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Laplace integrals in partial differential equations

in papers of Bogdan Ziemian

by Grzegorz  Lysik (Warszawa)

Abstract. Fundamental solutions to linear partial differential equations with constant
coefficients are represented in the form of Laplace type integrals.

1. Problem. Let P be a polynomial in n complex variables and consider
the tempered distribution

Ê0 = reg
1

P (0 + i·)
,

which is the regularization of the function R
n ∋ β 7→ 1/P (0 + iβ) to a tem-

pered distribution on R
n. The problem consists essentially in establishing

a real Laplace inversion formula for Ê0. Recall that it is easy to obtain an
imaginary inversion formula for Ê0: namely one takes the inverse Fourier
transform of Ê0,

(1) E0(y) = reg
\

iRn

e−yθ

P (θ)
dθ.

Then E0 is a tempered fundamental solution of the operator P (Dy), i.e.

P (Dy)E0 = cδ(0).

It follows from the classical results of Ehrenpreis [Eh] and Palamodov [P]
that E0 can be represented by

(2) E0(y) =
\

Char P

e−yθ µ(dθ)

where µ is a bounded Radon measure on the complex characteristic set of P ,

CharP = {z ∈ C
n : P (z) = 0}.

2000 Mathematics Subject Classification: 35A20, 35C15.
Key words and phrases: linear partial differential equations, Laplace representations,

Leray residue formula, Nilsson integrals.
The paper contains also some ideas presented by Bogdan Ziemian on his seminar.

[43]



44 G.  Lysik

In the case when P has no multiple factors the existence of µ follows from
the Riesz theorem. Thus, in general, it is not possible to get from the rep-
resentation (2) (or its distributional version) the information about the be-
haviour of solutions at infinity. Furthermore, the measure µ is not uniquely
determined.

The aim of B. Ziemian’s work [Z1] was to obtain a representation of
fundamental solutions of P in the form (2) which remains valid for y → ∞
as well as an analytic description of the measure µ. To this end he put
forward the idea of replacing the methods of functional analysis by the ones
of complex analysis, in particular by the Leray residue formulas. Intuitively
the idea seems to be easy: starting from the representation of E0 given by the
Fourier integral (1) one completes the imaginary plane 0+iRn to a cycle (by
adding points at infinity) and then deforms it in such a way that it can be
considered as a bundle of spheres over some sets Γj ⊂ CharP (j = 1, . . . , p)
diffeomorphic to the (n−1)-dimensional octant R

n−1
+ . Then taking the Leray

residue in a normal direction to CharP one gets the heuristic formula

(3) E0(y) =

p∑

j=1

\
Γj

e−yθ res
dθ

P (θ)
.

Clearly, in doing so the geometry of Char P enters in a crucial way. Fur-
thermore, the program faces serious difficulties. Firstly, the classical Leray
residue theory does not apply since the cycle 0 + iRn intersects the singular
set of the integrand. So one needs to regularize divergent integrals and it is
convenient to regard the residue form as a current (in the sense of de Rham).
The second difficulty is connected with the unboundedness of the cycle; so
one needs to control the growth of the integrand at infinity. Unfortunately,
after computing the residue in one variable good estimates in the other vari-
ables are lost. To regain them a variant of the Phragmén–Lindelöf theorem is
applied. Note also that the residue currents are to be evaluated at functions
with exponential growth at infinity; we call such currents Laplace currents.

The theory presented in [Z1] is parallel to the theory of Borel summabil-
ity of formal solutions to ordinary differential equations with nonregular sin-
gularities (J. Ecalle, B. Malgrange, J. Braaksma). B. Ziemian expected that
it would find applications to nonlinear elliptic equations giving a geometric
description of the singularities of their solutions. Indeed, the formula (3) is
well adapted to nonlinear operations. The sets Γj are (n−1)-dimensional and
can be deformed within the (2n − 2)-dimensional characteristic set, which
enables choosing them in such a way that the set Γi + Γj still has small
dimension. The observed multidimensional resurgence effect in the spirit of
J. Ecalle opens the possibility to create a multidimensional version of the
“alien calculus” suitable to study singularities of solutions.
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2.The main result. As mentioned above the program can be realized
only under suitable assumptions on P . The main assumptions are the ellip-
ticity condition E and condition B on the growth of the iterated discriminant
roots of P . Both conditions will be described in Section 4. However, we also
need a technical condition (satisfied in a generic case).

Condition A. We say that P satisfies condition A (relative to 0) if
there exist a finite number of points B1, . . . , Bk ∈ R such that

CharP ∩ (0 + iRn) ⊂
k⋃

j=1

{z ∈ C
n : Re z = 0, Im z1 = Bj}.

Theorem. Let P be a complex polynomial in n variables satisfying con-

ditions A, B and E. Then any tempered solution u of P (Dy)u = δ(0) can

be represented by the Laplace integrals

(4) u(y) =
∑

j∈Σ0(P )

∑

σ∈{+,−}n−1

T j
σ [exp{−yz}] for y large enough,

where T j
σ are Laplace (n−1)-currents supported by sets Γ j

σ diffeomorphic to

R
n−1
+ and contained in CharP∩{z : Re z ≥ 0} with vertices in the set Σ0(P )

(see Section 4). For each j ∈ Σ0(P ) and σ ∈ {+,−}n−1 the Laplace current

T j
σ can be so chosen that restricted to Int Γ j

σ it coincides with a suitable

branch of the Leray residue form res(dθ/P (θ)) defined on the regular part of

CharP .

3. Leray residue form. Roughly, the Leray residue formula ([L], [N])
can be regarded as a parameter version of the Cauchy residue formula for
holomorphic functions of one variable. To be more precise take a regular
complex hypersurface S contained in an open set U ⊂ C

n and an n-form ω
on U \S (ω may be singular on S). Then we can define an (n−1)-form res ω
on S by \̃

γ

ω =
\
γ

res ω

where γ is an (n − 1)-cycle on S and γ̃ is an n-cycle in U \ S homotopic
to a bundle of spheres over γ. Locally, if S is given by the zero set of a
holomorphic function s on U , i.e. S = {z ∈ U : s(z) = 0}, then

res ω =
sω

ds

∣∣∣∣
S

,

which is a generalization of the classical Cauchy formula. The basic feature
of the Leray residue form is that it is a uniquely defined global (n− 1)-form
on S.
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4. Iterated discriminants and ellipticity. Recall that the (reduced)
discriminant ∆Q of a polynomial Q(ζ) = am(ζ − c1) . . . (ζ − cm) is defined
by

∆Q = a2m−1
m

∏

j<k

(cj − ck)2,

where in the case when Q contains multiple factors we neglect them in the
product.

In our case we deal with a polynomial P in n variables. So fixing z1 and
θ′′ = (θ3, . . . , θn)∈C

n−2 we can compute the discriminant ∆2(P )(z1, θ
′′) of

P with respect to the second variable. Since ∆2(P ) is still a polynomial we
can compute its discriminant ∆3,2(P ) with respect to θ3. Continuing the pro-
cedure we arrive at polynomials ∆k,...,2(P )(z1, θ

(k)) for k = 2, . . . , n (θ(k) =
(θk+1, . . . , θn) for k = 2, . . . , n − 1, θ(n) = ∅) which are called the (reduced)
iterated discriminants of P . Denote by c2(z1, θ

′′), c3(z1, θ
(3)), . . . , cn(z1) the

multivalued roots of the iterated discriminants.

Condition B. The iterated discriminant roots ck(z1, θ
(k)), k = 2, . . . , n,

of P grow at most linearly, i.e.

|ck(z1, θ
(k))| ≤ C‖(z1, θ

(k))‖ for ‖(z1, θ
(k))‖ large enough.

Consider the multivalued mapping E = E(z1, θ
′′) defined by

(z1, θ
′′) 7→ (z1, c

2(z1, c
3(z1, . . . , c

n−1(z1,

cn(z1) + θn) + θn−1), . . . , ) + θ3), . . . , c
n(z1) + θn

)
.

The ellipticity condition means that the mapping E is positive definite in
the following sense.

Condition E. For any fixed branch Ẽ of E there exist v = (v1, v
′′) ∈

C
n−1 with Re v ≥ 0, E̊ ∈ R

n and κ > 0 such that for any ε ∈ R
n
+,

∑
yj(E̊

j + Re Ẽj(z1, θ
′′)) ≥ cε‖(z1, θ

′′)‖κ

for R
n
+ ∋ y, y ≥ ε and ‖(z1, θ

′′)‖ large, with (z1, θ
′′) ∈ vR

n−1
+ .

Note that the (n − 1)th iterated discriminant roots are functions of z1

only. Therefore, the following definition makes sense.

Definition. Suppose that P satisfies Condition A relative to 0. The
vertex set Σ0(P ) of P is given by

Σ0(P ) = Σ0
0(P ) ∪ Σ+

0 (P )
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where

Σ0
0 =

k⋃

j=0

iBj × Σ̃iBj (P ) (the boundary vertex set),

Σ+
0 =

⋃

{z1:∆n,...,2P (z1)=0, Re z1≥0}

z1 × Σ̃z1
(P ) (the inner vertex set),

with the partial vertex set Σ̃z1
(P ) given by

Σ̃z1
(P ) = {θ′ ∈C

n−1 : θ2 = c2(z1, c
3(z1, . . . , c

n−1(z1, c
n(z1)) . . .)),

θ3 = c3(z1, . . . , c
n−1(z1, c

n(z1)) . . .)), . . . , θn =cn(z1)}.

Finally, the sets Γ j
σ for j ∈ Σ0(P ), σ ∈ {+,−}n−1 are defined as the images

of (j1 + R+) × R
n−2
+ under the branch Eσ of E.

5. Sketch of the proof. The proof of the Theorem consists of two basic
steps.

1. The study of Nilsson type integrals. For simplicity assume that
CharP ∩ iRn ⊂ {Im z1 = 0}. Take a cut-off function of the form k(y) =
χ(y1)k

′(y′) with k′ ∈ C∞
0 (Rn−1) and χ ∈ C∞(R+) equal to one for y1

large and zero for y1 small. Denote by L the Laplace transformation. Since
Lu(z) = reg 1/P (z) we have

L(ku)(z) =
\

iRn

Lk(z − θ)

P (θ)
dθ for Re z1 < 0, z′ ∈ C

n−1.

Next since

Lk(z) = G(z1)K
′(z′) with G(z1) =

1

z1
+ G̃(z1)

where K ′ and G̃ are entire functions, we get a Cauchy type integral with
respect to z1,

L(ku)(z) =
\
iR

G(z1 − θ1)I(θ1, z
′) dθ1 for Re z1 < 0,

where

I(z1, z
′) =

\
iRn−1

K ′(z′ − θ′)

P (z1, θ′)
dθ′

is an iterated Nilsson type integral (cf. [N], [NZ], [Z1]) along the unbounded
cycle iRn−1. We are interested in a holomorphic extension of I and L(ku)
to larger sets. To this end we observe that due to good growth properties
of K ′ (it rapidly decreases along imaginary planes) the function I2(z1, θ

′′)
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defined in a neighbourhood of a fixed z̊ with Im z̊ 6= 0 by

I2(z1, θ
′′) =

\
iR

K ′(z2 − θ2, z
′′ − θ′′)

P (z1, θ2, θ′′)
dθ2

extends to a multivalued function outside the set {(z1, θ
′′) : ∆2(P )(z1, θ

′′)
= 0}. Unfortunately, I2 does not satisfy good estimates and so we cannot
immediately continue the procedure for the remaining variables. To regain
good estimates a version of the Phragmén–Lindelöf theorem stated below
is applied. Finally, holomorphic extension of L(ku) is derived by applying
properties of the modified Cauchy transformation. The Laplace currents T j

σ

are obtained as the boundary values of L(ku).

2. The Phragmén–Lindelöf type theorem

Theorem ([Z2], Theorem 6.6). If F ∈ O(C) and there exist 0 < r < t,
θ > 0 and s ∈ R such that for any ε > 0,

|F (α + iβ)| ≤

{
Cε(1 + |β|)s(teε)−α for α ≤ 0,

Cεe
(θ+ε)|β|(re−ε)−α for α ≥ 0,

then there exists s̃ ∈ R (one can take s̃ = s + 3) such that for any ε > 0,

|F (α + iβ)| ≤

{
Cε(1 + |β|)s̃(teε)−α for α ≤ 0,

Cε(1 + |β|)s̃(re−ε)−α for α ≥ 0.

6. Examples

Example 1. Let P (z1, z2) = z2
1 + z2

2 and let α̊ = (α̊1, α̊2) ∈ R
2 \ {0}.

Consider Eα̊ ∈ S′
α̊ := eα̊· · S′ given by (1) with the integral over α̊ + iR2.

Then for y, y2 > 0,

Eα̊(y1, y2) = −
1

4π

( \
Γ+

exp
{
− 1+i

2 y1ζ − 1−i
2 y2ζ

}

ζ
dζ(5)

+
\

Γ
−

exp
{
− 1−i

2 y1ζ − 1+i
2 y2ζ

}

ζ
dζ

)

where Γ± = α̊1 + α̊2 ± i(α̊2 − α̊1) + R+.
It is worth noting that as α̊ → 0 both integrals in (5) sum up to the

following expression for the standard fundamental solution of the Laplace
operator:

E0(y1, y2) =
1

4π
log(y2

1 + y2
2)

= −
1

4π
reg

∞\
0

exp
{
− 1+i

2 y1̺ − 1−i
2 y2̺

}
+ exp

{
− 1−i

2 y1̺ − 1+i
2 y2̺

}

̺
d̺.
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The formula (5) can be geometrically interpreted as follows. Take the in-
tersection points of CharP with α̊ + iR2. If α̊ 6= 0 we get two points
(α̊1 ± iα̊2, α̊2 ∓ iα̊1). Next we take half-lines starting from those points,
contained in the characteristic set and such that the real parts of points
of those half-lines tend to infinity as their norms do. Then (5) represents
the integral over such half-lines of the function which is the inverse of the
distance over ζ between the two sheets of the characteristic variety.

This geometrical interpretation holds for a broad class of partial dif-
ferental operators in two variables (see [Z2], Theorem 17.3).

Example 2. For the standard solution of the Laplace operator in three
dimensions we obtain the representation (valid for y1, y2, y3 > 0)

E0(y1, y2, y3) = (y2
1 + y2

2 + y2
3)−1/2

=
∑

ε∈{−,+}2

reg

∞\
0

∞\
0

(γ2
2 − ε1ε2(1 + ε1i)γ2γ1)

−1/2 · exp

{
−y1

1 + ε1i

2
γ1

+ ε2y2

√
γ2
2 − ε1ε2(1 + ε1i)γ2γ1 − y3

(
1 − ε1i

2
γ1 + ε2iγ2

)}
dγ1 dγ2.

In the above integrals the branch of the square root function is chosen in
such a way that the real parts of the exponents are positive.
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