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On coefficient inequalities
in the Carathéodory class of functions

by ADAM LECKO (Rzeszéw)

Abstract. Some inequalities are proved for coefficients of functions in the class P(«),
where a € [0, 1), of functions with real part greater than «. In particular, new inequalities
for coefficients in the Carathéodory class P(0) are given.

1. Main results. Let D = {z € C: |2| < 1} denote the unit disk. We
denote by P(«), where a € [0,1), the class of functions p regular in D of the
form

(1.1) p(z) =1+ anz", z €D,
n=1

such that Rep(z) > « for z € D (see [2, p. 105]). The well known class of
Carathéodory functions having positive real part in D, denoted by P, coin-
cides with P(0). The class P(«), although not explicitly defined, appeared
first in [4], where Robertson defined functions convex of order o and starlike
of order a.

Using the well known estimates |p,| < 2, n € N, [1; 2, p. 80] for the
coefficients of p € P it is easy to prove the lemma below (see [2, p. 101]).

LEMMA 1.1. Fiz « € [0,1) and let q of the form
o0
n=1

be reqular in D. If Req(z) > « for z € D, then
(1.3) lgn| < 2(Reqo — ), mneN.
FEstimates (1.3) are sharp.
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An extremal function for which equalities hold in (1.3) is
_ g0+ (g — 20)z
q(z) = T
REMARK 1.2. For a = 0 we have |¢,| < 2Reqq, n € N, for the coefficients
¢ of a function ¢ such that Reg(z) > 0 for z € D.

, z€D.

An interesting generalization of Remark 1.2 can be found in [3].

As an immediate consequence of (1.3) we have the following estimates
for the coefficients of p € P(a) of the form (1.1) which can be found in
[4, p. 386]:

(1.4) Ipn] <2(1—«), mneN.
Now we formulate two basic theorems of this paper.
THEOREM 1.3. Fiz a € [0,1) and £ € D. If p € P(«), then the function

(15)  q(z) = q(€:2) = § &1 —20)2+ag] | (2§ —&2) p(2)

9

z z
z €D, is reqular in D and
(1.6) Req(&;2) >,  zeD.
FEquality holds in (1.6) only if |¢| =1 and
1+ (1—-2a)éz
(17) )=o) - =2 e,

Proof. Observe first that the function (1.5) has a removable singularity
at z = 0 since

(1.8) ¢(&0) = lim ¢(&; 2) =1+ (1 -a)lEf* —&p.

Assume first that p, and hence g, is regular on 0. For z = €%, # € R,
we have

q(&; ") = 2iIm(¢e ") — al¢f?
+2a8e’ +[1+ €[> — 2Re(ée)]p(e").
Since p € P(«a) we see that
Req(&e”) = — al¢® + 2aRe(ée”)
+[(1+[€[%) — 2Re(ée )| Rep(e”)
> a4+ 2a(Re(€e?) — Re(ée ™)) = a.

By the mimimum principle for harmonic functions the above inequality holds
in D, i.e. Req(&;2) > a for z € D.

If p is not regular on @D, then we consider the functions p,(z) = p(rz),
z € D, for r € (0,1). Replacing p by p, on the right hand side of (1.5)
we obtain the corresponding function ¢,(§; z), z € D. Repeating the above
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considerations we get the strict inequality Re ¢,.(§;2) > « for z € D. Letting
r — 1 we see that p, — p and ¢, — ¢. Consequently, Req(&;z) > « for
z € D.

If [£] < 1, then from (1.5) we have ¢(&;€) =1 — (1 — a)[£]? > a. Hence
Req(&;2) > afor z € D and €] < 1.

If |¢] = 1, then from (1.5) we deduce that

Req(&0) —a = (1—a)(1+ [€*) — Re(épr)
> (1—a)(1+[€%) — [€p] > (1= a)(1 - [€)* =0

for all o € [0,1). Equality holds only if Re({p1) = [{p1] and [p;| = 2(1 — ).
Hence p; = 2(1 — «)§, which holds only for the function p defined by (1.7).
Then ¢(&; z) = o for each £ € 9D and all z € D.

Now we prove the converse theorem for £ € D.

THEOREM 1.4. Fiz o € [0,1) and & € D. Assume that q is reqular in D,
Req(z) > a for z € D and

(1.9) q(€) =1— (1 - a)¢f.
Then the function
(1.10)  p(2) = p(&; 2)

_ - 5)?1 . <q(2) =& —Z2a)z + a§]>7 2eD,

is regqular in D and p € P(a).
Proof. Simple calculations lead to

oy ey L (1= 20)[€7 4+ 64'(€)
so at z = £ the function p has a removable singularity. Moreover p(§;0) = 1
for each £ € D. Therefore p is regular in D and of the form (1.1) for each
& eD.

Now we prove that p € P(a). Assume first that ¢ is regular on 9D.
By (1.10), so is p, and for z = ¢, § € R, we have

0y 1 if 2 o Fi0 o (F.i0
P& ) = g e = (9(€") + e 208 — 20 Im(Ee”).
Since Req(z) > « for z € 9D we obtain
.0y _ 1
Rep& ) = T —2Re(ee ™)
1+ €)% — 2Re(€e®)
~ 1+ [¢[* — 2Re(ge )

(Req(e”) + al¢]? — 2a Re(€e™))
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By the mimimum principle for harmonic functions the above inequality is
true in D, i.e. Rep(&;2) > a for z € D.

If ¢ is not regular on @D, then arguing as in the part of Theorem 1.3
concerning p, (setting ¢,(z) = ¢(rz), z € D, for r € (0, 1), and using (1.10)
in place of (1.5)) we obtain Rep(§; z) > « for z € D.

Finally, recall that p(§;0) = 1 for each £ € D. This implies that Re p(&; z)
> « for z € D and £ € D. Therefore p € P(a).

For a = 0 we obtain from Theorems 1.3 and 1.4 the following results.

COROLLARY 1.5. Fiz £ € D. If p € P, then the function

q(z) = q(&§2) = §—Z§z2 + (2= f)il — &) p(z), zé€D,

is regular in D and Req(&;2) > 0 for z € D. Equality holds only if |§] =1
and

_ 1+¢&z

=——, z€D.
1—-¢&2

p(2) = p(0,&;2)

COROLLARY 1.6. Fiz £ € D. Assume that q is reqular in D, Req(z) > 0
for z €D and q(§) =1 — |£|2. Then the function

e T) e

1s reqular in D and p € P.

p(z) =p(&2) =

For £ =1 Corollary 1.5 is due to Robertson [5].

2. Applications. In this section we apply Theorem 1.3 to obtain some
inequalities for coefficients of functions in the class P(«). In the case when
a = 0 these results generalize the well known estimates for coefficients of
functions in the Carathéodory class.

THEOREM 2.1. Fiz o € [0,1) and ¢ € D. If p € P(a) and p is of the
form (1.1), then

(2.1)  [€pz — (L+[EP)p1 +2(1 = @)€] < 2((1 = @)(1 + [€[*) — Re(&p1)),
(2:2)  [€pns1 — (L+[E7)Pn + Epn—1] < 2((1 = a)(1 + [¢]%) — Re(Ep)),
(2:3)  [[l€lpnt1 —pal = €] - [[€]pn = pr—1]| < 2((1 = @)(1+[¢]*) — [€| Repr)
forn =2.3,... Estimates (2.1)—(2.3) are sharp.

Proof. By Theorem 1.3 the function ¢ defined by (1.5) is regular in D
and Req(&; z) > a for z € D. We can assume that ¢ is of the form (1.2).
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From (1.5) we have
2q(&2) = [L+ (1—a)|EPP —&pi)z + [—Ep2 + (1 + [€)p1 —2(1 — )€ ]2°+ . ..
+ [_gpn + (1 + ‘glz)pn—l - gpn—2]zn + ...
Consequently,
Go=1+1-a)>—¢p1, @ =—&pa+ 1+ [P —2(1 - )
and
o = —Epn + (1 +[€°)pn1 = Epna  forn=2,3,...

Now using (1.3) and the formula for gy we obtain (2.1) and (2.2).

To prove (2.3) assume that £ = [¢|e’?, ¢ € [0,27). Since p € P(a), the
function p(e~*?z), z € D, also belongs to P(«), and applying (2.2) to it we
have

’ |‘§|pn+1 _pn‘ - ’§| : H§|pn _pn'ufl| | B ‘
= [[€e " ppi1 — pul — €] - 1€ T Pn — Pr1]]|
< |€e™pni1 — (1 +E[2)pn + Epy 1|
< 2((1 = a)(1 +[¢]*) — Re(&e ~"¥p1))
=2((1 — a)(L+[¢[*) — |¢| Repy).
The function

' 1+ (1—-2a)z = .
(2.4) p(a,l,z)zl_zzl—i—Q(l—a);z , z€D,

is in P(«) and gives equalities in (2.1)—(2.3).

For a = 0 the above yields the following result.

COROLLARY 2.2. Fiz £ €D. If p € P and p is of the form (1.1), then
(2.5)  [€p2 — (14 [€1%)p1 + 28] < 2(1 + [€]* — Re(ép1)),
(2.6)  [€pnsr — (L4 [€[°)pn + Epn—1| < 2(1 + [€]* — Re(Ep)),

2.7)  €lpnt1 = pal = €] - l€lpn = pral| < 201+ [€* — [¢|Repr)
forn =2.3,... Estimates (2.5)—(2.7) are sharp.

COROLLARY 2.3. If p € P and p is of the form (1.1), then
[p2 — 2p1 +2[ < 2Re(2 — p1),
|Pn+1 — 2Pn + pn-1] < 2(2 — Rep1),
|p2 + 2p1 + 2| < 2(2+ Repr),
|Pnt1 + 2P0 + pn-1] < 2(2 + Repy),

(2.8)

(2.9)



64 A. Lecko

[p2 + 2ip1 — 2| < 2(2 +Tmp,y),

(2.10) _

[Pnt1 + 2ipp — pp—1] < 2(2+Impy),
(2.11) lp2 — 2ip; — 2| < 2(2 — Impy),

[Pnt1 — 2ipp — pp—1]| < 2(2 —Impy),
forn =2 3,... All estimates are sharp.

Proof. Estimates (2.8) follow from (2.5) and (2.6) by setting £ = 1.
Setting £ = —1 in (2.5) and (2.6) we obtain (2.9). Analogously, setting
€ =idand £ = —iin (2.5) and (2.6) we get (2.10) and (2.11), respectively.
The function p(z) = p(0,&;2), z € D, defined by (1.6), for suitable ¢ as
above, is extremal for the cases considered.

Taking |{| = 1 in (2.7) we have
COROLLARY 2.4. If p € P and p is of the form (1.1), then

| |Pr+1 — Pl = [Pn — Pr—1]| £2(2 —Repy)

forn=2,3,... The estimates are sharp.

Setting ¢ =1/nand { =1—1/n,n =2,3,..., in (2.6) we have respec-
tively:

COROLLARY 2.5. If p € P and p is of the form (1.1), then

1
< 2<n+ —Rep1>
n

1
Pn+1 — (n + n>pn + Pn—1
forn=2,3,... The estimates are sharp.

COROLLARY 2.6. If p € P and p is of the form (1.1), then

n n—1 n n—1
Pn+1 — + Dn +Pn-1] <2 + —Repy
n—1 n n—1 n

forn=2,3,... The estimates are sharp.

THEOREM 2.7. Fiz a € [0,1) and ¢ € D. If p € P(a) and p is of the
form (1.1), then

(2-12) |fpn+1 —Pn|
[(1—a)(1+ [¢*) =Re(€p)] + [2(0— ) —€pa| - €™, €] <1,
(2n+1)[2(1 — a) = &p], €] =1,
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(2'13) ’ |§pn+1‘ - ‘pn’ ’
1—)&|” n
[ -0 6=l Reg) + 120 -)~lnll ¢, 16l <1
(2n+1D2(1 = a) = &lpll; €l =1,
for n=2.3,... The estimates are sharp for each & € [0, 1].
Proof. By Theorem 1.3 the function ¢ defined by (1.5) is regular in D

and Req(&; z) > a for z € D. We can assume that ¢ is of the form (1.2).
From (1.5) we have

9(z) _§-&[(1-2a)z+af 2-¢
(2.14) & 2(1-22) +— p(2)
=120+ £ [0-a)i- g ol + (1- 4ot
=[1+ (1 - a)l¢f* — &pi]
+[p1 —&ps — (1 —a)(1 — |€) — )€z + ...+
+[pn = Epnar = (L= a)(1 = [€]*) — )" [" + ...
But
1q£Z§Z =qo+ [ +qlz+...+

g+ gn1€ 4+ @€ T @l
By the above and from (2.14) we have
go =1+ (1-a)l¢* - &pr,
a1+ go€ = p1 — &p2 — [(1 — a)(1 = [¢[*) — afé
and
G+ Gno1&+ o+ @€+ €™ = po — Epnrr — [(1 - a)(1 =€) — af€”
for all n € N. From estimates (1.3) it follows that
€Pnt1 — Pal
<lgn + qnaf+ -+ 0"+ o+ (1= a)(1 = [6F) —af - ¢
<2Reqo — a)(1+[¢]+ ..+ [E"7) +[2(1 = @) = &pa - €]",

which gives estimates (2.12).

In order to prove (2.13) assume that p; = |p1]e’¥, ¥ € [0,27). Let
|¢] = 1. Since p € P(a), the function p(e ~*¥2), z € D, also belongs to P(«),
and applying (2.12) we have

[ 1€pn1] = [Pal | < 167 Prss — pul < (20 +1)[2(1 —a) — €&~ ¥py |
=[2(1 — ) = &[pa] |
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Analogously we prove (2.13) when || < 1.

If £ € [0,1), then equalities in (2.12) and (2.13) are achieved for the
coefficients of the function (2.4).

For ¢ = 1 the factor 2n + 1 which appears on the right hand side of
(2.12) and (2.13) cannot be replaced by a smaller one. To see this consider
for each o € [0,1) and 6 € [0,27) the function

() 1 —2azcosf — (1 — 2a)2>
o,0\Z) =
Pa.o 1 —2zcosf + 22

=14+2(1 —a)Zcos(nQ)z", z € D.
n=2
Then for £ = 1 we have
[Prt1 = pal = 2(1 = a)[ cos((n + 1)6) — cos(nd)]
sin((2n +1)6/2)
sin(0/2)
< 4(1 - a)(2n + 1)sin*(0/2)
for all # € [0,27). Taking @ sufficiently small we see that the factor 2n + 1
is the best possible.

=4(1 - ) sin?(0/2)

For a = 0 Theorem 2.7 has the following form.

COROLLARY 2.8. Fiz £ €D. If p € P and p is of the form (1.1), then
(2.15)  [€pn+1 — pal

< 211__’%1 [1+ 6> — Re(&py)] + 2 — Epul - €™ for |€] < 1,
(2n +1)|2 — &pa | for €] =1,
(2‘16) | |§pn+1| - ‘pn’ |
1—[E" N
[ e - mireg 2 el e o el <1,
(2n +1)[2 = €[pa]| for 1§] =1,

forn=2.3,... The estimates are sharp for & € [0,1].

For ¢ = 1 the result of Corollary 2.8 was obtained by Robertson [5].
Setting £ = 1/n, n = 2,3,..., we get from Corollary 2.8 the following
results.
COROLLARY 2.9. If p € P and p is of the form (1.1), then
1—(1/n)” \"
[Pnt1 — npn| < 271(_/1)(712 +1—-nRep1) + <n> 2n — p1|

forn=2,3,... The estimates are sharp.
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In particular, for n = 2 and n = 3 we have

P1
1— 2=
4

9

15
Ips — 2pa| < - —3Repi+

1
[Pa = 3ps| < 5-(260 — T8Repy + |6 — pa).

For{ =1—-1/(n+1), n € N, Corollary 2.8 yields

COROLLARY 2.10. If p € P and p is of the form (1.1), then

n
n+1

n n
2 1) —
+(52) 2t ) =l

for n € N. The estimates are sharp.

In particular, for n = 1 and n = 2 we have

5 D1

lp2 — 2p1| <5 —2Rep; + 5

)

1
|2p3 — 3pa| < 2—7(260 —78Repy + |6 — p1])-
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