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Convergence of formal solutions of
first order singular nonlinear partial

differential equations in the complex domain

by Masatake Miyake and Akira Shirai (Nagoya)

Bogdan Ziemian in memoriam

Abstract. We study the convergence or divergence of formal (power series) solutions
of first order nonlinear partial differential equations

(SE) f(x, u,Dxu) = 0 with u(0) = 0.

Here the function f(x, u, ξ) is defined and holomorphic in a neighbourhood of a point
(0, 0, ξ0) ∈ Cnx × Cu × Cnξ (ξ0 = Dxu(0)) and f(0, 0, ξ0) = 0. The equation (SE) is said
to be singular if f(0, 0, ξ) ≡ 0 (ξ ∈ Cn). The criterion of convergence of a formal solution
u(x) =

∑
|α|≥1 uαx

α of (SE) is given by a generalized form of the Poincaré condition which
depends on each formal solution. In the case where the formal solution diverges a precise
rate of divergence or the formal Gevrey order is specified which can be interpreted in
terms of the Newton polygon as in the case of linear equations but for nonlinear equations
it depends on the individual formal solution.

0. Introduction. We write x = (x1, . . . , xn) ∈ Cn (n ≥ 1), u ∈ C
and ξ = (ξ1, . . . , ξn) ∈ Cn for the complex variables. Let f(x, u, ξ) be a
holomorphic function in a neighbourhood of the origin of the cited variables,
and assume f to be an entire function in ξ ∈ Cn when x, u are fixed.

In this paper we are concerned with formal solutions of the first order
nonlinear partial differential equation

(SE) f(x, u(x), Dxu(x)) = 0, u(0) = 0,

where Dxu = (D1u, . . . ,Dnu) (Dj = ∂/∂xj).
We always assume that the equation (SE) is singular in the sense that

(S) f(0, 0, ξ) ≡ 0, ξ ∈ Cn.
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We mention that this definition of singular equation is due to R. Gérard
and H. Tahara [G-T 1] where various kinds of problems for singular equations
have been studied.

By the assumption (S) the equation (SE) cannot be reduced to the nor-
mal form of Cauchy–Kowalevski type in any direction. Therefore the deter-
mination of convergence or divergence of formal solutions of (SE) is not so
easy as is shown by the following example which shows the coexistence of a
convergent solution and divergent solution for an equation.

Example. Consider the singular ordinary differential equation

(0.1) f(x, u, u′) ≡ (x− u(x))u′(x)− x2 = 0, u(0) = 0 (x ∈ C).

Let u(x) =
∑∞
n=1 unx

n be a formal solution. Then by substituting this into
the equation, we easily see that (1− u1)u1 = 0, and hence

(0.2) u1 = 0 or 1.

Then we easily find that the coefficients {un}n≥2 are uniquely determined
after a choice of u1 as above. Hence there exist just two formal solutions of
the equation (0.1).

For u1 = 0, we set u(x) = xv(x) with v(0) = 0. Then we get the following
equation for v(x):

(0.3) xv′(x) + v(x) =
x

1− v(x)
, v(0) = 0,

which is of regular singular type and v(x) converges (cf. [G-T 1]).
For u1 = 1, we set u(x) = x+ x2 + x2w(x) with w(0) = 0. Then we get

the following equation for w(x):

(0.4) x2w′(x)− w = − w2(x)
1 + w(x)

− 2x(1 + w(x)), w(0) = 0,

which is of irregular singular type and the formal solution w(x) is divergent
of Gevrey class 2 (the definition of Gevrey order will be given later).

1. Main result and related results. We always assume the existence
of a formal solution of the singular equation (SE), and we write it in the form

(1.1) u(x) =
∑
|α|≥1

uαx
α.

We put Dxu(0) = (ξ01 , . . . , ξ
0
n) = ξ0 ∈ Cn. By the assumption (S),

f(0, 0, ξ0) = 0 is always satisfied, but this relation has no meaning for the
formal solution. So by taking the partial derivatives in xi (i = 1, . . . , n) of
the equation f(x, u(x), Dxu(x)) = 0 we have
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(1.2)
∂

∂xi
f(x, u(x), Dxu(x))

∣∣∣∣
x=0

= fxi(0, 0, ξ
0) + fu(0, 0, ξ0)ξ0i = 0, i = 1, . . . , n,

because f(0, 0, ξ) ≡ 0 by (S). Now our result is stated as follows.

Theorem 1. (i) (Convergence criterion) Define a matrix A(ξ0) by

(1.3) A(ξ0) = (aij(ξ0))ni,j=1 :=
(
∂2f

∂xiξj
(0, 0, ξ0) + ξ0i

∂2f

∂u∂ξj
(0, 0, ξ0)

)n
i,j=1

,

and let {λj}nj=1 be its eigenvalues. Denote by Ch(λ1, . . . , λn) the convex hull
of {λj}nj=1 in the complex plane. Then if

(Po) Ch(λ1, . . . , λn) 63 0 (Poincaré condition)

the formal solution u(x) converges in a neighbourhood of the origin.
(ii) (Estimation of Gevrey order) Suppose A(ξ0) = 0 for the matrix in

(1.3). Then if

(1.4) fu(0, 0, ξ0) 6= 0,

then the formal solution u(x) may diverge, and then it is of Gevrey class at
most 2, which means

(1.5)
∑
|α|≥1

uα
xα

α!

is convergent in a neighbourhood of the origin.

Example (continued). (i) In the previous Example, f(x, u, ξ) = xξ −
uξ − x2, and u1 should satisfy

fx(0, 0, u1) + fu(0, 0, u1)u1 = u1 − u2
1 = 0

and hence u1 = 0 or 1. We have

fxξ(0, 0, u1) + fuξ(0, 0, u1)u1 = 1− u1 =
{

1 if u1 = 0,
0 if u1 = 1,

and fu(0, 0, u1) = −u1 6= 0 if u1 = 1. Thus the Theorem is applicable in this
case.

(ii) Under the assumptions of Theorem 1(ii), we cannot expect the con-
vergence of formal solutions and we only give the estimation of Gevrey
order from above, while we do not prove the divergence of the formal solu-
tion explicitly. Indeed, the proof of divergence is fairly difficult for general
equations. Here, by the above example, we shall show that for u1 = 1 the
formal solution u(x) is of Gevrey class 2 exactly. To do this we change the
unknown function u(x) to v(x) by setting u(x) = x−xv(x) (v(0) = 0). Then
we easily find the following equation for v(x):

v(x) = x+ v(x)2 + xv′(x)v(x), v(0) = 0.
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Let v(x) =
∑
n≥1 vnx

n be the formal solution. Then we have v1 = 1 and

vn =
∑
i+j=n

vivj +
∑
i+j=n

ivivj , n ≥ 2.

These imply that vn > 0 (n ≥ 1) and

vn > (n− 1)vn−1v1 = (n− 1)vn−1 > . . . > (n− 1)!v1 = (n− 1)!

for n ≥ 2. This shows that v(x), and therefore u(x), is a divergent series
which is of Gevrey class s with s ≥ 2. (For the definition of Gevrey order
s, see Theorem 2.) On the other hand, by the above theorem we know that
u(x) is of Gevrey class s with s ≤ 2. Thus we see that the formal solution
u(x) is of Gevrey class 2 exactly.

Remarks. (i) In Theorem 1, if

(1.6)
n∑
j=1

αjλj + fu(0, 0, ξ0) 6= 0, α ∈ Nn, |α| ≥ 2,

then the coefficients {uα}|α|≥2 are uniquely determined for the formal solu-
tion.

(ii) In Theorem 1(ii), the Gevrey order will be estimated more precisely
from a reduced form of the equation, and it can be interpreted in terms of
a Newton polygon (cf. Theorem 2(ii) in Section 2 below).

Related results. (i) In Theorem 1(i), the Poincaré condition (Po) implies
λj 6= 0 for all j = 1, . . . , n. But in the case where zero eigenvalues exist
the problem becomes more complicated because of the existence of a nilpo-
tent part in the Jordan canonical form of the matrix A(ξ0) even in linear
equations. Such a case is studied by M. Hibino [H 2] and he characterizes
the Gevrey order of divergent formal solutions for linear equations, which
gives a generalization of result by T. Oshima [O]. Moreover Hibino studies
the asymptotic meaning of divergent solutions from the viewpoint of Borel
summability of divergent solutions for first order linear equations associated
with a nilpotent vector field [H 1].

(ii) Oshima’s result for linear equations in [O] was extended to nonlinear
equations by A. Shirai [S 1], who also gave a generalization of a result
by Gérard and Tahara [G-T 1]. We set t = (t1, . . . , td) ∈ Cd and x =
(x1, . . . , xm) ∈ Cm, and consider the equation

(1.7)
d∑

i,j=1

aij(x)tiDtju+ b(x)u

=
d∑
j=1

cj(x)tj + f2(x)(t, u, {tiDtju}, {Dxk
u}),
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where f2(x)(. . .) is a nonlinear function in the variables {. . .}. Then under
the Poincaré condition for the eigenvalues of A(0) = (aij(0)), the conver-
gence of the formal solution of the form u(t, x) =

∑
|α|≥1 uα(x)tα (with coef-

ficients {uα(x)} holomorphic in a neighbourhood of the origin) was proved.

2. Reduction of the equation. The proof of Theorem 1 is reduced to
the following,

Theorem 2. (i) (Convergence criterion) Consider the equation

(2.1)
n∑
j=1

λjxjDju+ bu+
n−1∑
j=1

δjxj+1Dju = ck(x) + gk+1(x, u,Dxu)

where λj , b, δj ∈ C and

ck(x) =
∑
|α|=k

cαx
α,

gk+1(x, u,Dxu) =
∑

|α|+kq+(k−1)|γ|≥k+1

gαqγx
αuq(Dxu)γ .

Assume that

(Po) Ch(λ1, . . . , λn) 63 0

and

(2.2)
n∑
j=1

αjλj + b 6= 0, |α| ≥ k.

Then the equation has a unique formal solution u(x) =
∑
|α|≥k uαx

α which
is convergent in a neighbourhood of the origin.

(ii) (Estimation of Gevrey order) Consider the equation

(2.3) u(x) = ck(x) + gk+1(x, u,Dxu),

with the same ck(x) and gk+1 as in (2.1). Then the uniquely determined
formal solution u(x) =

∑
|α|≥k uαx

α is of Gevrey class s = 1 + σ with

(2.4) σ = max
{

1
|α|+ kq + (k − 1)|γ| − k

: (α, q, γ) with gαqγ 6= 0, γ 6= 0
}
.

Here a formal power series u(x) =
∑
|α|≥k uαx

α is said to be of Gevrey class
s = 1 + σ if ∑

|α|≥k

uα
xα

(|α|!)σ

is convergent.

Remark (Newton polygon). The number σ in (2.4) is interpreted in
terms of the Newton polygon associated with the equation (2.3) which is
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defined as follows. First notice that by the form of the equation (2.3), we
have u(x) = O(|x|k). To the term xαuq(Dxu)γ we assign the number |α|+
kq + (k − 1)|γ| which is the vanishing order of the term upon substituting
u(x) with u(x) = O(|x|k). In the coordinate plane R2 we define the set

Q(α, q, γ) =
{

(0, |α|+ kq) +Q2 if γ = 0,
(1, |α|+ kq + (k − 1)|γ|) +Q2 if γ 6= 0,

where Q2 is the second quadrant Q2 = {(x, y) ∈ R2 : x ≤ 0, y ≥ 0}. Now
the Newton polygon N associated with (2.3) is defined by

(2.5) N = Ch
{
Q(0, 1, 0) ∪Q(k, 0, 0) ∪

⋃
(α,q,γ)

Q(α, q, γ)
}
,

for (α, q, γ) with gα,q,γ 6= 0 in the expansion of gk+1 of the equation (2.3).
Here, Ch{. . .} denotes the convex hull of points in {. . .}, and notice that
Q(0, 1, 0) (resp. Q(k, 0, 0)) corresponds to the term u itself (resp. ck(x)) in
the equation (2.3). Since Q(0, 1, 0) = Q(k, 0, 0) and |α|+kq+(k−1)|γ| ≥ k+
1 for (α, q, γ) with gα,q,γ 6= 0 by assumption, we easily see that the Newton
polygon N has just two vertices (0, k) and (1, k+1/σ), and 1/σ is the slope of
the side joining the two vertices. Such a characterization of the Gevrey order
of a divergent solution by the use of the Newton polygon is familiar in linear
equations (cf. [M] and [M-H]). In these cases the Newton polygon is defined
from the operator and does not depend on the individual formal solution
which is defined as for linear singular ordinary differential equations (cf.
Ramis [R]). A. Shirai [S 2] studied the Gevrey order of divergent solutions
of higher order nonlinear equations and determined it by using the Newton
polygon defined as above. For another study of divergent formal solutions,
see Gérard and Tahara [G-T 2].

Reduction procedure. The procedure of reduction to Theorem 2 is as
follows. We change the unknown function u(x) to v(x) with v(x) = O(|x|2)
by writing

u(x) =
n∑
j=1

ξ0jxj +
∑
|α|≥2

uαx
α = u0(x) + v(x), Dxu(0) = ξ0,

and take the Taylor expansion of f(x, ξ0 · x + v(x), ξ0 + Dxv) (ξ0 · x =∑n
j=1 ξ

0
jxj) around the point (0, 0, ξ0). Then after a careful calculation we

get an equation for v(x) of the form

(2.6)
n∑

i,j=1

aij(ξ0)xiDjv + bv =
∑
|α|=2

cαx
α +

∑
|α|+2q+|γ|≥3

gαqγx
αvq(Dxv)γ ,

where A(ξ0) = (aij(ξ0)) is given by (1.3) and b = fu(0, 0, ξ0).
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Here we notice that if A(ξ0) 6= 0, then the condition (Po) is satisfied,
and if A(ξ0) = 0 then b 6= 0 by the assumption (1.4).

In the case where A(ξ0) = 0, let v(x) = O(|x|k) (k ≥ 2). Then

xαv(x)q(Dxv(x))γ = O(|x||α|+kq+(k−1)|γ|),

and for (q, γ) 6= (0, 0) we have

|α|+ kq+ (k− 1)|γ| = |α|+ 2q+ |γ|+ (k− 2)(q+ |γ|) ≥ 3 + (k− 2) = k+ 1.

This shows that the equation is written in just the same form as in Theorem
2(ii).

Next, let A(ξ0) 6= 0. By making a linear transformation of independent
variables so that A(ξ0) is reduced to the Jordan canonical form, the equation
reduces to

(2.7)
n∑
j=1

λjxjDjv + bv +
n−1∑
j=1

δjxj+1Djv

=
∑
|α|=2

cαx
α +

∑
|α|+2q+|γ|≥3

gαqγx
αvq(Dxv)γ ,

where δj = 0 or 1 according to the Jordan canonical form.
Here we remark that we may assume δj are as small as we want by

making a further change of variables {xj} 7→ {εjxj}.
Now we take k large enough so that

∑n
j=1 αjλj + b 6= 0 for all α ∈ Nn

with |α| ≥ k, which is possible by the Poincaré condition (Po). Then by
changing the unknown function v(x) to w(x) below, we get the equation of
the form (2.1) as we want:

v(x) =
{ ∑

2≤|α|≤k−1

+
∑
|α|≥k

}
uαx

α = v0(x) + w(x).

3. Proof of Theorem 2(i) (convergence criterion). We set

P0(x,Dx) =
n∑
j=1

λjxjDj + b+
n−1∑
j=1

δjxj+1Dj .

Then the equation (2.1) we consider is written as

(2.1) P0(x,Dx)u(x) = ck(x) + gk+1(x, u,Dxu)

where k ≥ 2 and

ck(x) =
∑
|α|=k

cαx
α,

gk+1(x, u,Dxu) =
∑

|α|+kq+(k−1)|γ|≥k+1

gαqγx
αuq(Dxu)γ .
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The important fact is that for a homogeneous polynomial um(x) of degree
m, P0um(x) is also homogeneous of degree m, which means that P0(x,Dx)
preserves the homogeneity. Moreover, for m ≥ k we have

gk+1(x, um(x), Dxum(x))− gk+1(x, 0, 0) = O(|x|m+1),

by the condition for gk+1.
Now we decompose the unknown function u(x) into homogeneous poly-

nomials,

(3.1) u(x) =
∞∑
m=k

um(x), um(x) a homogeneous polynomial of degree m.

Then the above observations show the existence of a recurrence formula for
{um(x)} of the form

(3.2)
{
P0(x,Dx)uk(x) = ck(x),
P0(x,Dx)um(x) = Gm(x, uk(x), . . . , um−1(x)), m ≥ k + 1,

where Gm(. . .) are functions of {. . .}.
We put x ·Dx =

∑n
j=1 xjDj . Then we have

(3.3) (x ·Dx)(x1 + . . .+ xn)m = m(x1 + . . .+ xn)m,

and hence

(3.4) (x ·Dx)−1(x1 + . . .+ xn)m =
1
m

(x1 + . . .+ xn)m

is well defined.
The following lemma plays a crucial role in proving the convergence of

formal solutions.

Lemma 3.1. Let {λj} satisfy the conditions (Po) and (2.2). Let H(m) be
the set of homogeneous polynomials of degree m with m ≥ k, and consider
the mapping

(3.5) P0(x,Dx) : H(m)→ H(m).

Then there exists a positive constant ε such that if |δj | < ε, then the
mapping is invertible for all m ≥ k. Moreover , an estimate h(x) � H ×
(x1 + . . .+ xn)m (h(x) ∈ H(m)) implies the estimate

(3.6) P−1
0 h(x)� CH× (x1 + . . .+ xn)m

m
= CH(x ·Dx)−1(x1 + . . .+xn)m

with a positive constant C independent of m ≥ k. The latter relation will be
denoted by

(3.7) P−1
0 (x,Dx)� C(x ·Dx)−1.
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P r o o f. We introduce a norm on H(m) by

‖h‖ := inf{H : h(x)� H(x1 + . . .+ xn)m},(3.8)

= sup
{
α!
m!
|hα| : |α| = m

}
, h(x) =

∑
|α|=m

hαx
α ∈ H(m),

By the assumptions there exists a positive constant c0 such that∣∣∣ n∑
j=1

αjλj + b
∣∣∣ ≥ c0|α|, α ∈ Nn (|α| ≥ k).

This shows that
∑n
j=1 λjxjDj + b is invertible on H(m) for all m ≥ k, and

we have ∥∥∥( n∑
j=1

λjxjDj + b
)−1∥∥∥ ≤ 1

c0m

for the operator norm. This implies∥∥∥( n∑
j=1

λjxjDj + b
)−1( n−1∑

j=1

δjxj+1Dj

)∥∥∥ ≤ n− 1
c0

max{|δj |}.

Hence if |δj | are so small that max |δj | < c0/(n − 1), then P0(x,Dx) on
H(m) is invertible and we have the desired estimate (3.7) with a constant
C = 1/(c0 − (n− 1) max{|δj |}).

Here we remark that the constants δj in the operator P0(x,Dx) may
be assumed to be as small as we want as mentioned after (2.7). Therefore
Lemma 3.1 is applicable, and the formal solution u(x) of the equation (2.1)
is uniquely determined by solving the recursion formula (3.2).

Proof of Theorem 2(i). To prove the convergence of a formal solution we
use the majorant method as follows.

First we replace the unknown function by

v(x) = P0(x,Dx)u(x), or u(x) = P0(x,Dx)−1v(x).

Then the equation (2.1) is equivalent to

(3.9) v(x) = ck(x) + gk+1(x, P−1
0 v(x), DxP

−1
0 v(x)).

We define |x| = x1 + . . .+ xn, and take majorant functions of the coeffi-
cients in the equation as follows:

(3.10)



ck(x)� F |x|k, F > 0,

gk+1(x, u, ξ)�
∑
α,q,γ

|gαqγ |xαuqξγ := |gk+1|(x, u, ξ)

�
∑
α,q,γ

|gαqγ ||x||α|uqξγ = |gk+1|(|x|, . . . , |x|, u, ξ).
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Now we consider the equation

(3.11) V (x) = F |x|k + |gk+1|(|x|, . . . , |x|, C(x ·Dx)−1V,CDx(x ·Dx)−1V ),

where C is the constant in Lemma 1. This equation has a unique formal
solution of the form

V (x) =
∞∑
m=k

Vm(x1 + . . .+ xn)m

and V (x)� v(x) by the construction of the equation (3.11).
Here we notice the following relations:

(x ·Dx)−1V (x) =
∞∑
m=k

Vm
m

(x1 + . . .+ xn)m � V (x),

Dj(x ·Dx)−1V (x) =
∞∑
m=k

Vm(x1 + . . .+ xn)m−1 =
V (x)
|x|

.

Now for t ∈ C, we consider the following functional equation:

W (t) = Ftk + |gk+1|(t, . . . , t, CW (t), {CW (t)/t}),(3.12)
W (t) = O(tk).

Then we have W (x1 + . . . + xn) � V (x), and therefore it is sufficient to
prove the convergence of W (t). Set H(t) = W (t)/tk. Then the equation for
H(t) is

H(t) = F +
1
tk
|gk+1|(t, . . . , t, tkCH(t), {tk−1CH(t)}),(3.13)

H(0) = F.

By assumption we have gk+1(tx, tku, tk−1ξ) = O(tk+1) (tx = (tx1, . . . , txn));
we see that the second term on the right hand side of (3.13) has a factor t,
and hence it vanishes at t = 0. Hence by the implicit function theorem there
exists a unique holomorphic solution H(t) in a neighbourhood of the origin.

This completes the proof of convergence of formal solutions.

4. Proof of Theorem 2(ii) (estimation of Gevrey order). Recall
that the equation we consider is

(2.3) u(x) = ck(x) + gk+1(x, u,Dxu).

Let

u(x) =
∞∑
m=k

um(x), um(x) homogeneous of degree m,
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be the formal solution of (2.3). Then we get the following recurrence formula
for {um(x)}m≥k:

(4.1)


uk(x) = ck(x),

um(x) =
∑
α,q,γ

gαqγ
∑′

xα
q∏
i=1

umi
(x)

n∏
j=1

γj∏
i=1

Djulji(x), m ≥ k + 1,

where the summation in
∑′ is over {mi, lji} satisfying

(4.2) |α|+
q∑
i=1

mi +
n∑
j=1

γj∑
i=1

(lji − 1) = m.

To find a majorant series for u(x), we consider the following equation
for U(t) =

∑
m≥k Umt

m with t = x1 + . . .+ xn:

(4.3) U(t) = Ftk + |gk+1|(t, . . . , t, U(t), {DjU(t)}),

where the positive constant F and |gk+1| are the same as in (3.10). Then
U(x1 + . . .+ xn)� u(x). Therefore it is sufficient to prove the convergence
of

∞∑
m=k

Um
tm

(m!)σ

with σ defined by (2.4), that is,

σ = max
{

1
|α|+ kq + (k − 1)|γ| − k

: (α, q, γ) with gαqγ 6= 0, γ 6= 0
}
.

To prove this we look at the following recurrence formula for {Um}m≥k:

(4.4)


Uk = F,

Um =
∑
α,q,γ

|gαqγ |
∑′

q∏
i=1

Umi ×
n∏
j=1

γj∏
i=1

ljiUlji , m ≥ k + 1,

where
∑′ is as above.

We put
Vm = Um/(m!)σ, m ≥ k.

By dividing (4.4) by (m!)σ, we get the following recurrence formula for {Vm}:

(4.5)



Vk = F/(k!)σ,

Vm =
∑
α,q,γ

|gαqγ |
∑′

∏
j,i lji × (

∏
imi!

∏
j,i lji!)

σ

(m!)σ

×
q∏
i=1

Vmi ×
n∏
j=1

γj∏
i=1

Vlji .
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The crucial part in the proof is to show the inequality

(4.6)

∏
j,i lji × (

∏
imi!

∏
j,i lji!)

σ

(m!)σ
≤ Aq+|γ|

with a positive constant A.
We postpone its proof and proceed with the proof of the Theorem. By

the above inequality we have

Vm ≤
∑
α,q,γ

|gαqγ |
∑′

q∏
i=1

AVmi
×

n∏
j=1

γj∏
i=1

AVlji
, m ≥ k + 1.

These inequalities suggest the following functional equation for W (t) to be
a majorant series of V (t) =

∑
m≥k Vmt

m:

W (t) =
F

(k!)σ
tk + |gk+1|(t, . . . , t, AW (t), {AW (t)/t}),(4.7)

W (t) = O(tk).

Then we have W (t) � V (t) by the construction of the above equation.
Finally to prove the convergence of W (t) we put

Z(t) = W (t)/tk.

Then we get the following equation for Z(t):

Z(t) =
F

(k!)σ
+

1
tk
|gk+1|(t, . . . , t, AtkZ(t), {Atk−1Z(t)}),(4.8)

Z(0) = F/(k!)σ,

where the second member on the right hand side vanishes at t = 0. Hence
the implicit function theorem shows the convergence of Z(t), which implies
the convergence of W (t) and V (t) as desired.

Thus it remains to prove the inequality (4.6). In doing this, the following
elementary inequality plays an important role.

Lemma 4.1. Let mi ≥ k (i = 1, . . . , j). Then

(4.9) m1! . . .mj ! ≤ (k!)j−1(m1 + . . .+mj − (j − 1)k)!.

The proof is by induction on j ≥ 2, but we omit it since it is easy.

Proof of (4.6). We denote the left hand side of (4.6) by G(α, q, γ),

(4.10) G(α, q, γ) =

∏
j,i lji × (

∏
imi!

∏
j,i lji!)

σ

(m!)σ
,

where

m = α+
q∑
i=1

mi +
n∑
j=1

γj∑
i=1

(lji − 1) = α+
q∑
i=1

mi +
n∑
j=1

γj∑
i=1

lji − |γ|,
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with mi, lji ≥ k. For a positive integer L we have

(4.11) G(α, q, γ)

≤
∏
j,i

l1−Lσji ×
{
∏
i(mi + L)!

∏
j,i(lji + L)!}σ

({|α|+
∑
imi +

∑
i,j lji − |γ|}!)σ

≤
∏
j,i

l1−Lσji × (k + L)!(q+|γ|−1)σ

×
({
∑
imi +

∑
ji lji + L(q + |γ|)− (q + |γ| − 1)(k + L)}!)σ

({|α|+
∑
imi +

∑
i,j lji − |γ|}!)σ

=
∏
j,i

l1−Lσji × (k + L)!(q+|γ|−1)σ

×
({
∑
imi +

∑
j,i lji − k(q + |γ| − 1) + L}!)σ

({|α|+
∑
imi +

∑
i,j lji − |γ|}!)σ

.

Here in the second inequality we applied Lemma 4.1 with mi ≥ k+L in the
lemma.

Now we divide the set of multi-indices {α, q, γ} with gαqγ 6= 0 into

X = {(α, q, γ) : |α|+ kq + (k − 1)|γ| − k = 1/σ},
Y = {(α, q, γ) : |α|+ kq + (k − 1)|γ| − k > 1/σ}.

We first consider the case where (α, q, γ) ∈ X. In this case we take
L = 1/σ in (4.11). By this choice of L, we have 1− Lσ = 0 and

{
∑
imi +

∑
j,i lji − k(q + |γ| − 1) + L}!

{|α|+
∑
imi +

∑
i,j lji − |γ|}!

= 1,

and hence

(4.12) G(α, q, γ) ≤ (k + L)!(q+|γ|−1)σ
< (k + 1/σ)(q+|γ|)σ, (α, q, γ) ∈ X.

Next consider the case where (α, q, γ) ∈ Y . In this case we take L =
1 + [1/σ] in (4.11), where [·] denotes Gauss’ symbol. By this choice of L we
have l1−Lσji < 1. On the other hand,

1/σ < L ≤ 1/σ + 1 < |α|+ kq + (k − 1)|γ| − k + 1

implies L ≤ |α| + kq + (k − 1)|γ| + k because these are integers, and this
implies

{
∑
imi +

∑
j,i lji − k(q + |γ| − 1) + L}!

{|α|+
∑
imi +

∑
i,j lji − |γ|}!

≤ 1.

Thus we get
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G(α, q, γ) ≤ (k + L)!(q+|γ|−1)σ
< (k + 1/σ + 1)(q+|γ|−1)σ(4.13)

< (k + 1/σ + 1)(q+|γ|)σ, (α, q, γ) ∈ Y.
Therefore the inequality (4.6) does hold by taking A = (1 + k + 1/σ)σ.

Thus the proof of Theorem 2(ii) is complete.
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Révisé le 10.12.1999


