and the well known Fuchs theorem states that the
fundamental system of solutions of Pu = 0 consists of convergent series of
Taylor type, whose coefficients can be easily determined (cf. [CL]). On the
other hand, in the case κP > 0, zero is an irregular singular point for P , and
there exist power series solutions to Pu = 0 but they need not be convergent.
During the last several years a special method called multisummability was
worked out to deal with divergent solutions of differential equations. By
this method, starting from a formal power series solution, one constructs

a holomorphic solution in a sector in ˜C \ {0} having the formal one as its
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asymptotic expansion (cf. [B], [E], [M]). Unfortunately, the method cannot
be applied directly to the study of the Cauchy problem. We shall describe
how the Cauchy problem can be treated by a method based on the Mellin
transformation. We shall concentrate on the study of the Cauchy problem
for the homogeneous equation Pu = 0 where P is a 1-regular operator , i.e.
an operator with κP ≤ 1. Observe that any operator P with κP > 0 can be
reduced to a 1-regular operator P̃ by the change of variable x̃ = xκP . The
coefficients of P̃ are analytic functions in the variable x̃1/κP , but this should
not cause any essential difficulties.

Our method of treatment of the Cauchy problem for Pu = 0 with the
Cauchy data at a non-singular point 0 < t < r can be described as follows.
Firstly, we note that any 1-regular operator P given by (1) with an(x) = x2n

can be written in the form

(2) P

(
x,

d

dx

)
= Q

(
x2 d

dx

)
+

n−1∑

i=0

gi(x)

(
x2 d

dx

)i

,

where Q is a polynomial of degree n and gi, i = 0, . . . , n − 1, are functions
analytic in the disc B(r) and vanishing at zero. Next, after the change of
variable s(x) = exp{1/t− 1/x} the original Cauchy problem is transformed
into the one for the equation R(s, sd/ds)w = 0 with the Cauchy data at 1,
where

R

(
s, s

d

ds

)
= Q

(
s
d

ds

)
+

n−1∑

i=0

g̃i(s)

(
s
d

ds

)i

and g̃i(s) = gi((1/t − log s)−1), i = 0, . . . , n − 1. The operator R has a
regular singular point at zero and its coefficients g̃i, i = 0, . . . , n − 1, are
generalized analytic functions, i.e. they can be represented in the form
g̃i(s) =

T∞
0
ψi(α)sαe−α/t dα with some entire functions ψi, i = 0, . . . , n− 1,

of exponential growth. Now, applying the Mellin transformation we obtain
a convolution equation for the function G(z) :=

Tt
0
w(s)s−z−1 ds,

Q(z)G(z) +

∞\
0

A(α, z)G(z − α)e−α/t dα = Φ(z),

where A(α, z) =
∑n−1

i=0 ψ
i(α)(z − α)i and Φ is a polynomial determined

by the Cauchy data. We solve the convolution equation by the method
of successive approximations. Its solution G is a holomorphic function on
C \

⋃m
µ=1(̺µ + R+), where ̺1, . . . , ̺m are the roots of Q. Furthermore,

assuming that arg(̺ν−̺µ) 6= 0 for any 1 ≤ ν < µ ≤ m, the jump of G across
the half-line ̺µ + R+ is a Laplace ultradistribution Sµ, µ = 1, . . . ,m, on the
half-line. Finally, the solution to the Cauchy problem for Rw = 0 is given
by w(s) =

∑m
µ=1 S

µ[s·] and putting u(x) = w(s(x)) we get the solution to
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the original Cauchy problem. A closer examination of the ultradistributions
Sµ allows representing the solution u in the form of Laplace integrals. This
type of representation can be viewed as parallel to the one obtained by the
multisummability method. The author believes that it can give a new insight
into the Stokes phenomenon.

0. Notation. The open disc with centre at z0 ∈ C and radius r > 0 is
denoted by B(z0; r) or simply by B(r) if z0 = 0.

By B̃(r) (resp. C̃) we denote the universal covering space of the punc-

tured disc B(r) \ {0} (resp. C \ {0}). A point z ∈ B̃(r) is written as
z = |z|ei arg z with 0 < |z| < r and arg z ∈ R.

For θ ∈ R we set lθ = (0, ei∞θ) = {z ∈ C\{0} : arg z = θ}. If θ = 0 then
lθ = R+.

By a left (resp. right) tubular neighbourhood of a ray ̺+ lθ, ̺∈C, θ∈R,
we mean a set {z : dist(z, ̺+ lθ) < b, θ < arg(z − ̺) < θ + π/2} with some
b > 0 (resp. {z : dist(z, ̺+ lθ) < b, θ − π/2 < arg(z − ̺) < θ}).

For ̺ ∈ C and θ− < θ+ with θ+ − θ− < 2π we set

S(̺; (θ−, θ+)) = {z ∈ C \ {̺} : θ− < arg(z − ̺) < θ+}.

If θ+ − θ− ≥ 2π the set S(̺; (θ−, θ+)) is interpreted as a subset of ˜C \ {̺}.

For θ ∈ R and ω ∈ R we set

Ωθ
ω = {z ∈ C̃ : cos θ log |z| − sin θ arg z < ω}.

For z ∈ C we put 〈z〉 = 1 + |z|.

1.Generalized analytic functions, the Laplace and Mellin trans-

formations. To fit our purposes we slightly modify the theory of generalized
analytic functions given in [Z], and the definitions of the Laplace and Mellin
transformations. We do not give the proofs of the stated facts since the
proofs follow the ones given in [Z], [ L2] and [ L3].

Fix ̺1, . . . , ̺m ∈ C and θ ∈ R. Set Γθ =
⋃m

µ=1(̺µ + lθ). For a ∈ Re−iθ

and ω ∈ Re−iθ define

La(Γθ) = {ϕ ∈ C∞(Γθ) : ‖ϕ‖a,h = sup
0≤α≤h

sup
y∈Γθ

|e−ayDαϕ(y)| <∞

for any h ∈ N},

L(ω)(Γθ) = lim−→
a<θω

La(Γθ),

where a <θ ω means that aeiθ < ωeiθ. The dual space L′
(ω)(Γθ) of L(ω)(Γθ) is

called the space of Laplace distributions on Γθ. Replacing the norms ‖ϕ‖a,h
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by

‖ϕ‖
(Mp)
a,h = sup

α∈N0

sup
y∈Γθ

|e−ayhαDαϕ(y)|

Mα
,

where (Mp)∞p=0 is a sequence of positive numbers satisfying conditions (M.1),
(M.2) and (M.3) of [K], we obtain the space of Laplace ultradistributions

L
(Mp)′

(ω) (Γθ) (see also [ L2]).

Observe that the function Γθ ∋ y 7→ expz(y) := eyz belongs to L∗
(ω)(Γθ)

where ∗ = ∅ or (Mp) if and only if Re(eiθz) < ωeiθ. Thus, we can define the
Laplace transform of S ∈ L∗′

(ω)(Γθ) by

LS(z) = S[expz] for Re(eiθz) < ωeiθ.

Note that LS(−1/x) is defined in the disc (2ωeiθ)−1B(eiθ; 1) if ωeiθ < 0,
in the half-plane Re(xe−iθ) > 0 if ω = 0, and outside (2ωeiθ)−1B(−eiθ; 1)
if 0 < ωeiθ.

Analogously, the function Γθ ∋ y 7→ ϕs(y) := sy belongs to L∗
(ω)(Γθ) iff

s ∈ Ωθ
ωeiθ := {s ∈ C̃ : cos θ log |s|− sin θ arg s < ωeiθ}. So, we can define the

Taylor transform of S ∈ L∗′
(ω)(Γθ) by

T S(s) = S[ϕs] for s ∈ Ωθ
ωeiθ .

We call the image of L∗′
(ω)(Γθ) under the Taylor transformation the space

of generalized analytic functions determined by L∗′
(ω)(Γθ) and denote it by

GAF(L∗′
(ω)(Γθ)). If (̺ν + lθ) ∩ (̺µ + lθ) = ∅ for 1 ≤ ν < µ ≤ m, we have a

natural decomposition

(3) GAF(L∗′
(ω)(Γθ)) =

m⊕

µ=1

GAF(L∗′
(ω)(̺µ + lθ)) =

m⊕

µ=1

s̺µ · GAF(L∗′
(ω)(lθ)).

The space GAF(L∗′
(ω)(lθ)) can be characterized (cf. [ L2], Th. 6) as the set of

w ∈ O(Ωθ
ωeiθ ) such that for any a <θ ω one can find k <∞ such that

|w(s)| ≤

{
C(1 + |log s|)k for s ∈ Ωθ

aeiθ if ∗ = ∅,

C exp{M(k|log s|)} for s ∈ Ωθ
aeiθ if ∗ = (Mp),

where M is the associated function of the sequence (Mp) defined by

M(̺) = sup
p∈N0

log
̺pM0

Mp
for ̺ > 0.

Fix t ∈ Ωθ
ωeiθ and ̺ ∈ C. We define the Mellin transform of w ∈

GAF(L∗′
(ω)(̺+ lθ)) by

(4) Mθ
tw(z) =

\
γθ

t

w(s)s−z−1 ds,
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where γθ
t = {s ∈ C̃ : s = t exp{−e−iθr}, 0 ≤ r < ∞} with the orien-

tation reverse to that induced by the above parametrization. Then Mθ
tw

is holomorphic on {Re((z − ̺)e−iθ) < 0}. Since the integration curve γθ
t

in (4) can be replaced by γθ′

t for any |θ − θ′| ≤ π/2 we conclude that
Mθ

tw ∈ O(C \ (̺+ lθ)). Furthermore (cf. [ L3], Th. 4, [Z], Th. 10.1), there
exists C <∞ such that for 0 < dist(z, ̺+ lθ) ≤ 1,

(5) |Mθ
tw(z)| ≤





C|t̺−z|(dist(z, ̺+ lθ))−C if ∗ = ∅,

C|t̺−z| exp

{
M∗

(
C

dist(z, ̺+ lθ)

)}
if ∗ = (Mp),

where M∗ is the growth function of the sequence (Mp) given by

(6) M∗(̺) = sup
p∈N0

log
̺pp!M0

Mp
for ̺ > 0.

Moreover, the boundary value of Mθ
tw, S = b(Mθ

tw), belongs to L∗′
(ω)(̺+lθ)

and w = (2πi)−1T S.

Conversely (cf. [ L3], Th. 5), if G ∈ O(C \ (̺ + lθ)) satisfies (5) (with
G in place of Mθ

tw) for 0 < dist(z, ̺ + lθ) ≤ 1 and |G(z)| ≤ C|t̺−z|/〈z〉
for dist(z, ̺ + lθ) ≥ 1 then G = Mθ

tw with a unique w given by w =
(2πi)−1T b(G).

Analogously, using the decomposition (3), we define the Mellin transform
of w ∈ GAF(L∗′

(ω)(Γθ)), which is a holomorphic function on C \ Γθ and
satisfies appropriate estimates.

The Mellin transformation has the following operational property, which
makes it useful in the study of the Cauchy problem.

If w ∈ GAF(L∗′
(ω)(Γθ)) and t ∈ Ωθ

ωeiθ then for i ∈ N0,

(7) Mθ
t

((
s
d

ds

)i

w

)
(z) = ziMθ

tw(z) +Wi(z) for z ∈ C \ Γθ,

where Wi is a polynomial of degree ≤ i−1 depending on w(t), . . . , w(i−1)(t).

2. The main result. Let P be a differential operator (1) with coeffi-
cients analytic in B(r), r > 0. Assume that P is 1-regular and an(x) = x2n.
Then for i = 0, . . . , n − 1, ai(x) =

∑∞
j=2i a

i
jx

j for |x| < r. Furthermore,
it follows by Lemma 1.3 of Chapter 4 of [T] that P can be written in

the form (2), where Q(z) = zn +
∑n−1

i=0 a
i
2iz

i and gi(x) =
∑∞

j=1 g
i
jx

j for
|x| < r, i = 0, . . . , n − 1. Fix 0 < t < r and consider the Cauchy problem

(8)

{
Pu = 0,
u(t) = u0, . . . , u

(n−1)(t) = un−1.
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It is well known that the solution u of (8) is unique and it extends holomor-

phically to a function on B̃(r). Our aim is to represent the u in the form of
Laplace type integrals. To formulate the main result denote by ̺1, . . . , ̺m

the roots of Q with multiplicities k1, . . . , km, respectively. Define the set Θs

of singular directions by

Θs = {θ ∈ R : θmod(2π) = arg(̺ν − ̺µ) for some 1 ≤ ν 6= µ ≤ m}

(Θs = ∅ if m = 1). Choose θ 6∈ Θs such that t ∈ (r/2)B(eiθ ; 1) and denote
by θ− (resp. θ+) the greatest (resp. smallest) singular direction less (resp.
greater) than θ (θ± = ±∞ if Θs = ∅).

Main Theorem. Let P be a 1-regular operator (2). Fix 0 < t < r and

retain the preceding notations. Then the unique solution u of the Cauchy

problem (8) is given by

(9) u(x) =
m∑

µ=1

LSµ(1/t − 1/x) for x ∈ (r/2)B(eiθ; 1),

with a unique Sµ ∈ L∗′
(ω)(̺µ + lθ) (µ = 1, . . . ,m), where ω = (cos(θ/t) −

1/r)e−iθ and

(10) ∗ =

{
∅ if kµ = 1,
p!(p/log p)p/(kµ−1) if kµ > 1.

Furthermore, Sµ, µ = 1, . . . ,m, restricted to ̺µ +lθ extends holomorphically

to a function Ψµ ∈ O(S(̺µ; (θ−, θ+))) such that for any r′ < r and θ− < θ̃−

< θ̃+ < θ+,

(11) |Ψµ(̺µ + γ)eγ/t| ≤





C|γ|−C exp{|γ|/r′} if kµ = 1,

C exp

{
C

|γ|kµ−1
log

C

|γ|
+

|γ|

r′

}
if kµ > 1,

for θ̃− ≤ arg γ ≤ θ̃+ with some C <∞.

Thus, for any θ− < θ′ < θ+, u can be written in the form

(12) u(x) =

m∑

µ=1

e−̺µ(1/t−1/x)reg
\

lθ′

Ψµ(̺µ + γ)eγ/t−γ/x dγ

for x ∈ (r/2)B(eiθ′

; 1),

where the regularization of the integral is distributional if kµ = 1 and ultra-

distributional of class p!(p/log p)p/(kµ−1) if kµ > 1.

Remark. We conjecture that Ψµ is a multivalued holomorphic function
on C with the set of branching points {̺1, . . . , ̺µ}.



1-regular ordinary differential operators 207

3. Auxiliary lemmas. In the proof of the main theorem we shall use
the following lemmas.

Lemma 1. For ν ∈ N put

Iν(γ, z) =
\

T ν(γ)

dα

〈z − α1〉 . . . 〈z − α1 − . . .− αν〉
for γ ∈ R+, z ∈ C

with T ν(γ) = {α ∈ (R+)ν : α1 + . . . + αν ≤ γ}. Then

|Iν(γ, z)| ≤
2ν

ν!
logν(1 + |γ|) for γ ∈ R+, z ∈ C.

P r o o f. We can consider only the case z = x ∈ R+. Let 0 < γ ≤ x. By
induction we show that

Iν(γ, x) =
1

ν!
logν

(
1 + x

1 + x− γ

)
,

which is bounded by 1
ν! logν(1 + γ). In fact, I1(γ, x) = log 1+x

1+x−γ and for
ν ≥ 2 we derive

Iν(γ, x) =

γ\
0

1

1 + x− α1
Iν−1(γ − α1, x− α1) dα1

=
1

(ν − 1)!

γ\
0

logν−1
(

1+x−α1

1+x−γ

)

1 + x− α1
dα1 =

1

ν!
logν

(
1 + x

1 + x− γ

)
.

Now let 0 < x ≤ γ. We observe that T ν(γ) =
⋃ν

k=0 T
ν
k (γ) with T ν

k (γ) =
{α ∈ R

ν
+ : α1 ≤ x, . . . , α1 + . . . + αν−k ≤ x, x ≤ α1 + . . . + αν−k+1, α1 +

. . .+ αν ≤ γ}. Now for k ∈ {0, 1, . . . , ν} we compute\
T ν

k (γ)

1

1 + x− α1
. . .

1

1 + x− α1 − . . .− αν−k

×
1

1 + α1 + . . .+ αν−k+1 − x
. . .

1

1 + α1 + . . .+ αν − x
dα

=
\

T ν−k(x)

1

1 + x− α1
. . .

1

1 + x− α1 − . . .− αν−k
dα

×
\

T k(γ−x)

1

1 + β1
. . .

1

1 + β1 + . . . + βk
dβ

=
1

(ν − k)!
logν−k(1 + x) ·

1

k!
logk(1 + γ − x).

So
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Iν(γ, x) =

ν∑

k=0

1

(ν − k)!k!
logν−k(1 + x) · logk(1 + γ − x)

=
1

ν!
(log(1 + x) + log(1 + γ − x))ν ,

which is bounded by 2ν

ν! logν(1 + γ).

Lemma 2. Let |Ψ(γ)| ≤ Ce|γ|/r for γ ∈ eiθ + lθ with r > 0. Then the

integral

wθ(s) =
\

eiθ+lθ

Ψ(γ)sγe−γ dγ

converges on the set of s ∈ C̃ such that s/e ∈ Ωθ
−1/r and uθ(x) =

wθ(exp{1 − 1/x}) is defined in the disc (r/2)B(eiθ ; 1).

P r o o f. Indeed

wθ(s) =

∞\
1

Ψ(teiθ)(s/e)teiθ

eiθ dt

and the integral converges if

1/r + Re(eiθ log(s/e)) = 1/r + cos θ log(|s|/e) − sin θ arg s < 0.

To prove the second statement observe that for s = exp{1 − 1/x} we
have log(|s|/e) = −Re(1/x) = −Rex/|x|2 and arg s = − Im(1/x) =
Imx/|x|2. So, if s/e ∈ Ωθ

−1/r then x satisfies (cos θRex+ sin θ Imx)|x|−2 =

Re(e−iθx)|x|−2 > r−1 and hence x ∈ (r/2)B(eiθ; 1).

Lemma 3. Let s > 0, M0 = M1 = 1 and Mp = p!(p/log p)ps for p ∈ N,
p ≥ 2. Then M∗(̺) ∼ ̺1/s log ̺ as ̺→ ∞.

P r o o f. By (8) we have, for ̺ > 1,

M∗(̺) = max(log ̺, sup
p∈N, p≥2

p(log ̺+ s log log p− s log p)).

To compute the supremum define

g(̺, x) = x(log ̺+ s log log x− s log x) for x > 1, ̺ > 0.

Since g′x(̺, x) = log ̺ + s log log x − s log x + s/log x − s, for ̺ ≥ es there
exists a unique x(̺) ≥ e such that g′x(̺, x(̺)) = 0. Put g(̺) = g(̺, x(̺)) for
̺ ≥ es. Then g(̺) = sx(̺)(1−1/log x(̺)) and so g(̺) ∼ x(̺) as ̺→ ∞. Put

f(x) =

(
ex

log x
exp

{
−

1

log x

})s

and h(̺) = ̺1/s log ̺1/s.

Then for ̺ > es, e−sf(h(̺)) ≤ ̺ ≤ 2s−1f(h(2̺)). Since x(̺) = f−1(̺) this
implies h(̺) ∼ x(̺) as ̺→∞. Finally, in a standard way (see [ L1]) we show
that M∗(̺) ∼ g(̺) as ̺→ ∞.
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4.Proof of the main theorem. Let P be given by (2), where Q is a
polynomial of degree n and gi(x) =

∑∞
j=1 g

i
jx

j , i = 0, . . . , n−1, are functions
analytic in the disc B(r), r > 0. Consider the Cauchy problem (8). Putting,
if necessary, x′ = x/t we can assume that t = 1 and r > 1. Observe that by
the change of independent variable s(x) = exp{1− 1/x}, (8) is transformed
into

(13)




Q

(
s
d

ds

)
w +

n−1∑

i=0

g̃i(s)

(
s
d

ds

)i

w = 0,

w(1) = w0, . . . , w
(n−1)(1) = wn−1,

where g̃i(s) = gi((− log(s/e))−1), i = 0, . . . , n−1, w(s) = u((− log(s/e))−1),
w0 = u0, w1 = u1, w2 = u1 + u2 and so on.

Since lims→0 g̃
i(s) = 0 for i = 0, . . . , n − 1, we have obtained an equa-

tion with a regular singular point at zero, but with coefficients which are
generalized analytic functions of the form (cf. [Z], Th. 14.1)

(14) g̃i(s) =
\
lθ

ψi(α)sαe−α dα for s/e ∈ Ωθ
−1/r, θ ∈ R,

where ψi(α) =
∑∞

j=1 g
i
jα

j−1/(j − 1)! for α ∈ C is the Borel transform of

gi, which is an entire function satisfying |ψi(α)| ≤ Cr′ exp{|α|/r′} for any
r′ < r (i = 0, . . . , n− 1).

The equations of this type were studied by Bogdan Ziemian in [Z]. Under
suitable conditions he proved the existence of generalized analytic solutions
with positive radii of convergence. However his theorem ([Z], Theorem 16.2)
cannot be applied here without additional assumptions on the functions gi

and does not guarantee that the radius of convergence of a solution is greater
than 1.

We shall solve (13) by applying the Mellin transformation. Fix a non-
singular direction θ 6∈ Θs such that cos θ > 1/r (this assumption ensures
that 1 ∈ Ωθ

−1/r). Observe that by (14) and (7),

Mθ
1

(
g̃i(s)

(
s
d

ds

)i

w

)
(z)

=
\
lθ

ψi(α)((z − α)iMθ
1w(z − α) +Wi(z − α))e−α dα

=
\
lθ

ψi(α)(z − α)iMθ
1w(z − α)e−α dα+ W̃i(z),

where W̃i is a polynomial of degree ≤ i− 1, i = 0, . . . , n− 1. Thus applying
the Mellin transformation to (13) we get the convolution equation
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(15) Q(z)Gθ(z) +
\
lθ

A0(α, z)Gθ(z − α)e−α dα = Φ(z),

where

Gθ(z) = Mθ
1w(z), A0(α, z) =

n−1∑

i=0

ψi(α)(z − α)i

and Φ is a polynomial of degree ≤ n− 1 depending on w0, . . . , wn−1.
We solve (15) by the approximation scheme

G0
θ(z) =

Φ(z)

Q(z)
,

Gν+1
θ (z) =

1

Q(z)

{
Φ(z) −

\
lθ

A0(α, z)Gν
θ (z − α)e−α dα

}
, ν ∈ N.

Put G̃ν+1
θ = Gν+1

θ −Gν
θ for ν ∈ N0. Then we find

G̃ν+1
θ (z) =

(−1)ν+1

Q(z)

\
lθ

Aν
θ (γ, z)

Φ(z − γ)

Q(z − γ)
e−γ dγ

where for γ ∈ lθ, ν ∈ N,

Aν
θ(γ, z) =

\
α1∈lθ

|α1|≤|γ|

A0(α1, z)A
ν−1(γ − α1, z − α1)

Q(z − α1)
dα1

=
\

T ν
θ (γ)

A0(α1, z)

Q(z − α1)
. . .

A0(αν , z − α1 − . . . − αν−1)

Q(z − α1 − . . . − αν)

×A0(γ − α1 − . . . − αν , z − α1 − . . .− αν) dα

with T ν
θ (γ) = {α ∈ (lθ)ν : |α1 + . . . + αν | ≤ |γ|}, γ ∈ lθ.

Assume that dist(z,
⋃m

µ=1(̺µ + lθ)) ≥ b with some b > 0. Then we can

find Cb such that 〈z〉n ≤ Cb|Q(z)|. Since |A0(α, z)| ≤ Ce|α|/r′

〈z〉n−1 we
derive

|A0(α1, z)|

|Q(z)|
≤
CCbe

|α1|/r′

〈z〉
,

|A0(α2, z − α1)|

|Q(z − α1)|
≤
CCbe

|α2|/r′

〈z − α1〉
, . . . ,

|A0(αν , z − α1 − . . .− αν−1)|

|Q(z − α1 − . . . − αν−1)|
≤

CCbe
|αν |/r′

〈z − α1 − . . .− αν−1〉
,

|A0(γ − α1 − . . .− αν , z − α1 − . . . − αν)|

|Q(z − α1 − . . .− αν)|
≤
CCbe

|γ−α1−...−αν |/r′

〈z − α1 − . . .− αν〉
.

So by Lemma 1,

|Aν
θ (γ, z)|

|Q(z)|
≤

(CCb)
ν+1

〈z〉
e|γ|/r′ 2ν

ν!
logν(1 + |γ|).
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Thus

(16) Gθ(z) =
Φ(z)

Q(z)
+
\
lθ

Aθ(γ, z)

Q(z)
·
Φ(z − γ)

Q(z − γ)
e−γ dγ,

where Aθ(γ, z) =
∑∞

ν=0(−1)ν+1Aν
θ (γ, z) satisfies, with K = 2CCb,

(17)
|Aθ(γ, z)|

|Q(z)|
≤
CCb

〈z〉
e|γ|/r′

(1 + |γ|)K

for γ ∈ lθ,dist
(
z,

m⋃

µ=1

(̺µ + lθ)
)
≥ b.

Finally, since |Φ(z)|〈z〉 ≤ Cb|Q(z)| for dist(z, {̺1, . . . , ̺m}) ≥ b we get, with
some C <∞,

(18) |Gθ(z)| ≤
C

〈z〉
for dist

(
z,

m⋃

µ=1

(̺µ + lθ)
)
≥ b.

Now assume that z is close to ̺µ with a fixed µ ∈ {1, . . . ,m}. To shorten
notation put k = kµ. Assume d ≤ |z−̺µ| ≤ b, |arg(z−̺µ−θ)| ≥ β with some
β > 0 and 0 < d < b ≤ 1 with dist(̺µ + lθ,

⋃
ν 6=µ(̺ν + lθ)) ≥ 2b. Since for

α ∈ lθ we have 〈z−α〉n−k |z−̺µ−α|
k ≤ C|Q(z−α)|, 〈z−α〉k−1 ≤ C1〈α〉

k−1

and (d+ |α|)k ≤ C2|z−̺µ−α|
k we get, with a constant C independent of d,

|A0(α1, z)|

|Q(z)|
≤
Ce|α1|/r′

dk
,

|A0(α2, z − α1)|

|Q(z − α1)|
≤ Ce|α2|/r′ 〈z − α1〉

k−1

|z − ̺µ − α1|k
≤ Ce|α2|/r′C1C2〈α1〉

k−1

(d+ |α1|)k
, . . . ,

|A0(αν , z − α1 − . . . − αν−1)|

|Q(z − α1 − . . .− αν−1)|
≤ Ce|αν |/r′C1C2〈α1 + . . .+ αν−1〉

k−1

(d+ |α1 + . . .+ αν−1|)k
,

|A0(γ − α1 − . . . − αν , z − α1 − . . .− αν)|

|Q(z − α1 − . . .− αν)|

≤ Ce|γ−α1−...−αν |/r′ C1C2〈α1 + . . .+ αν〉
k−1

(d+ |α1 + . . .+ αν |)k
.

So for γ ∈ lθ,

|Aν
θ (γ, z)|

|Q(z)|
≤
C

dk
(CC1C2)νe|γ|/r′

×
\

T ν
θ (γ)

〈α1〉
k−1 . . . 〈α1 + . . .+ αν〉

k−1

(d+ |α1|)k . . . (d+ |α1 + . . .+ αν |)k
dα

≤
C

dk
e|γ|/r′ 1

ν!

(
L

dk−1
log

d+ |γ|

d

)ν

,
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where L = CC1C2 (for k > 1 we use 〈α〉k−1dk−1 ≤ (d+ |α|)k−1). Thus

|Aθ(γ, z)|

|Q(z)|
≤
C

dk
e|γ|/r′

(
d+ |γ|

d

)L/dk−1

.

Finally, since\
lθ

(
1 +

|γ|

d

)L/dk−1

e|γ|/r′

e−|γ| |dγ| ≤ C

(
C

d

)L/dk−1

Γ

(
L

dk−1
+ 1

)

(here C = 2r′/(r′ − 1) and Γ is the Euler function), we obtain, with C
independent of d,

(19) |Gθ(z)| ≤





Cd−L−1 if k = 1,

C

dk
exp

{
L

dk−1
log

CL

dk

}
if k > 1

for d ≤ |z − ̺µ| ≤ b, |arg(z − ̺µ − θ)| ≥ β.

Now, observe that θ can be changed within the interval (θ−, θ+), where
θ− (resp. θ+) is the greatest (resp. smallest) singular direction less (resp.
greater) than θ. Also β can be chosen arbitrarily small positive. Thus, re-
striction of Gθ to a small left (resp. right) tubular neighbourhood of ̺µ+lθ
extends to a holomorphic function defined on θ− < arg(z − ̺µ) ≤ 0 (resp.
0 ≤ arg(z − ̺1) < θ+). The extension of Gθ obtained this way also satis-
fies (19) for d ≤ |z − ̺µ| ≤ b and (18) for |z − ̺µ| ≥ b.

Thus, by Lemma 3 and the results of Section 1, we get

1

2πi
b(Gθ) =

m∑

µ=1

Sµ
θ ,

where Sµ
θ ∈ L∗′

(0)(̺µ + lθ) with ∗ given by (10). So, the solution w of (13) is

given by w(s) =
∑m

µ=1 T S
µ
θ (s) for s ∈ Ωθ

0 , and u(x) = w(e1−1/x) is defined

only for x ∈ 1
2B(eiθ; 1). However, the estimate (17) gives an additional

information about Sµ
θ , µ = 1, . . . ,m. Namely, changing θ within (θ−, θ+),

we note that the restriction of Sµ
θ to an open ray ̺µ + lθ is analytic, and

extends holomorphically to a function Ψµ defined in a sector S(̺µ; (θ−, θ+)).
To estimate Ψµ put (with k = kµ)

Fµ(α, z) =
A(α, z)Φ(z − α)(z − ̺µ − α)k

Q(z)Q(z − α)

for α ∈ lθ′ , z 6∈
m⋃

ν=1

(̺ν + lθ′), θ− < θ′ < θ+,

where A(α, z) = Aθ′(α, z) for (α, z) as above, θ− < θ′ < θ+. Since
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b(Φ/Q)|̺µ+lθ = 0, (16) implies that for γ ∈ S(0; (θ−, θ+)),

Ψµ(̺µ + γ) =
1

2πi
(Gθ̃−

(̺µ + γ) −Gθ̃+(̺µ + γ))

=
1

2πi

\
l
θ̃−−l

θ̃+

Fµ(α, ̺µ + γ)

(γ − α)k
e−α dα

where θ− < θ̃− < arg γ < θ̃+ < θ+. So for γ with θ− < arg γ < θ+,

Ψµ(̺µ + γ) = Ψ̃µ(γ)e−γ , where Ψ̃µ(γ) =

kµ−1∑

l=0

Cl
∂l

∂αl
Fµ(α, ̺µ + γ)

∣∣∣∣
α=γ

with some constants Cl, l = 0, . . . , kµ − 1 (µ = 1, . . . ,m). Observe that

(17), (19), and the Cauchy formula imply that for any θ− < θ̃− < θ̃+ < θ+

and r′ < r, |Ψ̃µ(γ)| can be estimated by the right hand side of (11) for

θ̃− ≤ arg γ ≤ θ̃+ with some C < ∞. Since the above holds for any r′ < r,
we conclude that eγSµ

θ ∈ L∗′
(−1/re−iθ)(̺µ + lθ) and so Sµ

θ ∈ L∗′
(ω)(̺µ + lθ)

with ω = (cos θ − 1/r)e−iθ. Now, Lemma 2 implies that w(s) is defined for

s ∈ C̃ with s/e ∈ Ωθ
−1/r Finally, u(x) = w(e1−1/x) =

∑m
µ=1 L(eγSµ

θ )(−1/x)

is defined for x ∈ (r/2)B(eiθ; 1), and a direct computation shows that u can
be written in the form (12) (with t = 1).

5.An example. Let us solve the Cauchy problem for the Euler equa-
tion x2u′ = u − x, u(1) = u0. Putting s(x) = exp{1 − 1/x} and w(s) =
u(1/(− log(s/e))) we get sw′ − w = 1/log(s/e), w(1) = u0. Applying the
Mellin transformation (4) with 0 < |θ| < π/2 and t = 1 we obtain the
equation for Gθ = Mθ

1w,

(z − 1)Gθ(z) = −u0 +
\
lθ

e−α

z − α
dα.

Its solution is given by

Gθ(z) =
−u0

z − 1
+

1

z − 1

\
lθ

e−α

z − α
dα.

Now, we compute the boundary value S = (2πi)−1b(Gθ):

S = (u0 +A)δ(1) +
\
lθ

log(α− 1)
d

dα
(e−αδ(α)) dα

with A =
(
Γ ′(1) −

∑∞
j=1

1
j!j

)
/e. Thus, the solution w = T S is given by

w(s) = (u0 +A)s+ log(s/e)
\
lθ

log(α− 1)sαe−α dα for s/e ∈ Ωθ
0 .
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Finally, u(x) = w(e1−1/x) is given by

u(x) = (u0 +A)e1−1/x −
1

x

\
lθ

log(α− 1)e−α/x dα for Re(eiθ/x) > 0,

which gives

u(x) =

[
u0e−

∞∑

j=1

1

j!j
+

∞∑

j=1

1

j!j

1

xj
− log x

]
e−1/x for x ∈ C̃.
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Révisé le 3.1.2000


