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On the Cartan—Norden theorem for
affine Kahler immersions

by MARIA RoOBASZEWSKA (Krakéw)

Abstract. In [O2] the Cartan—Norden theorem for real affine immersions was proved
without the non-degeneracy assumption. A similar reasoning applies to the case of affine
Kéahler immersions with an anti-complex shape operator, which allows us to weaken the
assumptions of the theorem given in [NP]. We need only require the immersion to have a
non-vanishing type number everywhere on M.

1. Introduction. Let M be an n-dimensional complex manifold with
a complex linear torsion-free connection V. A holomorphic immersion f :
M — C™*! is called an affine holomorphic immersion if there exists a com-
plex transversal bundle N such that V is induced by its local sections in
the following way. For € M let £ be a local section of A/ in the neighbour-
hood U of x (we require all local sections of N considered to be nowhere
vanishing). Let X, Y be vector fields on U. Then we have the decomposition

Dxf.Y = £.VXY +h(X,Y)E — h(JX,Y)JE,

known as the Gauss formula. We denote by J the complex structure on M
as well as that on C"*! and we write D for the standard connection on
C"™*!. The symmetric bilinear form h is called the affine fundamental form.
The Gauss formula may also be written in the complex version

Dxf.Y = f.VxY + h¢(X,Y)¢

with C-bilinear h°(X,Y) = h(X,Y) —ih(JX,Y). The (complex) rank of h°
is called the type number of f and denoted by tf.

The shape operator S and the transversal forms u, v are defined on U
by the Weingarten formula:

D€ = — 18X + p(X)€ + v(X).JE.
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A connection V whose curvature tensor satisfies the condition
(1) R(JX,JY)=R(X,Y) for all vector fields X,Y
is called an affine Kdhler connection [NPP] and in this case an affine holo-
morphic immersion f : (M,V) — (C"*1, D) is said to be an affine Kdihler
immersion. The Cartan—Norden theorem deals with Ké&hler connections,
which are known to have the property (1).
We recall the fundamental equations for an affine holomorphic immer-
sion:
R(X,Y)Z =h(Y,Z2)SX — h(X,Z)SY — h(JY,Z)JSX + h(JX,Z)JSY
=h(Y,Z)SX — h’(X,Z)SY (Gauss),
(Vxh)(Y, Z) + u(X)h(Y, Z) + (X )h(JY, 2)
=(Vyh)(X,2)+ pY)W(X,Z)+v(Y)(JX,Z) (CodazziI),
(VxS)Y — u(X)SY —v(X)JSY
=(VyS)X —u(Y)SX —v(Y)JSX  (Codazzi II),
h(X,SY) —h(Y,SX) =2du(X,Y) (Ricci I),
h(SX,JY)—h(SY,JX) =2dv(X,Y) (Ricci IT).

2. The Cartan—Norden theorem for affine holomorphic immer-
sions with anti-complex shape operator. The theorem to be proved is
the following:

THEOREM. Let (M,g) be a connected, n-dimensional, pseudokdhlerian
manifold with the Levi-Civita connection ¥ of g. Let f : (M,V) — C"*1! be
an affine Kdahler immersion such that the corresponding shape operator S is
anti-complez.

1) If tf >0 on M, then either V is flat or R, # 0 for every x € M.
2) If Ry, # 0 for every x € M, then there exists a Hermitian product G
on C"*1 such that f: (M,g) — (C""1 G) is an isometric immersion.

REMARK. The assumption that S is anti-complex is needed only if t f = 1
everywhere on M, because if V is affine Kahler and ¢f > 1 at some point of
M, then the shape operator must be anti-complex [O1].

Proof. We will first prove the following lemma:

LEMMA. Let W be a connected component of the set {x € M : R, # 0}.
Under the hypotheses of the theorem, there exists a Hermitian product G
on C" such that flw : (W,g) — (C"1 Q) is an isometric immersion.
Moreover, if € is a transversal vector field inducing the connection V on an
open set U and h, S are the affine fundamental form and the shape operator
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associated with & respectively, then

h(X,Y) =

ateg Y

for all vector fields X, Y on UNW.

Proof. We have divided the proof into a sequence of steps, similar to
those in [O2]. In Steps 1-6 we shall prove that there exists a non-vanishing
function 8 on U N'W such that

B(X,Y) = Bg(SX,Y)
on U NW, for all vector fields X, Y on U NW.
STEP 1. If hy # 0, then im R, = im .S,.
It follows from the Gauss equation that the complex subspace
imR, =span{R(X,Y)Z : XY, Z € T, M}

is included in im S,.. Let now X € T, M. If X € ker h¢, take Y, Z such that
he(Y,Z) # 0. Then
_R(X\)Y)Z .
If X & kerh®, take Y such that h°(X,Y) # 0. Then
R(X,JX)JY =h%(JX,JY)SX — h(X,JY)SJX = —2h°(X,Y)SX,

SO
—R(X,JX)JY

2h¢(X,Y)
STEP 2. If S, # 0, then ker h, = ker R,..
We only have to prove that ker h, D ker R, where
kerh, ={X e T,M :VY € T,M, h(X,Y) =0} =kerhf,
kerR, ={X e T,M :VY,Z € T,M, R(Y,Z)X = 0}.

Let Z € kerR, andlet Y € T, M.
If SY =0, then for arbitrary X € T, M,

0=R(X,Y)Z = h'(Y, Z)SX.

We can choose X such that SX # 0, so h%(Y, Z) = 0.
If SY # 0, then the equality

0=R(Y,JY)JZ =he(JY,JZ)SY — h(Y,JZ)SJTY = —=2h°(Y,Z)SY
implies that h¢(Y, Z) = 0.
STEP 3. If R; # 0, then ker h, = ker S, = ker R,

From the Gauss equation we obtain S, # 0 and h, # 0, therefore
ker h, = ker R, and im R, = im S,. It remains to prove that ker h, = ker S,.

SX = mR,.
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We first show that dimker S, = dimker h.

If V is the Levi-Civita connection for a Kéhlerian metric g, then for all
X,Y, Z, Win T, M we have g(R(X,Y)Z, W) = —g(R(X,Y )W, Z), which
implies

(im R,)*9 = ker R,
because of the non-degeneracy of g. For the non-degenerate g we have
2n = dimg(im R,) + dimg (im R, )9
= dimg (im R, ) + dimg (ker R,)
= dimg(im S,,) + dimg (ker h).
On the other hand we have
2n = dimg(im S, ) + dimg (ker S;).

It now remains to prove the inclusion ker S, D ker h,.
Let X € ker h,. The assertion of Step 2 implies that X € ker R,. Recall
that if V is metrizable and torsion-free, then

ker Ry = {Y € T,M : VX € T,M, R(X,Y) = 0}.

Consequently, for all Y, Z we have R(X,Y)Z = 0. Using the Gauss equation
we obtain

0=n(Y,Z2)SX — h*(X, Z)SY = he(Y, Z)SX

for all Y, Z. Since h, # 0, we can find Y, Z such that h¢(Y, Z) # 0, therefore
SX must equal 0.

STEP 4. If R, # 0, then SX = 0 implies that g(SZ,X) = 0 for all
ZeT, M.

Let X € ker S, = (im R;)*9. Then for all Y, Z € T, M we have
g(R(JZ,Z2)Y,X)=0 and ¢(R(JZ,Z)JY,X)=0.

Using the Gauss equation we obtain
o) WZ.Y)g(STZ,X) - h(Z,JY)g(SZ,X) = 0,
MZ,JY)g(SJZ,X)+ h(Z,Y)g(SZ,X)=0
forall Y,Z € T,M. Let Z € T,M. If Z € kerh, then, by Step 3, Z €
ker S, so g(SZ,X) = 0. If Z & ker h, then there exists Y € T, M such that
hZ,Y) # 0. If we now consider (2), we obtain ¢(SZ,X) = g(SJZ,X) = 0.

STEP 5. If R, # 0, then h(X,Z) = 0 implies g(SX, Z) = 0.

Let h(X,Z) = 0. There are three possibilities:

(i) h(JZ,X) £0,

(i) h(JZ, X) =0, but Z & ker h,

(iii) Z € ker h.
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If (i) holds, then from the equalities g(R(X, ) Z)=0,hX,Z2)=0
we obtain h(JX, Z)g(SX,Z) = 0. Hence g(SX Z) =
If (ii) holds, then we take Y such that h(Y, Z) # O From
g(R(X,Y)Z,Z)=0 and g(R(X,JY)Z,Z)=0

we obtain

MY, Z)g(SX,Z)+ h(JY,Z)g(SIX,Z) =0,
hJY,Z2)g(SX,Z) — h(Y,Z)g(STJX,Z) =0,
which together with h(Y, Z) # 0 yields g(SX,Z) = g(SJX,Z) = 0.
If (iii) holds, then, by Step 3, Z € ker S. Hence g(SX, Z) = 0 by Step 4.
STEP 6. There exists a non-vanishing function 3 on U NW such that
(3) hMX,Y) = Bg(SX,Y)
on UNW, for all vector fields X, Y on UNW.

Let z € UNW. The forms h,(-,-) and g,(S;-,-) are bilinear and for all
X, Y €T, M if h(X,Y) =0, then ¢,(S,X,Y) = 0. If that is the case, one
can find A\, € R such that g,(S;-,) = Azhz(+,-). Moreover, A\, # 0 because
of the non-degeneracy of g and the fact that S, # 0. For z €¢ UNW we
now define 3, = 1/)\,;. As a function of x, § is smooth, because for every
x € UNW we can find vector fields X,Y such that g(SX,Y) # 0 on a
neighbourhood U’ C U N'W of x, and then write

B=h(X,Y)/g(SX,Y).

STEP 7. If h(X,Y) = B9(SX,Y) on some open subset of {x € M :

R, # 0}, then ( satisfies the following equation:
dpg + 28 = 0.

The proof is the same as in the case of anti-holomorphic transversal
bundle in [NP], the difference is that now we do not have the condition
v(X)=p(JX).

From the first Codazzi equation we have, for all X,Y, Z,

0= (Vxh)(Y,Z)+ pn(X)h(Y,Z)+v(X)h(JY, Z)
(vyh> Z) = W(Y)h(X, Z) - v(Y)h(JX, Z)

(X,
(h(Y,2)) = W(VxY,Z) - WY,VxZ)
(X)h(Y Z) + v(X)h(JY, Z)
Y(h(X,Z)) + h(Vy X, Z) + h(X,VyZ)
p(Y)h(X,Z) —v(Y)h(JX, Z)

= X(Bg(5Y, Z)) - /Bg(S(VXY)v Z) - ﬁg(SY7 VXZ)
+ u(X)By(SY, Z) + v(X)Bg(STY, Z)
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—Y(B9(SX, Z)) + Bg(S(Vy X), Z) + Bg(SX,Vy Z)
—uw(Y)Bg(SX,Z) —v(Y)Bg(STX, Z)

= X(B)g(SY, Z) + Bg((VxS)(Y), Z)
— W(X)Byg(SY, Z) — v(X)Bg(TSY, Z) + 2u(X)Bg(SY, Z)
—Y(B)9(SX,Z) — Bg((Vy S)(X), Z)
+u(Y)B9(SX, Z) +v(Y)Bg(JSX, Z) — 2u(Y)Bg(SX, Z)

= (X(B) +2u(X)P)g(SY, Z) — (Y (B) + 2u(Y)B)g(SX, Z)
+09((VxS)(Y) = p(X)SY —v(X)JSY), Z)
= Bg((Vy S)(X) = p(Y)SX —v(Y)JSX, Z)

= (X(B) +2u(X)P)g(SY, Z) — (Y (B) + 2u(Y)B)g(S X, Z),

in which the last equality follows from the second Codazzi equation. We
have

9((dB + 28p)(X)SY — (df + 26u)(Y)SX,Z) =0
for all X,Y, Z and from the non-degeneracy of ¢ it follows that

(4) (dB + 28) (X)SY — (dB + 2B12)(Y)SX = 0
for all X,Y. We claim that

(5) (dB + 26) (X) = 0

for all X.

Let X € T, M. If SX =0, then (df+26u)(X)SY =0forall Y € T, M.
Since S, # 0, we can find Y such that SY # 0. Hence (5) holds. If SX # 0,
then we write (4) with Y = JX. From the linear independence of SX and
SJX = —JSX we conclude that (5) holds.

Using the function 3 we now define a Hermitian product G§ on C"*1:
Gg(f*Xa f*Y) = g(X7 Y)v
G (6o &) = G5 (I, JEo) = 1/ s,
foreachx c UNW.

It is easy to show that if we have two local sections of the transversal
bundle NV, ¢ and £ = € + 1 JE, both defined on some open set U, then on

UNW we have G¢ = G¢. Indeed, let €U NW. Compare the values of G

and Gg , taking all the vectors f, X with X € T, M and g} as generators of
Ccrtl:

GE(f.X, [.Y) = g(X,Y) = GS(f.X, £.Y),

CE(f.X, &) = GE(£u X, 0(2)Es + () JE) = 0 = GS(£.X, &),
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GE(f.X,JE,) = —GS(f.IX, &) = 0 = GS(£. X, JE,),

-~ 2 2
G5 (60, &) = GS(0(0)€s +0(2)TEr, S(@)Er + U(2)JEx) = W
whereas o B
It remains to show that
~ B
) i
Recall that we have
hX,Y) = PUX,Y) = YI(IX, Y), SX = ¢SX +hJSX.

¢2 + ¢2
If we put h(X,Y) = Bg(SX,Y) into the first equation and make use of the
anti-complexity of S, we obtain

E(Xa Y) = mg

From the other equation it follows that
= p
h(X,Y)=

Comparing this with the equation (§) defining 5 we have (6).

(6SX + 9 JSX,Y).

(5X,Y).

We can now define for x € W a Hermitian product G, on C"*!: G, :=
G&, where ¢ is a local section of the transversal bundle A whose domain
contains x.

STEP 8. G is parallel relative to D.
Let X e TM. For Y, Z € X(M) we have
(DxG)([.Y, [.Z2) = X(G([.Y, f.2)) — G(Dx f.Y, . Z) — G(f.Y, Dx f. Z)
= X(G(f.Y, f.2))
—G(f.VxY +h(X,Y), - h(JX,Y)JE, [ 2)
- G(f.Y, iVxZ+h(X,2)¢ - h(JX,Z)JE)
=X(9(Y,2)) - 9(VxY,Z) - g(Y,VxZ)
~ (Vxg)(¥.2) =0,

(DxG)([.Y,§) = X(G([.Y,§)) — G(Dx [.Y,§) — G(f.Y, Dx¢§)
= —G(f.VxY +h(X,Y)E — h(JX,Y)JE,§)
= G(fY, = fSX + pu(X)E + v(X)JE)

=~ BXY)5 +9(¥.5X) = 0
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= X(G(£,€)) — 2G(— f.SX + u(X)E + v(X)JE, €)
1 1
— — (X(8) + 260(3)) =0

Since Dx G is hermitian as G is, we conclude that DxG = 0. As W is
assumed to be connected, the map x — G is constant on W. The proof of
the lemma is now complete. m

In Steps 9 and 10 we shall prove 1) of the theorem.
STEP 9. If hy # 0, then R, = 0 implies S, = 0.

Let e1,...,e, be a complex basis of T, M such that h¢(e;,e;) = 1 for
ie{l,...,r}, h°(ei,e;) = 0 for i € {r+1,...,n} and h(e;,e;) = 0 for
i # 7. We have r > 0 since h, # 0.

Using the Gauss equation we obtain 0 = R(e;, e1)e; = Se; for j # 0 and
0= R(61, Jel)Jel = —2561.

STEP 10. The connected components of the set {x € M : R, # 0} are
closed in M.

Let W be a non-empty connected component of {x € M : R, # 0} in
M. According to the lemma there is a Hermitian product G on C"*! such
that flw : (W, g) — (C"*1, Q) is an isometric immersion. Let y € W. Let
U be a neighbourhood of y with a local section £ of the transversal bundle
N and the corresponding C* objects h, S on U. On U N W we then have
a smooth function §: U NW — R\{0} such that = 1/G(§,§) on UNW
and h(X,Y) = Bg(SX,Y) for vector fields X, Y on UNW.

Define

a:Usz— G(&, &) € R

We claim that
(i) a#0on WNU,
(ii) if X, Y are vector fields on U, then
ah(X,Y)=g(SX,Y) onWnNU.

Let 2 € WNU. Let V be an open neighbourhood of z such that V' c U
WNVcCcWnV,since Visopen; WNV CWNVCWnNUCU.
For arbitrary vector fields X,Y we define on U the continuous functions
XY = ah(X,Y) — g(SX,Y) and 95 := G(f.X,&). Since XY and 5
vanish on W NV, we also have XY (W NV) = {0} and 55 (W NV) = {0}.
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In particular, they vanish at the point 2. Since z was an arbitrary point
from W N U, we have (i) and (ii).

We aim to show that y € W. Since h, # 0, we can find vectors X,,Y, €
T, M such that h(X,,Y,) # 0 and then from the equality

O‘yh(Xy? Yy) = g(SyXy> Yy)

we conclude that S, # 0. Step 9 now implies R, # 0. If W; denotes the
connected component of {x € M : R, # 0} containing y, then obviously
Wi=W,soyeW.

From Step 10 and the assumed connectedness of M it follows that if V is
not flat, then R, # 0 for every x € M. The second assertion of the theorem
follows immediately from the lemma upon taking W = M. =
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