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Singular holomorphic functions for
which all fibre-integrals are smooth

by D. BARLET (Vandceuvre-les-Nancy) and H.-M. MAIRE (Genéve)

Bogdan Ziemian in memoriam

Abstract. For a germ (X,0) of normal complex space of dimension n + 1 with an
isolated singularity at 0 and a germ f : (X,0) — (C,0) of holomorphic function with
df (z) # 0 for = # 0, the fibre-integrals

S S o AW, pe CX(X), W W e 2%,
f=s
are C> on C* and have an asymptotic expansion at 0. Even when f is singular, it may

happen that all these fibre-integrals are C°°. We study such maps and build a family of
examples where also fibre-integrals for w’,w” € w , the Grothendieck sheaf, are C°°.

0. Introduction. Let (X,0) be a germ of normal complex space of
dimension n + 1 with an isolated singularity at 0 and let f: (X,0) — (C,0)
be a germ of holomorphic function such that df (z) # 0 for « # 0.

In a previous paper [B-M 99], we have explained how eigenvalues of the
monodromy M of f acting on H™(F'), where F' is the Milnor fibre of f,
contribute to create poles of the meromorphic extension of the current A —
(A1, |f[**0. For ecigenvalues different from 1, our results generalize
those of the first author [B 84| for smooth X. But for the eigenvalue 1 of M,
poles of the above current appear at negative integers if, and only if, 1 is also
an eigenvalue of the monodromy of f acting in the quotient H™(F')/J, where
J is the image of the map H™(X\{0}) — H™(F') induced by restriction. (See
Example 3 for explicit computation of the image.) When this restriction is
surjective (which implies M = 1 and is therefore a very strong hypothesis),
it follows that A — § i |22 has only simple poles on the negative integers.
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Using inverse Mellin transform, we deduce that, for all ¢ € CS°(X)™", the
fibre-integrals

(1) s | o
f=s

are of class C™ (because

i ds  ds
IPen T n D = (s § 2 A2
R A A R

by Fubini’s theorem). In this situation, fibre-integrals of C'* forms of type
(n,n) do not detect the singularity of the map f : X — C, that is, X not
smooth or df (0) = 0.

In a more general context, asymptotic expansions at 0 of functions (1)
give rise to a finitely generated C[[s, 5]]-module M (see Theorem 1 below).
Because X and f have an isolated singularity at 0, this module is generated
by 1 and the asymptotic expansions of the following functions:

(2) 5 S ow' AW W W e 0%,

f=s
where o € C2°(X) is equal to 1 near 0. Indeed, for any integer N > 0, there
exist wy,w; € 2% and L(N) € N such that

L(N)
o= > ow Aw)

1=1
is flat of order N at 0; because the coefficients of the non-C'*° terms of the
asymptotic expansion are currents carried by 0 and because M is of finite
type (cf. Theorem 1 below), the assertion follows.

When f : X — C satisfies J = H"(F') the considerations above may be

written briefly as

M = C[[s,3]].

In order to detect the singularity of the map f : X — C with fibre-integrals,
we then consider

(3) s S ow' AW, WW e wy,

f=s

where w% is the direct image sheaf on X of holomorphic n-forms on the
nonsingular part X* = X \ {0}. The germs at 0 of these new fibre-integrals,
to which we add the function 1, have the structure of a C{s, 5}-module; this
module tensored by C[[s, 5]] gives a C[[s, 5]]-module N containing M. When
X is smooth, we have N' = M because, by Hartogs, w’% = 2%. In general
we know that there exists an integer v such that [s|>*’N' C M, because



Singular holomorphic functions 67

frwh C 2% (see Remark 1.2 of [B-M 99]). The trivial inclusion M C N is
strict in general as shown in Example 2.

Proposition 6 below shows that we may have N' = M = C[[s, 5] for a
small but nonempty class of singular maps f : X — C. The invariant N is
therefore not fine enough to detect the singularity of f : X — C. It is then
natural to widen the class of fibre-integrals under consideration. To this end,
if o' and w” belong to W% we look at

W' w’ _

The (1,1)-form above is nothing but the direct image f.(ow’ A w”). The
asymptotic expansions of forms (4) generate a module N on C[[s,3]]. In
case X is smooth, this new module can be deduced from N = M by means
of the following relation:

(5) Folows™ A Q%) C d f.(02% N 2Y).

Indeed, for w’ € Q}H and w” € 2%, we may write, using the holomorphic
de Rham lemma,

W' =dw with wy € 2%.
Hence

felow AW") =d filowy AW") — fu(d o Awi AW").

But because g is identically 1 near 0, the direct image f.(d'0 A w1 A W)
belongs to C2°(C*)10 C d'C>°(C)*° and hence f.(ow; A w”) belongs to
d' (fe(02% A 2%)). Relation (5) implies that for X smooth we have N'1! =
d'd'"N(= d'd’"M). This equality does not hold in the example of X =
{22 + 3% = 25} and f = z (see (18) and Proposition 6) where M = N =
C[[s,3]] and MYt contains (ds A d5)/ss ! When X is singular, the holo-
morphic de Rham lemma is not valid and in fact relation (5) is no longer
true.

It turns out that there exist very few maps for which M = N = C[[s, 5]
and N1 = C[[s, 5]]ds A d5. We describe the construction of a class of ex-
amples presenting that feature in Section 3 and conclude with very explicit
singularities.

1. Asymptotic expansion of fibre-integrals. Let us start with a
version of the asymptotic expansion theorem for fibre-integrals of forms of
type (2), (3) or (4). We do not assume that X and f have an isolated
singularity here.

THEOREM 1. Let X be a reduced analytic space of pure dimension n+ 1
> 2 and let f: X — C be a holomorphic function satisfying
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(i) Sing(X) € f7*(0);

(ii) df (xr) = 0= f(x) =0 for z € X \ Sing(X).
Then, for any o € C°(X) and (w',w") € WP x W where p,q € {0,1},
the direct image fi(ow' AW") is a (p,q)-current of class C> on C*, admit-
ting, as s — 0, an asymptotic expansion that belongs to

ds\" ds\?
@ sl ot sl( ) A (T) #praso
reR, ke(0,n] 5 5
D  Cls s log" |s| + C[[s, 5] [s| > if p+g=0,
reR, ke[0,n]
where v is an integer, R is a finite subset of ]0,1] N Q that only depends on
X, f andsupp o. This asymptotic expansion may be differentiated termuwise.

REMARK. In the second expression, terms of type |s|~2 log" |s| are not
permitted if £ > 0.

Proof. By [B 78] the sheaf w'y'? is coherent and suppw’y' */Q2% " is
contained in Sing(X) for any p; the Nullstellensatz gives locally an integer
v such that fw's™ C Q%P /torsion, using (i). There exist therefore two
forms ¢’ € Q%P and ¢” € Q%% such that

w/ — C//fl/ and w// — C///fl/'

Because

Fulesd W) = L[ NTITE) = 1 el AT,

it is enough to prove that the asymptotic expansion of f.(o¢’ A (") belongs

to
14 —\ 4
D <cns5n|s|2rlogk|s|(§) A<d—f) fptq>0,
reR, ke[0,n] s s
@ Clls. ][5> log" |s| + C[[s, 5] ifp+q=0.
reR, ke[0,n]

Let us desingularize X. We are reduced to proving the result when X is
nonsingular and w’, w”" are holomorphic; therefore ¢ := pw’ A w” belongs to
C(X)™tPnta, Using a partition of unity, we may even assume X to be an
open subset of C**+1,

Consider the case p = ¢ = 1. From the definition of direct images, when
¢ € OX(X")ntlntl where X’ = X \ f71(0), we have

(6) V1220 = IsI? fug(s).

X’ (O
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Indeed, set 1(s)=|s|?* in the relation (f.¢,v) = (¢, f*). It follows that for
¢ € CE(X)HhrH the form f.¢|c- is equal to M1 (A § | f|**¢) where
M is the complex Mellin transform defined by Ma(A) = {.|s|**a(s) for
a € C(C*)M1. It is well known that A — §, | f|**¢ admits a meromorphic
extension to C with poles at strictly negative rationals contained in —R — N
with some finite R C ]0,1]. Moreover A — |, |f|**¢ is rapidly decreasing
on {ReX = const}. Considering also the meromorphic extension of \ —
S If |2Afm ¢ for m € Z and taking the inverse Mellin transform we get the
desired asymptotic expansion (see [B-M 89]).

In case p = ¢ = 0 instead of (6) we write

a0, a
V110 A 7 7

When f has only normal crossings we may write in an appropriate coordinate
System

™ = [t TN, wecEn

and so
df d d dzp, dz dz,
LN (00Z2 ot an T ) n (@0t T )
f f 20 Zn 20 n
dz dz
= Zajak— —
Z g Zk
When j # k, the form
2 280 20 PR (2) A ] A d_ﬁ
Zj 2k
is integrable for Re A > 0; the pole at A = 0 of
a  df
A= f 2>\Q0 N—N—=
JPenTs g
is therefore created by terms of the type
dz; dz;
Qo om 2 A —L AL
[l s P A 2 n E

and it is simple. The result follows by taking the Mellin transform and (7).
The case p =1, ¢ =0 is similar. =

EXAMPLE 2. Computation of M and N for
X:{(xayaz)e(cs‘xy:ZQ} and f(ac,y,z)zz.
Using a Taylor expansion, we see that for ¢ € C>°(C3)11,
Vo= | o@ys= D 5 | dy+0(s)

X,z=s ry=s2 p+q<N-1 zy=s2
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where 1,, € C°(C?*)"!. The asymptotic expansion of S:cy:o' Ypq belongs
to the module C[[o,7]] & C|[[o,7]] |o|* log |¢| because the monodromy of the
map (x,y) — xy is the identity (see [B 85]). Therefore

M = C[[s,5]] & C[[s,5]] |s|* log |s].

Take w = (zdy — ydx)/z. Then w belongs to w} because zw and yw are
holomorphic. Standard computations give

S ow A@ ~ |s|?log |s|
X,z=s

and so
N =C[[s, 5] @ C[[s, 5]] |s|* log | s]-

2. Occurrence of logarithmic terms. Let us recall the following con-
sequence of Theorem 6.4 of [B-M 99] that guarantees the occurrence of a
term s™5™ % log |s| in the asymptotic expansion of fibre-integrals for (n, n)-
forms. We assume that (X, 0) is a germ of normal complex space of dimen-
sion n+ 1 with an isolated singularity at 0 and denote by f : (X,0) — (C,0)
a germ of holomorphic function such that df (z) # 0 for x # 0.

Let J be the image of the restriction map H™(X \{0}) — H"(F), where
F' is the Milnor fibre of f.

THEOREM. Suppose w is a holomorphic n-form on X that satisfies
d
dw = m—f Aw  with some m € N.

Then the following two properties are equivalent:

(i) there exist j € Z and w" € HY(X,02%) such that the asymptotic

expansion of the function s — Sf:s owAw” contains the term s™3™ 4 log|s|;
(ii) the class of w/f™ in H"(F)™ does not belong to J.

REMARK. Using the decomposition of w” in a Jordan basis of the Gauss—

Manin system of f, it is possible to choose w” so as to have
S ow A w'" = s™5m T log |s| (mod C[[s, 5]]),
f=s

after increasing j if necessary.

In the next example, we compute J and H"(F)M.

EXAMPLE 3. For the singularity X = {2% + 3> + 2% = 0} C C3 and
f: X — C gwven by f(z,y,2) = x we have

0¢Jg H(F)M=HY(F),.

Proof. Here, n = 1 and the Milnor fibre of f is F = {(1,y,2) € C? |

y3 + 28 = —1}; it is therefore also the Milnor fibre of g : C2 — C given by
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g(y,2) = y*> + 25. By Milnor, dim H*(F) = 10. The corresponding mon-

odromy M, is diagonal with eigenvalues e?im/2 (2), e2im2/3 2im5/6 (9 2im

(2), €¥77/6 (2), e2™4/3 (the number in parentheses indicates multiplicity).
The commutative diagram

x L ¢
wl lr
cz % ¢

where 7(z,y,2) = (y,2) and 7(x) = 2* shows that My = M? and its

eigenvalues are €™ (4), e272/3 (3), ¢?™4/3 (3). Here H'(F)Ms = H'(F),

has dimension 4 and dim H*(X*\ X)) = 5, where Xy = {z = 0,3°+25 = 0}.

To check this last equality, remember that H'(X*\ Xg) = HY(F); & (C%.
Let

zdy — 2ydz
wi = —F— and wsy
T T

Then w; and wsy give classes in H'(X \ X) which extend to X*. The other
three generators of H'(X \ Xp),
yz y? dz

w3 = —wy, w4=>w; and wy=—,
T T T

y2ody — 2y%24dz  yzt
= 3 = ?UJL

do not “extend” to X*. m

REMARK. For the same singularity but with f(x,y,z) =y, it is easy to
see that fibre-integrals of C*° forms are not always C'°*°. As a consequence
the wave front set of the integration current on X C C? contains {0} x C3
because it contains a cotangent vector (0,0,0;0,1,0) that does not belong
to the closure of the conormal space to X™*.

3. A class of singularities with smooth fibre-integrals. In this
section, we consider the following situation. Let g € O¢n+1 have an isolated
singularity at 0, g(0) = 0. Denote by M, the monodromy of g at 0 and
suppose M, does not have the eigenvalue 1, that is,

(8) Mg — 1 is invertible,
or, equivalently, the intersection form on H"(G), where G is the Milnor fibre
of g, is nondegenerate (see [A-G-Z-V], p. 410).
Assume also the existence of an integer N > 0 such that
(9) MY =1.

This last hypothesis implies that M, diagonalizes.
Let o(g) denotes the Arnold exponent of g and R(g) C |0, 1] its spectrum
modulo 1. Hypothesis (9) yields

(10) N - R(g) C N*.
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By classical results (cf. [B 85]), fibre-integrals with respect to g have asymp-
totic expansions at 0 of the following type, for o € C>°(C"*1) equal to 1 in
a neighbourhood of 0 € C**1:

W € Q= | o AnT e Y CllL A e

(11) g=t reR(g)
¢, ¢" et = | Sy C[[t, 7] > 2
Ceapth= | o nS e T bl

g=t reR(g)

There are no logarithmic terms because 1 ¢ spec M, and all Jordan blocks
of M, have size 1.

Let us now define the analytic space X and the holomorphic function f
we will study in this section:

(@) X ={(x,8) € C""? | g(x) = s}, where g satisfies (8) and (9),
flx,s) =s.
Observe that the hypersurface X has an isolated singularity at 0 because
df A (dg — NsN~1ds) = 0 implies ds A dg = 0.
The commutative diagram

where 7(z,s) = x and 7(s) = sV, shows that the fibres of f and g are
isomorphic because f~1(s) = g~ 1(s"V) x {s}; it also explains why M; =
MY =1. On X" := X \ {s = 0}, we have

d d
(12) NE Y

S g
As a consequence, for any n € 2%, ,, such that dn = Td?g A n, the following
formula holds:

(13) d<”nj7> CeN-m)E AT o en,

s s sm’
For holomorphic forms on X we use the obvious decomposition
* * —1
(14) % = Oxm Opn + Oxm Q01 Nds,
QT = Oxm* QL + Oxm* Qfin A ds.
For the sheaves w% and g”XH we need a lemma.

LEMMA 4. Under hypothesis (H), we have

* N *
Wy - WOXW .Q(Cn+1, Wy - SN—10X7T d$0 VAN /\dZEn
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Proof. Let j = n or n+ 1. Any section of wX near the origin belongs

to (2 J-[s7!] because there exists v € N such that s”w’ is contained in Qj
modulo torsion. On the other hand, on X’ we have
1
ds = w19,

by (12). So any section of gg{ is a finite sum of elements of the type m*a/s"
where a € Q(JC"H and k € Z. Suppose k > N; because the sections of w?
have the trace property (see [B 78]), we get

™« « ;
_ J
trace, < N ) = N; € i

Hence a = g with g € Qén+1 and so m*a/s* = 7*3/s*~N. Tterating this
process we are reduced to k < N — 1, proving the inclusions. =

REMARK. The second inclusion is in fact an equality.
PROPOSITION 5. Assume (H). Then for (p,q) € {0,1} we have
MP 4 = C][[s,5]] ds? A ds1.

Proof. CASE 1: p = ¢ = 0. Thanks to (14) we only need to show that
fibre-integrals for 7*n' Am*n” are C* for ', 1" € 28 +1. Indeed, the second
term in (14) does not contribute and Ox C C[[s]]7*Ocn+1 explains how Ox
coefficients are treated. But

|\ o amy= | o AnTe D CsV, 5N |sPN < C[[s, 5]
f~(s)NX g=sN reR(g)
by (11) and (10).

CASE 2: p = ¢ = 1. The term containing ds in formula (14) produces

a O™ term after fibre-integration, from the first part of the proof. Now for
e Cnﬂ, we have

ﬂ-*(_l*% Nl* <
ds _sﬂ<dg> N <d9>

from (13) and hence

* &/ * 2~/ / 1!
S 0 wdsg A wdg — N2|s2N-2 S 0 gg flg
f=1(s) g—sN
e Z (c —N S‘Q’I’N 27
reR(g)
this fibre-integral is C*° because No(g) —1 > 0 from No(g) € N*.
Other cases are left to the reader. m
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REMARKS. 1) The cutoff function p need not be compactly supported
in s, that is why it only depends on x in the above calculations. In fact the
f-proper forms and the compactly supported ones give the same asymptotic
expansions modulo C[[s, 5]].

2) Proposition 5 and Corollary 6.5 of [B-M 99] show that dim H™(X*) =
dim H"(F'). In our situation (H), this dimension is easily computable be-
cause F' is isomorphic to the Milnor fibre of g.

PROPOSITION 6. Under hypothesis (H), the following implications hold:
(a) No(g) > N — 1= Ny =C[[s, 5]J;
(b) o(g9) > 1 Ny =C[[s,5]] ds A d5.

The converse of (a) is true for quasi-homogeneous g.

REMARK. Because o(g) is not an integer, o(g) > 1 is equivalent to o(g)
> 1. On the other hand, because No(g) is an integer, o(g) > 1 is equivalent
to o(g) > (N —1)/N.

Proof of Proposition 6. (a)(=) Let ', n" €w’. By Lemma 4, there exist
N> My € £2¢ns1 such that

R 1 &
/o 2 : Gk, ! n"o__ 2 : k__x, 1IN
n = SNfl ST T’j? no= SNil ST M-
7=0 k=0

Therefore
S QW*TI//\W*W: Z S Qsj*N+1§k7N+1n;/\n_g
F=i(s)nx 7,k>0 g=sN
€ C[[s, 5] |s|*No@2N+2 C C[[s, 5]].

(a)(«<=) When g is quasi-homogeneous, from [L] we get the existence of
w € anﬂ such that

(15) S ow AT = [t[>79) 4 o(|t]?7).
g=t

It is possible to choose w such that

d
(16) dw = a(g)—g Aw.

g
Consider n = (1/sV~1)n*w; we check n belongs to w%. By [B 78], it is
enough to see that for all j € [0, N — 1],

Sj * Qn Sj * Qn+1
trace, Wﬂ' w| € 2¢n1 and trace, Fds AT w | € 200

The first trace vanishes for j < N —1, and it is equal to Nw when j = N —1.
The second trace is nonzero only for j = N —2 and then it is equal to % Aw.
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Relation (16) implies n € w'y.
Integrating along fibres, we get, from (15),
| onAm=sPNI@O2NE2(1 4 o(1)),
f=Hs)NX
In order that this integral be C*°, we must have No(g) > N — 1.
(b)(=) For ¢ € Qg:;ll, we have by (12),

sN—1ds sV dg ) m dg )’
Taking fibre-integrals gives

S 0 7T*</ A 71'*4'// _ N2 S Q—/ A l c Z (C[[SN §NH ‘S‘QN(r—l).
ds ds dg ’ ’
f71(s) g=sV reR(g)
this fibre-integral is C*°. It remains to use C[[s, 5]]-linearity and Lemma 4.
(b)(«=) Following [L], take a holomorphic (n + 1)-form §2 on C™*! such

that

2 0 o(g)— o(g)—
| ogg N gg = IO o707,
o dg dg
With ¢ i= k=" 2 € W™ we have

¢ | aN(o(e)-1)
| 0 AL =13 (14 0(1)).
FHeNX

If this integral is C*° then o(g) > 1. =

4. Explicit examples. We present here explicit examples of singular-

ities X and functions f for which all fibre-integrals are C'°°; integration of

forms in g}“ is allowed.

To fulfill conditions (8) and (9), we look for Fermat’s singularities
g(z) =" + ... +abn
where pg, ...,p, are integers > 2 that satisfy

(17) 2 4dmgN
Po Pn
for all a; € N with 0 < a; < p;. We take N = lem(po,...,p,) in (9). A
sufficient condition for (17) is
Jj € [0,n] such that (p;,px) =1, Vk # j.
For n even, the following condition is also sufficient:

Vi, Yk (pjup) =25 # .
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Casg n = 1. Condition (17) is equivalent to (po,p1)=1 and so N =pop;.
The smallest values of py < p; are 2,3, so that

1 1 1 1 1 1
—<-, —<5 =<z
po ~ 2 P1 3 N — 6
Hence
1 1+1<1 +1<N—1
po p1 N T po p -~ N

and the inequalities are strict if pg > 2 or p; > 3. Hence the only X for
which Proposition 6 applies is

(18) X = {3:3 + 23 = 5%,
CASE n = 2. We take pg < p; < po and notice that
1 n 1 n 1 S N -1
po p1 p2 N
with N = lem(pg, p1, p2) may be satisfied, because N > po, only if
2pop
Py < _ a0
PoP1 —Po — P1
This remark enables us to easily eliminate many values of pg, p1, po satisfy-
ing (17).

po P1 P2 N o(g) rH

2 2% 2k AL S 2l

2 2%k+1 2k+1 32 > S
2 3 3 6 2 = 2
2 3 4 2 B > i
2 3 5 30 % > 2
2 3 7 2 5 = B
2 3 8 24 2B =
2 3 9 8 B o= 1
2 4 5 20 B = 32
2 5 5 0 &5 = %
3.3 4 2 H = 4

In the table above, we give all triples pg, p1, p2 for which Proposition 6
applies, that is, (17) and o(g) > (N — 1)/N hold. So there are only few
examples where o(g) > 1, i.e., examples for which all fibre-integrals are
smooth.
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REMARK. Using the Thom—Sebastiani result, it is easy to see that if
g and N satisfy conditions (8) and (9), then the function G defined by
G(2,9,20,---,2n) = 22+ y?> + g(20, - . ., 2n) gives also an example with the
same N. So the first two series of examples in the table come from trivial
examples in dimension 1 (n = 0).

Application. The wave front set of the integration current on the quadrat-
ic cone X = {22 + ... + 22 = 5%}, for n even, is equal to the closure of the
conormal space to X*. For n odd this wave front set contains {0} x C"*2.
This follows, for n even, from the fact that fibre-integrals with respect to
Cozo+. ..+ &y +ns are O if 2+ ... +E&2 # n? because a linear change of
coordinates leaving the cone fixed reduces to our situation. Same argument
for n odd.
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