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A Neumann problem for

a convection-diffusion equation on the half-line

by Piotr Biler and Grzegorz Karch (Wroc law)

In memory of Bogdan Ziemian

Abstract. We study solutions to a nonlinear parabolic convection-diffusion equation
on the half-line with the Neumann condition at x = 0. The analysis is based on the
properties of self-similar solutions to that problem.

1. Introduction. Our goal in this paper is to study some positive
solutions to the initial-boundary value Neumann problem for the convection-
diffusion equation

ut − uxx + (u|u|q−1)x = 0, x > 0, t > 0,(1.1)

ux(0, t) = 0,(1.2)

u(x, 0) = u0(x).(1.3)

Here u = u(x, t) is a real-valued function of x ≥ 0 and t ≥ 0, and q > 1 is a
constant.

Recently, there appeared papers [4, 13, 2, 12] studying properties of
solutions of a related equation, where, however, the nonlinear term has a
minus sign:

(1.4) ut − uxx − (u|u|q−1)x = 0.

In the first of them, by Claudi et al. [4], the initial data u0 is nonnegative,
bounded, sufficiently regular, and satisfies limx→∞ xαu0(x) = A for some
A > 0 and α > 0 (some restrictions on (u0)x are also imposed: e.g. (u0)x

≤ 0). Under these assumptions, it is proved that for 0 < α < 1/(q − 1) the
long-time behavior of solutions to (1.2)–(1.4) is described by the solution to
the conservation law vt − (vq)x = 0 for x > 0 with v(x, 0) = Ax−α.
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The next paper by Peletier and Serafini [13] is devoted to the study of
the self-similar solutions to (1.4). In that case, the problem is reduced to an
ordinary differential equation of the second order with conditions at 0 and at
infinity. The analysis in [13] is based on the so-called “shooting technique”
and gives conditions on existence/nonexistence of self-similar profiles for
(1.4).

The work by Claudi [2] continues the research began in [4], so that the
initial data are assumed to satisfy conditions similar to those in [4]. First,
for q > 2 and 1/(q − 1) < α < 1 Claudi shows in [2, Thm. 1.1] that

tα/2|u(x, t) − w(x, t)| → 0 as t → ∞
uniformly in x ∈ R

+. Here w(x, t) is the self-similar solution to the heat
equation wt − wxx = 0 on the real line with the initial condition w(x, 0) =
A|x|−α. Next, it is proved in [2, Thm. 1.2] that for q > 2 and α > 1
the long-time behavior in L∞(R+) of solutions to (1.2)–(1.4) is described
by c0(4πt)−1/2 exp(−x2/(4t)) where c0 = 2

T
R+ u0(x) dx − 2

T∞
0

u(0, τ)q dτ ,
namely

t1/2|u(x, t) − c0(4πt)−1/2 exp(−x2/(4t))| → 0 as t → ∞
uniformly in x ∈ R

+. The paper [2] also deals with the case 1 < q < 2 and
α ≥ 1/(q − 1), and some nonlinear effects are observed in the large-time
behavior of solutions.

In the recent work [12], the theory from [2] concerning the asymptotic
behavior of solutions to (1.2)–(1.4) with q > 2 was developed. There, u0

is either integrable on R
+ or behaves like Ax−α as x →∞ for A ∈ R and

0 < α < 1; neither positivity nor regularity assumptions on u0 are necessary.
Higher-order terms of the asymptotic expansion, as t→∞, of solutions are
derived. This permits getting a better description of the influence of the
behavior of u0(x) as x→∞ on the interaction of dissipation with convection
in (1.4). The method in [12] differs from that used in [4, 2] and bases on an
integral equation (the so-called variation of constants or Duhamel formula)
satisfied by solutions to (1.2)–(1.4). A similar approach was employed pre-
viously in [11], where conservation laws with diffusion and dispersion were
considered.

There are also several papers where the long-time behavior of solutions
to the Cauchy problem for convection-diffusion equations on the whole space
R

n has been studied. For a recent account of this theory we refer the reader
to the papers of Escobedo, Vázquez and Zuazua [5, 6, 7]. A treatment of
asymptotic properties of solutions of other equations with diffusion, convec-
tion, and absorption can be found in [3, 4] and in the references therein.

The case of the problem (1.1)–(1.3) is quite different compared to (1.2)–
(1.4). In particular, since the nonlinear terms have opposite signs, the struc-
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ture of the set of self-similar solutions is completely different in the two
cases.

This paper is organized as follows. In the next section, we state and
discuss the main results. Section 3 gathers properties of self-similar solutions
to the problem (1.1)–(1.3). In Section 4, we study the large-time behavior
of solutions to (1.1)–(1.3) with initial data satisfying limx→∞ xαu0(x) = A
for some A > 0 and 0 < α < 1.

Notation. For 1 ≤ p ≤ ∞ the Lp(R+)-norm of a Lebesgue measurable
real-valued function defined on R

+ = [0,∞) is denoted by ‖f‖p. The letter
C will denote generic positive constants, which do not depend on t and may
vary from line to line during computations.

2. Main results. By standard results, the initial-boundary value prob-
lem (1.1)–(1.3) has a classical solution u(x, t) which exists locally in t pro-
vided that u0 is a bounded continuous function. The proof is based on an
approximation argument, and it will be omitted. This solution exists, in fact,
for all times since, by the well-known comparison principle (cf. e.g. [10]), con-
stant functions are sub- and/or supersolutions to (1.1)–(1.3). Hence, u(·, t)
is a bounded function for every t > 0 if so is u0.

Theorem 2.1. Let q > 2 and γ = 1/(2(q − 1)). There exist positive

solutions to (1.1)–(1.2) of special (self-similar) form u(x, t) = t−γv
(
x/

√
t
)
.

Their asymptotic behavior is either

(2.1) v(ξ) = Ae−ξ2/4ξ2γ−1{1−(2γ−1)(2γ−2)ξ−2+o(ξ−2)} as ξ → ∞,

or

(2.2) v(ξ) = Aξ−2γ{1 + 2γ(2γ + 1)ξ−2 + o(ξ−2)} as ξ → ∞
with some positive constant A.

Remark 2.1. Related results have recently been obtained by M. Gued-
da [8].

Remark 2.2. Figure 1 (plotted using Mathematica) illustrates the be-
havior of self-similar solutions for q = 3 and different initial values v(0). In
particular, v(0) ≈ 0.672 corresponds to a solution of the type (2.1) (solid
line). Solutions of the type (2.2) are represented by the dashed lines. Note
that limξ→∞ ξ2γv(ξ) increases when v(0) ≪ 1 decreases to 0. The solution
discussed in Remark 3.1 below is drawn with the dotted line.

Our next result concerns general solutions to the initial-boundary value
problem (1.1)–(1.3) and their convergence toward the self-similar profiles
considered in Theorem 2.1. From now on, we limit ourselves to self-similar
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solutions with the algebraic decay (2.2) as ξ → ∞. They will be denoted by

(2.3) uA(x, t) ≡ t−γvA(x/
√

t),

where γ = 1/(2(q − 1)). In other words, the profile vA is the solution to
(3.2)–(3.4) below satisfying the condition

(2.4) lim
ξ→∞

ξ2γvA(ξ) = A.

We impose the following assumptions on the initial data:

(2.5) there exists a self-similar profile vA and a nonnegative constant a
such that 0 ≤ u0(x) ≤ a−γvA(x/

√
a) for all x ≥ 0,

(2.6) lim
x→∞

x2γu0(x) = A.

Remark 2.3. The asymptotic expansion (2.2) guarantees that every
bounded initial data satisfying 0 ≤ u0(x) ≤ Ax−2γ{1 + κx−2} with κ <
2γ(2γ + 1) also satisfies condition (2.5).

Now we can formulate the theorem.

Theorem 2.2. Suppose that u0 and vA satisfy assumptions (2.5) and

(2.6). Let u be the solution to (1.1)–(1.3). Then

tγ‖u(·, t) − uA(·, t)‖∞ → 0 as t → ∞
provided vA(0) < {qΓ (1/2 − γ)/Γ (1 − γ)}−1/(q−1).

Remark 2.4. For q = 3 we have {qΓ (1/2 − γ)/Γ (1 − γ)}−1/(q−1) ≈
0.335653.
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3. Self-similar solutions. It is easy to see that the problem (1.1)–
(1.3) does not have nontrivial traveling wave solutions. Indeed, if u(x, t) =
v(x+ct) ≡ v(ξ), then cv′−v′′ +(vq)′ = 0, so after integration we get v′(ξ) =
v(ξ)q + cv(ξ) − (v(0)q − cv(0)). Taking into account the initial conditions
v′(0) = 0 and v(0) ≥ 0, we obtain v(ξ) ≡ v(0) by the uniqueness of solutions
to that initial value problem for a second order ordinary differential equation.

Another class of special solutions to (1.1)–(1.3) consists of self-similar
ones, namely those of the form

(3.1) u(x, t) = t−γv
(
x/

√
t
)

obtained from the invariance properties of (1.1). Here γ = 1/(2(q − 1)), so
the function v satisfies

v′′ +
ξ

2
v′ + γv − (vq)′ = 0,(3.2)

v′(0) = 0,(3.3)

v(ξ) > 0,(3.4)

with ξ = x/
√

t and ′ = d/dξ. As we will see further on, the integrability
condition

T∞
0

u(x, t) dx < ∞, equivalent to
T∞
0

v(ξ) dξ < ∞, can be expressed
as the requirement

(3.5) ξ2γv(ξ) → 0 as ξ → ∞.

Note that for v not satisfying the above condition the initial data u(x, 0)
does not make sense as the limit of (3.1) as t ց 0.

Since 0 ≤
T∞
0

u(x, t) dx = t1/2−γ
T∞
0

v(ξ) dξ, for γ > 1/2 we would have a
“very singular” solution (in the sense of [1]). But, after integration of (3.2)
over [0, ξ], we obtain

(3.6) v′(ξ) +
ξ

2
v(ξ) + (γ − 1/2)

ξ\
0

v(η) dη = v(ξ)q − v(0)q ,

which leads to

v′(ξ) ≤ v′(ξ) +
ξ

2
v(ξ) = (1/2 − γ)

ξ\
0

v(η) dη + v(ξ)q − v(0)q ,

so in the limit ξ → ∞ we arrive at γ < 1/2, i.e. q > 2. This is a consequence
of the property

(3.7) v(ξ), v′(ξ) → 0 as ξ → ∞
valid for all globally positive solutions to (3.2)–(3.3). A similar property for
the equation (3.2) with the reverse (+) sign of the nonlinearity was proved
in [13, Lemma 3.1]. Here it follows from the reasoning involving another
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(phase plane) formulation of (3.2):

v′ = w,(3.8)

w′ = − ξ

2
w − γv + qvq−1w.(3.9)

Namely, if v(ξ) > 0 for all ξ, then v(ξ) ≤ v(0) and

w′ ≥ −γv + qvq−1w ≥ −γv(0) + qv(0)q−1w.

After integration, we get

w(ξ) ≥ exp(qv(0)q−1ξ)
(
w(0) − γv(0)

ξ\
0

exp(−qv(0)q−1η) dη
)
,

so w(ξ) ≥ −γv(0)C exp(qv(0)q−1ξ) with C = (qv(0)q−1)−1. For v > 0 we
have

v′(ξ) ≤ v′(ξ) + ξv(ξ)/2 = (1/2 − γ)

ξ\
0

v(η) dη + v(ξ)q − v(0)q

≤ (1/2 − γ)

ξ\
0

v(η) dη.

Since v decreases to a limit limξ→∞ v(ξ) = v1 ≥ 0, v1 must be 0—otherwise
v′(ξ) ≤ −C < 0 for all ξ ≥ 1, which contradicts the positivity of v.

We will prove Theorem 2.1 on the existence of a solution to the problem
(3.2)–(3.5) using the shooting method. First, we need a universal a priori
upper bound for solutions of (3.2)–(3.4).

Lemma 3.1. Each positive solution v of (3.2)–(3.3) satisfies

(3.10) v(ξ) ≤ min(cγv(0)ξ−2γ , v(0)),

where cγ = 1 + 2γ
T∞
0

η2γ−1 exp(−η2/4) dη < ∞.

P r o o f. (3.2) implies that (v′(ξ)eξ2/4)′ + γeξ2/4v(ξ) = eξ2/4(vq)′(ξ) ≤ 0
because positive solutions decrease. Then

eξ2/4v′(ξ) + γ

ξ\
0

eη2/4v(η) dη ≤ 0,

and again by the monotonicity of v we obtain

v′(ξ) + γv(ξ)e−ξ2/4

ξ\
0

eη2/4 dη ≤ 0.

Since the elementary inequality
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(3.11)
ξ

2

ξ\
0

eη2/4 dη ≥ eξ2/4 − 1

holds for all ξ ≥ 0, we arrive at v′(ξ) + 2γv(ξ)/ξ ≤ 2γv(ξ)e−ξ2/4/ξ. After
integration we have

v(ξ) ≤ ξ−2γ
(
v(0) + 2γv(0)

ξ\
0

η2γ−1e−η2/4 dη
)
,

which implies the conclusion (3.10).

Remark3.1. Our next observation is that solutions to (3.2)–(3.4) should
have moderate initial conditions v(0). Indeed, from (3.2) we have

v′(ξ) + (γ − 1/2)

ξ\
0

v(η) dη ≤ v′(ξ) + ξv(ξ)/2 + (γ − 1/2)

ξ\
0

v(η) dη

= v(ξ)q − v(0)q ,

and

v(ξ) ≤ v(0) + (1/2 − γ)

ξ\
0

η\
0

v(ζ) dζ dη +

ξ\
0

v(η)q dη − ξv(0)q .

Using the result of Lemma 3.1 we get v(ξ) ≤ v(0) + (1/2 − γ)ξ2v(0) +
Cv(0)q − ξv(0)q , where

∞\
0

v(η)q dη ≤
1\
0

v(0)q dη +

∞\
1

v(0)qcq
γη−2γq dη

= v(0)q
(

1 + cq
γ

∞\
1

η−q/(q−1) dη
)
≡ Cv(0)q < ∞.

Now, given ξ > C there exists v(0) > 0 such that v(ξ) < 0 (remember that
q > 2 > 1, γ < 1/2), so large initial conditions v(0) cannot lead to globally
positive solutions to (3.2)–(3.3).

The goal of the next lemma is twofold: it gives either a (not optimal)
lower bound for solutions to (3.2)–(3.4) (not satisfying (3.5)), or an expo-
nential upper bound for a solution to (3.2)–(3.5).

Lemma 3.2. If v is a solution to (3.2)–(3.4), then either

(3.12) lim inf
ξ→∞

ξv(ξ) > 0,

or

(3.13) lim sup
ξ→∞

exp(αξ2/2)v(ξ) < ∞

for each α ∈ [γ, 1/2).
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P r o o f. Define z(ξ) = v′(ξ)+αξv(ξ) with α ∈ R. The function z satisfies

z′(ξ) = (qv(ξ)q−1 − (1/2 − α)ξ)v′(ξ) + (α − γ)v(ξ).

Thus, for α ∈ [γ, 1/2) and all ξ ≥ ξ0 = qv(0)q−1/(1/2−α) we have z′(ξ) ≥ 0,
that is, v′(ξ) + αξv(ξ) increases. Now, two possibilities occur: either there
exists a ξ1 ≥ ξ0 such that z(ξ1) = ε > 0, or z(ξ) ≤ 0 for all ξ ≥ ξ0. The
former implies the inequalities ε ≤ z(ξ) ≤ αξv(ξ), so v(ξ) ≥ ε/(αξ) and

(3.12) is shown. The latter means (eαξ2/2v(ξ))′ ≤ 0 for ξ ≥ ξ0, and

v(ξ) ≤ e−αξ2/2v(ξ0)eαξ2
0/2 = C(v(0), q)e−αξ2/2,

which leads to (3.13).

Having the preliminary estimates (3.10), (3.12), (3.13) we can prove the
existence of a nontrivial solution of (3.2)–(3.4). Then we will establish the
existence of a solution to (3.2)–(3.5), together with the asymptotics as ξ →
∞ of these solutions.

Lemma 3.3. There exists a solution v to the problem (3.2)–(3.4).

P r o o f. Consider F (ξ) = v′(ξ)/v(ξ) which is well defined for small ξ > 0
as v(0) > 0. From equation (3.2) we obtain F ′ = −ξF/2−γ+qvq−1F−F 2 ≥
−γ + qv(0)q−1F − F 2 because v′ ≤ 0 as long as v > 0 exists. Putting c =
qv(0)q−1, which is small together with the initial condition v(0), we rewrite
the preceding relation as F ′(F 2 − cF + γ)−1 ≥ −1. After an elementary
integration we get

(3.14) F (ξ) ≥ −(γ−c2/4)1/2 tan

(
(γ−c2/4)ξ+arctan

(
c

2(γ − c2/4)1/2

))
.

If ξ0 = 1/(2γ) (this is possible for c small enough), then for all ξ ∈ [0, ξ0] we
have F (ξ) > −∞ (so v(ξ) makes sense), and even F (ξ0) ≥ −(γ−c2/4)1/2/

√
3

(as tan 1/2 < 1/
√

3).

Now, define the quantity z(ξ) = v′(ξ) + γξv(ξ) satisfying the relation
z′(ξ) = v′(ξ)(qv(ξ)q−1 − (1/2 − γ)ξ). Clearly, z′(ξ) ≥ 0 for all ξ ≥ ξ1 ≡
c/(1/2 − γ). Since ξ1 < ξ0 for small c > 0, v′(ξ) + γξv(ξ) increases starting
from a point where the estimate (3.14) is still valid.

Consider ξ2 = sup{ξ : F (ξ) ≥ −
√

γ/3}, which is positive by (3.3).

The case ξ2 = ∞ is easy: v(ξ) ≥ v(0) exp(−
√

γ/3 ξ) for all ξ ≥ 0, which
together with (3.10) gives the existence of a solution v to (3.2)–(3.4) such
that v(ξ) → 0 as ξ → ∞.

Otherwise, ξ2 < ∞ and z(ξ2) = v(ξ2)(−
√

γ/3 + γξ2) > 0 because ξ2 >

ξ0 = 1/(2γ), γ < 1/2. Then we have (v(ξ)eγξ2/2)′ ≥ νeγξ2/2 > 0 for all
ξ ≥ ξ1 (hence for all ξ ≥ ξ2) and ν ≡ γξ2−

√
γ/3 > 0. The integration from



Convection-diffusion equation 87

ξ2 to ξ leads to

v(ξ) ≥ e−γξ2/2+γξ2
2
/2v(ξ2) + νe−γξ2/2

ξ\
ξ2

eγη2/2 dη

and (applying a modification of inequality (3.11)) v(ξ) ≥ Ce−γξ2/2v(ξ2) +
2ν/(γξ). Such a solution starting at a small v(0) exists for all ξ ≥ 0 but it
does not satisfy the condition (3.5).

The further analysis of self-similar solutions follows, roughly speaking,
the lines of the analysis of solutions to a related problem in [1]. Since our
solutions must have small initial data v(0) ≥ v(ξ), we expect that their
asymptotics will be determined by that of the linearized equation

(3.15) v′′(ξ) +
ξ

2
v′(ξ) + γv(ξ) = 0.

Recall from [1] that (3.15) has solutions v1, v2 with different asymptotic
behavior at ∞:

v1(ξ) = Ae−ξ2/4ξ2γ−1{1 − (2γ − 1)(2γ − 2)ξ−2 + o(ξ−2)},
v2(ξ) = Aξ−2γ{1 + 2γ(2γ + 1)ξ−2 + o(ξ−2)}

as ξ → ∞. We will prove that there is a solution to (3.2)–(3.5) (the so-
called fast solution of the system (3.8)–(3.9)) and its asymptotic behavior
is determined by v1 with a suitable A > 0 (as in (2.1)), while solutions
to (3.2)–(3.4) (the so-called slow solutions of (3.8)–(3.9)) decay like v2 (cf.
(2.2)).

Lemma 3.4. The sector Lλ = {w ≥ −λv}, λ > 0, is invariant for the

system (3.8)–(3.9) if ξ ≥ ξλ is sufficiently large.

P r o o f (cf. [1, Lemma 2]). It suffices to check that on the line w = −λv
we have w′/v′ = −ξ/2 − γv/w + qvq−1 < −λ for ξ ≥ ξλ = 2(λ + γ/λ +
qv(0)q−1).

Lemma 3.5. For each trajectory of (3.8)–(3.9) with positive v, the limit

ℓ = limξ→∞ w(ξ)/v(ξ) exists and is either 0 or −∞.

P r o o f (cf. [1, Lemmata 5–7]). From the invariance properties of sectors
Lλ the existence of the limit ℓ ∈ [−∞, 0] is clear. Its actual value can be
calculated using the de l’Hôpital rule:

ℓ = lim
ξ→∞

v′/v = lim
ξ→∞

w′/w = lim
ξ→∞

(qvq−1 − γv/w − ξ/2)

= lim
ξ→∞

(−γv/w − ξ/2)

= lim
ξ→∞

(
−ξ/2 + vq−1 + v−1

(
(1/2 − γ)

ξ\
0

v − v(0)q
))
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= lim
ξ→∞

(
−ξ/2 + v−1

(
(1/2 − γ)

ξ\
0

v − v(0)q
))

,

which implies that −∞− γ/ℓ = ℓ, so either ℓ = 0− or ℓ = −∞.

Thus, we have two possibilities: either w/v increases to 0 as ξ → ∞ (like
a slow solution), or w/v decreases to −∞ (like a fast solution). We know
from Lemma 3.3 that the set

S = {v(0) : lim
ξ→∞

v(ξ) = 0, lim
ξ→∞

v′(ξ)/v(ξ) = 0}

of initial values of slow solutions is not empty (moreover, R
+ \S 6= ∅ by the

observation after Lemma 3.1). S is an open set (cf. [1, Lemma 9]). The
solution corresponding to v(0) = v∗ ≡ sup S is of particular interest. We
prove that this is a fast solution to (3.8)–(3.9). We do not know if this fast
solution is unique.

Lemma 3.6. The function v∗(ξ) = limk→∞ vk(ξ), where vk satisfies

(3.2)–(3.3) and vk(0) = vk with vk ր v∗ = sup S, is a solution of (3.2)–(3.4)
and v∗(ξ) = O(e−λξ) for all λ > 0.

P r o o f (cf. [1, Lemma 11]). Clearly, v∗(ξ) ≥ 0 for each ξ ≥ 0 by the
continuous dependence on initial data. Suppose that v∗(ξ0) = 0 for some
ξ0 > 0. Then (v∗)′(ξ0) < 0 by the uniqueness of solutions to second order
equations, v∗(ξ) < 0 for ξ0 < ξ < ξ0 + δ with some δ > 0, which contradicts
the positivity of v∗. By Lemma 3.5, ℓ = −∞ (v∗ 6∈ S because S is open).
Thus for each λ > 0 and all sufficiently large ξ we have v′(ξ)/v(ξ) ≤ −λ,
which implies the exponential decay of v∗.

The asymptotic behavior as ξ → ∞ of v∗ is obtained by a repeated use
of the de l’Hôpital rule.

Lemma 3.7. There exists a constant A > 0 such that

v∗(ξ) = Ae−ξ2/4ξ2γ−1{1 − (2γ − 1)(2γ − 2)ξ−2 + o(ξ−2)}
as ξ → ∞.

P r o o f (cf. [1, Lemmata 13–15]). First we show limξ→∞ w(ξ)/(ξv(ξ))
= −1/2 for v ≡ v∗. Indeed,

lim
ξ→∞

w(ξ)/(ξv(ξ))

= lim
ξ→∞

w′(ξ)/(ξv′(ξ) + v(ξ))

= lim
ξ→∞

(−1/2 − γv(ξ)/(ξw(ξ)) + qv(ξ)q−1/ξ)(1 + v(ξ)/(ξw(ξ)))−1

= −1/2.
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Next consider E(ξ) = ξv′(ξ) + 1
2ξ2v(ξ). A similar calculation gives

lim
ξ→∞

E(ξ)/v(ξ)

= lim
ξ→∞

E′(ξ)/v′(ξ) = lim
ξ→∞

(1 + ξv′′(ξ)/v′(ξ) + ξv(ξ)/v′(ξ) + ξ2)

= lim
ξ→∞

(1 + ξ(1 − γ)v(ξ)/v′(ξ)) = 1 + (1 − γ)(−2) = 2γ − 1.

The last auxiliary quantity is G(ξ) = ξ2E(ξ) + (1− 2γ)ξ2v(ξ). We com-
pute limξ→∞ G(ξ)/v(ξ) = (1− γ)(1− 2γ). Again from the de l’Hôpital rule,
we need to compute

ξ2E′(ξ)/v′(ξ)

= ξ2(1 + (1 − γ)ξv(ξ)/v′(ξ) + ξqv(ξ)q−1)

= ξ2(1 + (1 − γ)(ξv(ξ)/v′(ξ) + 2) − 2(1 − γ)) + . . .

= ξ2((2γ − 1) + (1 − γ)(ξv(ξ) + 2v′(ξ))(ξv(ξ))−1ξv(ξ)/v′(ξ)) + . . .

This information permits us to write

G(ξ)/v(ξ) = (1 − γ)(1 − 2γ) + o(1),

E(ξ)/v(ξ) = (2γ − 1) + (1 − γ)(1 − 2γ)ξ−2 + o(1)ξ−2,

v′(ξ)/v(ξ) = (2γ − 1)ξ−1 − ξ/2 + (1 − γ)(1 − 2γ)ξ−3 + o(1)ξ−3,

and after an integration

log v(ξ)/v(1) = log ξ2γ−1 − ξ2/4 − (1 − γ)(1 − 2γ)(2ξ2)−1 +

ξ\
1

o(1)η−3 dη,

which is equivalent to the conclusion of Lemma 3.7.

A similar reasoning leads to the asymptotic estimate (2.2) for slow solu-
tions, which ends the proof of Theorem 2.1.

4. Stability of the self-similar profiles. The main goal of this section
is to prove Theorem 2.2. However, we begin with recalling briefly some
properties of solutions to the auxiliary linear problem

ut − uxx = 0, x > 0, t > 0,(4.1)

ux(0, t) = 0,(4.2)

u(x, 0) = u0(x).(4.3)

The reader is referred to [12, Section 3] for more details about this Neumann
problem for the heat equation.

For a function f on [0,∞) we define the even continuation f̃ to R by

f̃(x) =

{
f(x) for x ≥ 0,
f(−x) for x < 0.
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In this notation, for every u0 ∈ L1(R+) + L∞(R+), the unique classical
solution to the problem (4.1)–(4.3) is given by

et∆u0(x) ≡
\
R

G(x − y, t)ũ0(y) dy(4.4)

=
\

R+

(G(x − y, t) + G(x + y, t))u0(x) dy,

where the function G(x, t) = (4πt)−1/2 exp(−x2/(4t)) is the Gauss–Weier-
strass kernel. Moreover, for the heat semigroup with the homogeneous Neu-
mann condition (4.2) we have

(4.5) (et∆vx)(x) = −2G(x, t)v(0) − (et∆v)x(x)

for every sufficiently regular v = v(x) (x ∈ [0,∞)), which is obtained by
integrating by parts in (4.4).

We also recall that for 1 ≤ r ≤ p ≤ ∞ and f ∈ Lr(R+) there exists a
constant C > 0 independent of f and t such that

(4.6) ‖et∆f‖p ≤ 2‖G(·, t)‖pr/(pr+r−p)‖f‖r ≤ Ct−(1/r−1/p)/2‖f‖r,

and

(4.7) ‖(et∆f)x‖p ≤ 2‖Gx(·, t)‖pr/(pr+r−p)‖f‖r ≤ Ct−(1/r−1/p)/2−1/2‖f‖r

for all t > 0. This is an immediate consequence of formula (4.4) and the
Young inequality (cf. [12, Lemma 3.3]).

Lemma 4.1. Assume that u0 ∈ L∞(R+) satisfies (2.6). For every p ∈
(q − 1,∞],

tγ−1/(2p)‖et∆(u0(·) − A(·)−2γ)‖p → 0 as t → ∞.

P r o o f. Recall that 2γ < 1 is equivalent to q > 2. The proof of this
lemma is classical and bases on explicit expressions for et∆u0 and et∆(·)−2γ .
Indeed, we have

(G(·, t) ∗ ũ0)(x) = Aet∆|x|−2γ(1 + o(1)) as t → ∞,

uniformly in x∈R (cf. e.g. [9, Lemma 3.3.c]). Hence, to complete the proof,
we use the fact that et∆(·)−2γ ∈ Lp(R+) for p ∈ (q − 1,∞] together with
the estimate

‖et∆(·)−2γ‖p = ‖e∆(·)−2γ‖pt
−γ+1/(2p).

Let us also formulate an auxiliary well-known fact.

Lemma 4.2. Assume that {fi}i≥0 is a sequence of measurable functions

on [0, 1] and h ∈ L1(0, 1) is such that for every i ≥ 0 and x ∈ [0, 1], |fi(x)| ≤
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h(x). Define lim supi→∞ fi(x) ≡ limk∈N, k→∞ supi>k fi(x). Then

(4.8) lim sup
i→∞

1\
0

fi(x) dx ≤
1\
0

lim sup
i→∞

fi(x) dx.

P r o o f. To see this, it suffices to apply the Lebesgue Dominated Con-
vergence Theorem to the obvious inequality

sup
i>k

1\
0

fi(x) dx ≤
1\
0

sup
i>k

fi(x) dx.

Now, we come back to the nonlinear problem (1.1)–(1.3). It is well known
that each sufficiently regular solution satisfies the integral equation

(4.9) u(t) = et∆u0 −
t\
0

e(t−τ)∆(uq)x(τ) dτ.

Moreover, integrating by parts in the second term on the right-hand side of
(4.9) (i.e. using formula (4.5) above), we obtain the equivalent equation

(4.10) u(x, t) = et∆u0(x)+2

t\
0

G(x, t−τ)u(0, τ)q dτ +

t\
0

(e(t−τ)∆uq)x(x, τ) dτ.

This formula is the main tool in the proof of Theorem 2.2. Note that it also
holds true when u and u0 are replaced by uA and Ax−2γ , respectively.

Proposition 4.1. Suppose that u0 and vA satisfy assumption (2.5). Let

u be the solution to (1.1)–(1.3). Then

(4.11) 0 ≤ u(x, t) ≤ (t + a)−γvA(x/
√

t + a) for all t ≥ 0 and x ≥ 0.

P r o o f. This follows from the standard comparison principle (cf. [10]).

Since vA(ξ) is decreasing for ξ > 0 (cf. (3.7)) we immediately obtain the
L∞-bound for solutions to (1.1)–(1.3).

Corollary 4.1. Under the assumptions of Proposition 4.1,

‖u(·, t)‖∞ ≤ (t + a)−γvA(0) for all t ≥ 0.

Proposition 4.2. Suppose that u0 and vA satisfy assumptions (2.5) and

(2.6). Let u be the solution to (1.1)–(1.3). Then limt→∞ tγu(0, t) = vA(0)
provided vA(0) < {qΓ (1/2 − γ)/Γ (1 − γ)}−1/(q−1).

P r o o f. Substituting x = 0 in (4.5) gives (et∆vx)(0) = −(πt)−1/2v(0),
because (et∆v)x(0) = 0 by (4.4). Hence, for x = 0 formula (4.10) has the
following form:

(4.12) u(0, t) = 2
\

R+

G(y, t)u0(y) dy + π−1/2
t\
0

(t − τ)−1/2u(0, τ)q dτ.
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Now, we subtract this equation from an analogous expression for uA to
obtain

uA(0, t) − u(0, t) = 2
\

R+

G(y, t)(Ay−2γ − u0(y)) dy(4.13)

+ π−1/2
t\
0

(t − τ)−1/2(uA(0, τ)q − u(0, τ)q) dτ.

Now note that by Corollary 4.1 we have

0 ≤ u(0, t) ≤ (t + a)−γvA(0) ≤ t−γvA(0)

for all t > 0. Moreover, since the elementary inequality

(4.14) |Xq − Y q| ≤ q

2
|X − Y |(Xq−1 + Y q−1)

holds for all nonnegative X,Y and q ≥ 2 (this is an easy consequence of the
fact that the function q

2 (1 − t)(1 + tq−1) + tq − 1 is decreasing on [0, 1]), we
obtain immediately

(4.15) |uA(0, τ)q − u(0, τ)q | ≤ qτ−1/2vA(0)q−1|uA(0, τ) − u(0, τ)|.
Hence, multiplying (4.13) by tγ , using (4.15), and changing the variable
τ = ts we obtain

(4.16) tγ |uA(0, t) − u(0, t)|
≤ 2tγ

\
R+

G(y, t)|Ay−2γ − u0(y)| dy

+ qπ−1/2vA(0)q−1
1\
0

(1 − s)−1/2s−1/2−γ(ts)γ |vA(0, τ) − u(0, τ)| dτ.

The first term on the right-hand side of (4.16) tends to 0 as t → ∞, because
this is a particular case of Lemma 4.1. Hence, applying Lemma 4.2 to (4.16)
we obtain

lim sup
t→∞

tγ |uA(0, t) − u(0, t)|

≤ qπ−1/2vA(0)q−1
1\
0

(1 − s)−1/2s−1/2−γ ds lim sup
t→∞

tγ |uA(0, t) − u(0, t)|.

But
T1
0
(1 − s)−1/2s−1/2−γ ds = π1/2Γ (1/2 − γ)/Γ (1 − γ), hence

lim
t→∞

tγ |uA(0, t) − u(0, t)| = 0

provided qΓ (1/2 − γ)/Γ (1 − γ)vq−1
A (0) < 1.

Now we are ready to prove Theorem 2.2.
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Proof of Theorem 2.2. The reasoning here is similar to that in the proof
of Proposition 4.2. We begin with the identity

u(x, t) − uA(x, t) = et∆(u0(x) − Ax−2γ)(4.17)

+ 2

t\
0

G(x, t − τ)(uq − uq
A)(0, τ) dτ

+

t\
0

(e(t−τ)∆(uq − uq
A))x(x, τ) dτ

obtained from (4.10) for u and uA. Combining, as in the proof of inequality
(4.15), Corollary 4.1 with (4.14), we obtain

(4.18) ‖u(·, τ)q − uA(·, τ)q‖∞ ≤ qτ−1/2vA(0)q−1‖u(·, τ) − uA(·, τ)‖∞.

Let us also recall that the explicit expression for the heat kernel gives
immediately

2‖G(·, t − τ)‖∞ = π−1/2(t − τ)−1/2

and

2‖Gx(·, t − τ)‖1 = 2π−1/2(t − τ)−1/2
\

R+

ze−z2

dz = π−1/2(t − τ)−1/2.

These facts allow us to compute the L∞(R+)-norm of (4.17) and to obtain
by (4.7) an inequality analogous to (4.16):

(4.19) tγ‖u(·, t) − uA(·, t)‖∞
= tγ‖et∆(u0 − A(·)−2γ)‖∞

+ 2tγ
t\
0

‖G(·, t − τ)‖∞|(uq − uq
A)(0, τ)| dτ

+ 2tγ
t\
0

‖Gx(·, t − τ)‖1‖(uq − uq
A)(·, τ)‖∞ dτ

≤ tγ‖et∆(u0 − A(·)−2γ)‖∞

+ π−1/2
1\
0

(1 − s)−1/2s−qγ((ts)qγ |(uq − uq
A)(0, ts)|) ds

+ qπ−1/2vA(0)q−1

×
1\
0

(1 − s)−1/2s−1/2−γ((ts)γ‖u(·, ts) − uA(·, ts)‖∞) ds.
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The first term on the right-hand side of (4.19) tends to 0 as t → ∞ by
Lemma 4.1. The analogous conclusion holds true for the second term, if
one combines Proposition 4.2 with the Lebesgue Dominated Convergence
Theorem. Hence, by the argument used at the end of the proof of Proposition
4.2, we conclude that limt→∞ tγ‖u(·, t) − uA(·, t)‖∞ = 0 provided qΓ (1/2−
γ)/Γ (1 − γ)vq−1

A (0) < 1.
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