ANNALES POLONICI MATHEMATICI LXXV.1 (2000)

On the Cartan–Norden theorem for affine Kähler immersions

by Maria Robaszewska (Kraków)

Abstract. In [O2] the Cartan–Norden theorem for real affine immersions was proved without the non-degeneracy assumption. A similar reasoning applies to the case of affine Kähler immersions with an anti-complex shape operator, which allows us to weaken the assumptions of the theorem given in [NP]. We need only require the immersion to have a non-vanishing type number everywhere on M.

1. Introduction. Let M be an n-dimensional complex manifold with a complex linear torsion-free connection ∇ . A holomorphic immersion f: $M \to \mathbb{C}^{n+1}$ is called an *affine holomorphic immersion* if there exists a complex transversal bundle \mathcal{N} such that ∇ is induced by its local sections in the following way. For $x \in M$ let ξ be a local section of \mathcal{N} in the neighbourhood U of x (we require all local sections of \mathcal{N} considered to be nowhere vanishing). Let X, Y be vector fields on U. Then we have the decomposition

$$D_X f_* Y = f_* \nabla_X Y + h(X, Y)\xi - h(JX, Y)J\xi,$$

known as the Gauss formula. We denote by J the complex structure on M as well as that on \mathbb{C}^{n+1} and we write D for the standard connection on \mathbb{C}^{n+1} . The symmetric bilinear form h is called the *affine fundamental form*. The Gauss formula may also be written in the complex version

$$D_X f_* Y = f_* \nabla_X Y + h^c(X, Y) \xi$$

with \mathbb{C} -bilinear $h^c(X, Y) = h(X, Y) - ih(JX, Y)$. The (complex) rank of h^c is called the *type number* of f and denoted by tf.

The shape operator S and the transversal forms μ , ν are defined on U by the Weingarten formula:

$$D_X\xi = -f_*SX + \mu(X)\xi + \nu(X)J\xi.$$

²⁰⁰⁰ Mathematics Subject Classification: 53B05, 53C42, 53C55. Key words and phrases: affine immersion, Kählerian manifold.

^[69]

M. Robaszewska

A connection ∇ whose curvature tensor satisfies the condition

(1)
$$R(JX, JY) = R(X, Y)$$
 for all vector fields X, Y

is called an *affine Kähler connection* [NPP] and in this case an affine holomorphic immersion $f: (M, \nabla) \to (\mathbb{C}^{n+1}, D)$ is said to be an *affine Kähler immersion*. The Cartan–Norden theorem deals with Kähler connections, which are known to have the property (1).

We recall the fundamental equations for an affine holomorphic immersion:

$$\begin{split} R(X,Y)Z &= h(Y,Z)SX - h(X,Z)SY - h(JY,Z)JSX + h(JX,Z)JSY \\ &= h^c(Y,Z)SX - h^c(X,Z)SY \qquad (Gauss), \\ (\nabla_X h)(Y,Z) + \mu(X)h(Y,Z) + \nu(X)h(JY,Z) \\ &= (\nabla_Y h)(X,Z) + \mu(Y)h(X,Z) + \nu(Y)h(JX,Z) \qquad (Codazzi \ I), \\ (\nabla_X S)Y - \mu(X)SY - \nu(X)JSY \\ &= (\nabla_Y S)X - \mu(Y)SX - \nu(Y)JSX \qquad (Codazzi \ II), \\ h(X,SY) - h(Y,SX) &= 2d\mu(X,Y) \qquad (Ricci \ I), \end{split}$$

$$h(SX, JY) - h(SY, JX) = 2d\nu(X, Y)$$
(Ricci II).

2. The Cartan–Norden theorem for affine holomorphic immersions with anti-complex shape operator. The theorem to be proved is the following:

THEOREM. Let (M, g) be a connected, n-dimensional, pseudokählerian manifold with the Levi-Civita connection ∇ of g. Let $f : (M, \nabla) \to \mathbb{C}^{n+1}$ be an affine Kähler immersion such that the corresponding shape operator S is anti-complex.

1) If tf > 0 on M, then either ∇ is flat or $R_x \neq 0$ for every $x \in M$. 2) If $R_x \neq 0$ for every $x \in M$, then there exists a Hermitian product G on \mathbb{C}^{n+1} such that $f: (M, g) \to (\mathbb{C}^{n+1}, G)$ is an isometric immersion.

REMARK. The assumption that S is anti-complex is needed only if tf = 1 everywhere on M, because if ∇ is affine Kähler and tf > 1 at some point of M, then the shape operator must be anti-complex [O1].

Proof. We will first prove the following lemma:

LEMMA. Let W be a connected component of the set $\{x \in M : R_x \neq 0\}$. Under the hypotheses of the theorem, there exists a Hermitian product G on \mathbb{C}^{n+1} such that $f|_W : (W,g) \to (\mathbb{C}^{n+1},G)$ is an isometric immersion. Moreover, if ξ is a transversal vector field inducing the connection ∇ on an open set U and h, S are the affine fundamental form and the shape operator associated with ξ respectively, then

$$h(X,Y) = \frac{1}{G(\xi,\xi)} g(SX,Y)$$

for all vector fields X, Y on $U \cap W$.

Proof. We have divided the proof into a sequence of steps, similar to those in [O2]. In Steps 1–6 we shall prove that there exists a non-vanishing function β on $U \cap W$ such that

$$h(X,Y) = \beta g(SX,Y)$$

on $U \cap W$, for all vector fields X, Y on $U \cap W$.

STEP 1. If $h_x \neq 0$, then im $R_x = \text{im } S_x$.

It follows from the Gauss equation that the complex subspace

$$\operatorname{im} R_x = \operatorname{span} \{ R(X, Y)Z : X, Y, Z \in T_x M \}$$

is included in im S_x . Let now $X \in T_x M$. If $X \in \ker h^c$, take Y, Z such that $h^c(Y,Z) \neq 0$. Then

$$SX = \frac{R(X,Y)Z}{h^c(Y,Z)} \in \operatorname{im} R_x.$$

If $X \notin \ker h^c$, take Y such that $h^c(X, Y) \neq 0$. Then

 $R(X,JX)JY = h^{c}(JX,JY)SX - h^{c}(X,JY)SJX = -2h^{c}(X,Y)SX,$

 \mathbf{SO}

$$SX = \frac{-R(X, JX)JY}{2h^c(X, Y)} \in \operatorname{im} R_x$$

STEP 2. If $S_x \neq 0$, then ker $h_x = \ker R_x$.

We only have to prove that $\ker h_x \supset \ker R_x$, where

$$\ker h_x = \{X \in T_x M : \forall Y \in T_x M, \ h(X,Y) = 0\} = \ker h_x^c$$

 $\ker R_x = \{ X \in T_x M : \forall Y, Z \in T_x M, \ R(Y, Z) X = 0 \}.$

Let $Z \in \ker R_x$ and let $Y \in T_x M$.

If SY = 0, then for arbitrary $X \in T_x M$,

$$0 = R(X, Y)Z = h^c(Y, Z)SX.$$

We can choose X such that $SX \neq 0$, so $h^c(Y, Z) = 0$.

If $SY \neq 0$, then the equality

 $0 = R(Y, JY)JZ = h^c(JY, JZ)SY - h^c(Y, JZ)SJY = -2h^c(Y, Z)SY$ implies that $h^c(Y, Z) = 0$.

STEP 3. If $R_x \neq 0$, then ker $h_x = \ker S_x = \ker R_x$.

From the Gauss equation we obtain $S_x \neq 0$ and $h_x \neq 0$, therefore $\ker h_x = \ker R_x$ and $\operatorname{im} R_x = \operatorname{im} S_x$. It remains to prove that $\ker h_x = \ker S_x$.

We first show that dim ker $S_x = \dim \ker h_x$.

If ∇ is the Levi-Civita connection for a Kählerian metric g, then for all X, Y, Z, W in $T_x M$ we have g(R(X, Y)Z, W) = -g(R(X, Y)W, Z), which implies

$$(\operatorname{im} R_x)^{\perp g} = \ker R_x$$

because of the non-degeneracy of g. For the non-degenerate g we have

$$2n = \dim_{\mathbb{R}}(\operatorname{im} R_x) + \dim_{\mathbb{R}}(\operatorname{im} R_x)^{\perp_{\mathcal{G}}}$$

= dim_{\mathbb{R}}(\operatorname{im} R_x) + dim_{\mathbb{R}}(\ker R_x)
= dim_{\mathbb{R}}(\operatorname{im} S_x) + dim_{\mathbb{R}}(\ker h_x).

On the other hand we have

$$2n = \dim_{\mathbb{R}}(\operatorname{im} S_x) + \dim_{\mathbb{R}}(\ker S_x).$$

It now remains to prove the inclusion ker $S_x \supset \ker h_x$.

Let $X \in \ker h_x$. The assertion of Step 2 implies that $X \in \ker R_x$. Recall that if ∇ is metrizable and torsion-free, then

$$\ker R_x = \{ Y \in T_x M : \forall X \in T_x M, \ R(X, Y) = 0 \}.$$

Consequently, for all Y, Z we have R(X, Y)Z = 0. Using the Gauss equation we obtain

$$0 = h^{c}(Y, Z)SX - h^{c}(X, Z)SY = h^{c}(Y, Z)SX$$

for all Y, Z. Since $h_x \neq 0$, we can find Y, Z such that $h^c(Y, Z) \neq 0$, therefore SX must equal 0.

STEP 4. If $R_x \neq 0$, then SX = 0 implies that g(SZ, X) = 0 for all $Z \in T_x M$.

Let $X \in \ker S_x = (\operatorname{im} R_x)^{\perp g}$. Then for all $Y, Z \in T_x M$ we have

$$g(R(JZ, Z)Y, X) = 0$$
 and $g(R(JZ, Z)JY, X) = 0$.

Using the Gauss equation we obtain

(2)
$$h(Z,Y)g(SJZ,X) - h(Z,JY)g(SZ,X) = 0, h(Z,JY)g(SJZ,X) + h(Z,Y)g(SZ,X) = 0$$

for all $Y, Z \in T_x M$. Let $Z \in T_x M$. If $Z \in \ker h$, then, by Step 3, $Z \in \ker S$, so g(SZ, X) = 0. If $Z \notin \ker h$, then there exists $Y \in T_x M$ such that $h(Z, Y) \neq 0$. If we now consider (2), we obtain g(SZ, X) = g(SJZ, X) = 0.

STEP 5. If $R_x \neq 0$, then h(X, Z) = 0 implies g(SX, Z) = 0.

Let h(X, Z) = 0. There are three possibilities:

(i) $h(JZ, X) \neq 0$,

- (ii) h(JZ, X) = 0, but $Z \notin \ker h$,
- (iii) $Z \in \ker h$.

If (i) holds, then from the equalities g(R(X, JX)Z, Z) = 0, h(X, Z) = 0we obtain h(JX, Z)g(SX, Z) = 0. Hence g(SX, Z) = 0.

If (ii) holds, then we take Y such that $h(Y,Z) \neq 0$. From

$$g(R(X,Y)Z,Z) = 0$$
 and $g(R(X,JY)Z,Z) = 0$

we obtain

$$h(Y,Z)g(SX,Z) + h(JY,Z)g(SJX,Z) = 0,$$

$$h(JY,Z)g(SX,Z) - h(Y,Z)g(SJX,Z) = 0,$$

which together with $h(Y, Z) \neq 0$ yields g(SX, Z) = g(SJX, Z) = 0. If (iii) holds, then, by Step 3, $Z \in \ker S$. Hence g(SX, Z) = 0 by Step 4.

STEP 6. There exists a non-vanishing function β on $U \cap W$ such that

(3)
$$h(X,Y) = \beta g(SX,Y)$$

on $U \cap W$, for all vector fields X, Y on $U \cap W$.

Let $x \in U \cap W$. The forms $h_x(\cdot, \cdot)$ and $g_x(S_x, \cdot)$ are bilinear and for all $X, Y \in T_x M$ if $h_x(X, Y) = 0$, then $g_x(S_x X, Y) = 0$. If that is the case, one can find $\lambda_x \in \mathbb{R}$ such that $g_x(S_x, \cdot) = \lambda_x h_x(\cdot, \cdot)$. Moreover, $\lambda_x \neq 0$ because of the non-degeneracy of g and the fact that $S_x \neq 0$. For $x \in U \cap W$ we now define $\beta_x = 1/\lambda_x$. As a function of x, β is smooth, because for every $x \in U \cap W$ we can find vector fields X, Y such that $g(SX, Y) \neq 0$ on a neighbourhood $U' \subset U \cap W$ of x, and then write

$$\beta = h(X, Y)/g(SX, Y).$$

STEP 7. If $h(X,Y) = \beta g(SX,Y)$ on some open subset of $\{x \in M : R_x \neq 0\}$, then β satisfies the following equation:

$$d\beta + 2\beta\mu = 0.$$

The proof is the same as in the case of anti-holomorphic transversal bundle in [NP], the difference is that now we do not have the condition $\nu(X) = \mu(JX)$.

From the first Codazzi equation we have, for all X, Y, Z,

$$\begin{split} 0 &= (\nabla_X h)(Y,Z) + \mu(X)h(Y,Z) + \nu(X)h(JY,Z) \\ &- (\nabla_Y h)(X,Z) - \mu(Y)h(X,Z) - \nu(Y)h(JX,Z) \\ &= X(h(Y,Z)) - h(\nabla_X Y,Z) - h(Y,\nabla_X Z) \\ &+ \mu(X)h(Y,Z) + \nu(X)h(JY,Z) \\ &- Y(h(X,Z)) + h(\nabla_Y X,Z) + h(X,\nabla_Y Z) \\ &- \mu(Y)h(X,Z) - \nu(Y)h(JX,Z) \\ &= X(\beta g(SY,Z)) - \beta g(S(\nabla_X Y),Z) - \beta g(SY,\nabla_X Z) \\ &+ \mu(X)\beta g(SY,Z) + \nu(X)\beta g(SJY,Z) \end{split}$$

M. Robaszewska

$$\begin{split} &-Y(\beta g(SX,Z)) + \beta g(S(\nabla_Y X),Z) + \beta g(SX,\nabla_Y Z) \\ &-\mu(Y)\beta g(SX,Z) - \nu(Y)\beta g(SJX,Z) \\ &= X(\beta)g(SY,Z) + \beta g((\nabla_X S)(Y),Z) \\ &-\mu(X)\beta g(SY,Z) - \nu(X)\beta g(JSY,Z) + 2\mu(X)\beta g(SY,Z) \\ &-Y(\beta)g(SX,Z) - \beta g((\nabla_Y S)(X),Z) \\ &+\mu(Y)\beta g(SX,Z) + \nu(Y)\beta g(JSX,Z) - 2\mu(Y)\beta g(SX,Z) \\ &= (X(\beta) + 2\mu(X)\beta)g(SY,Z) - (Y(\beta) + 2\mu(Y)\beta)g(SX,Z) \\ &+\beta g((\nabla_X S)(Y) - \mu(X)SY - \nu(X)JSY),Z) \\ &-\beta g((\nabla_Y S)(X) - \mu(Y)SX - \nu(Y)JSX,Z) \\ &= (X(\beta) + 2\mu(X)\beta)g(SY,Z) - (Y(\beta) + 2\mu(Y)\beta)g(SX,Z), \end{split}$$

in which the last equality follows from the second Codazzi equation. We have

$$g((d\beta + 2\beta\mu)(X)SY - (d\beta + 2\beta\mu)(Y)SX, Z) = 0$$

for all X, Y, Z and from the non-degeneracy of g it follows that

(4)
$$(d\beta + 2\beta\mu)(X)SY - (d\beta + 2\beta\mu)(Y)SX = 0$$

for all X, Y. We claim that

$$(d\beta + 2\beta\mu)(X) = 0$$

for all X.

(5)

Let $X \in T_x M$. If SX = 0, then $(d\beta + 2\beta\mu)(X)SY = 0$ for all $Y \in T_x M$. Since $S_x \neq 0$, we can find Y such that $SY \neq 0$. Hence (5) holds. If $SX \neq 0$, then we write (4) with Y = JX. From the linear independence of SX and SJX = -JSX we conclude that (5) holds.

Using the function β we now define a Hermitian product G_x^{ξ} on \mathbb{C}^{n+1} :

$$\begin{split} G_x^{\xi}(f_*X, f_*Y) &= g(X, Y), \\ G_x^{\xi}(\xi_x, \xi_x) &= G_x^{\xi}(J\xi_x, J\xi_x) = 1/\beta_x, \\ G_x^{\xi}(f_*X, \xi_x) &= G_x^{\xi}(f_*X, J\xi_x) = G_x^{\xi}(\xi_x, J\xi_x) = 0 \end{split}$$

for each $x \in U \cap W$.

It is easy to show that if we have two local sections of the transversal bundle \mathcal{N}, ξ and $\tilde{\xi} = \phi \xi + \psi J \xi$, both defined on some open set U, then on $U \cap W$ we have $G^{\xi} = G^{\widetilde{\xi}}$. Indeed, let $x \in U \cap W$. Compare the values of G_x^{ξ} and $G_x^{\tilde{\xi}}$, taking all the vectors f_*X with $X \in T_xM$ and $\tilde{\xi}_x$ as generators of \mathbb{C}^{n+1} :

$$\begin{split} G_x^{\xi}(f_*X, f_*Y) &= g(X, Y) = G_x^{\widetilde{\xi}}(f_*X, f_*Y), \\ G_x^{\xi}(f_*X, \widetilde{\xi}_x) &= G_x^{\xi}(f_*X, \phi(x)\xi_x + \psi(x)J\xi_x) = 0 = G_x^{\widetilde{\xi}}(f_*X, \widetilde{\xi}_x), \end{split}$$

$$G_x^{\xi}(f_*X, J\widetilde{\xi}_x) = -G_x^{\xi}(f_*JX, \widetilde{\xi}_x) = 0 = G_x^{\widetilde{\xi}}(f_*X, J\widetilde{\xi}_x),$$
$$G_x^{\xi}(\widetilde{\xi}_x, \widetilde{\xi}_x) = G_x^{\xi}(\phi(x)\xi_x + \psi(x)J\xi_x, \phi(x)\xi_x + \psi(x)J\xi_x) = \frac{(\phi^2 + \psi^2)(x)}{\beta_x},$$

whereas

(6)

$$G_x^{\widetilde{\xi}}(\widetilde{\xi}_x,\widetilde{\xi}_x) = 1/\widetilde{\beta}_x.$$

It remains to show that

$$\widetilde{\beta} = \frac{\beta}{\phi^2 + \psi^2}.$$

Recall that we have

$$\widetilde{h}(X,Y) = \frac{\phi h(X,Y) - \psi h(JX,Y)}{\phi^2 + \psi^2}, \quad \widetilde{S}X = \phi SX + \psi JSX.$$

If we put $h(X,Y) = \beta g(SX,Y)$ into the first equation and make use of the anti-complexity of S, we obtain

$$\widetilde{h}(X,Y) = \frac{\beta}{\phi^2 + \psi^2} g(\phi SX + \psi JSX, Y).$$

From the other equation it follows that

$$\widetilde{h}(X,Y) = \frac{\beta}{\phi^2 + \psi^2} g(\widetilde{S}X,Y).$$

Comparing this with the equation (3) defining $\tilde{\beta}$ we have (6).

We can now define for $x \in W$ a Hermitian product G_x on \mathbb{C}^{n+1} : $G_x := G_x^{\xi}$, where ξ is a local section of the transversal bundle \mathcal{N} whose domain contains x.

STEP 8. G is parallel relative to D.

Let $X \in TM$. For $Y, Z \in \mathcal{X}(M)$ we have

$$\begin{split} (D_X G)(f_*Y, f_*Z) &= X(G(f_*Y, f_*Z)) - G(D_X f_*Y, f_*Z) - G(f_*Y, D_X f_*Z) \\ &= X(G(f_*Y, f_*Z)) \\ &- G(f_*\nabla_X Y + h(X, Y)\xi - h(JX, Y)J\xi, f_*Z) \\ &- G(f_*Y, f_*\nabla_X Z + h(X, Z)\xi - h(JX, Z)J\xi) \\ &= X(g(Y, Z)) - g(\nabla_X Y, Z) - g(Y, \nabla_X Z) \\ &= (\nabla_X g)(Y, Z) = 0, \\ (D_X G)(f_*Y, \xi) &= X(G(f_*Y, \xi)) - G(D_X f_*Y, \xi) - G(f_*Y, D_X \xi) \\ &= - G(f_*\nabla_X Y + h(X, Y)\xi - h(JX, Y)J\xi, \xi) \\ &- G(f_*Y, -f_*SX + \mu(X)\xi + \nu(X)J\xi) \\ &= - h(X, Y)\frac{1}{\beta} + g(Y, SX) = 0, \end{split}$$

M. Robaszewska

$$(D_X G)(\xi,\xi) = X(G(\xi,\xi)) - 2G(D_X\xi,\xi)$$

= $X(G(\xi,\xi)) - 2G(-f_*SX + \mu(X)\xi + \nu(X)J\xi,\xi)$
= $X\left(\frac{1}{\beta}\right) - 2\mu(X)\frac{1}{\beta}$
= $-\frac{1}{\beta^2}(X(\beta) + 2\beta\mu(X)) = 0.$

Since $D_X G$ is hermitian as G is, we conclude that $D_X G = 0$. As W is assumed to be connected, the map $x \mapsto G_x$ is constant on W. The proof of the lemma is now complete.

In Steps 9 and 10 we shall prove 1) of the theorem.

STEP 9. If $h_x \neq 0$, then $R_x = 0$ implies $S_x = 0$.

Let e_1, \ldots, e_n be a complex basis of $T_x M$ such that $h^c(e_i, e_i) = 1$ for $i \in \{1, \ldots, r\}, h^c(e_i, e_i) = 0$ for $i \in \{r + 1, \ldots, n\}$ and $h^c(e_i, e_j) = 0$ for $i \neq j$. We have r > 0 since $h_x \neq 0$.

Using the Gauss equation we obtain $0 = R(e_j, e_1)e_1 = Se_j$ for $j \neq 0$ and $0 = R(e_1, Je_1)Je_1 = -2Se_1$.

STEP 10. The connected components of the set $\{x \in M : R_x \neq 0\}$ are closed in M.

Let W be a non-empty connected component of $\{x \in M : R_x \neq 0\}$ in M. According to the lemma there is a Hermitian product G on \mathbb{C}^{n+1} such that $f|_W : (W,g) \to (\mathbb{C}^{n+1},G)$ is an isometric immersion. Let $y \in \overline{W}$. Let U be a neighbourhood of y with a local section ξ of the transversal bundle \mathcal{N} and the corresponding \mathcal{C}^{∞} objects h, S on U. On $U \cap W$ we then have a smooth function $\beta : U \cap W \to \mathbb{R} \setminus \{0\}$ such that $\beta = 1/G(\xi,\xi)$ on $U \cap W$ and $h(X,Y) = \beta g(SX,Y)$ for vector fields X, Y on $U \cap W$.

Define

$$\alpha: U \ni x \mapsto G(\xi_x, \xi_x) \in \mathbb{R}.$$

We claim that

(i) $\alpha \neq 0$ on $\overline{W} \cap U$,

(ii) if X, Y are vector fields on U, then

$$\alpha h(X,Y) = g(SX,Y) \quad \text{on } \overline{W} \cap U.$$

Let $z \in \overline{W} \cap U$. Let V be an open neighbourhood of z such that $\overline{V} \subset U$; $\overline{W} \cap V \subset \overline{W \cap V}$, since V is open; $\overline{W \cap V} \subset \overline{W} \cap \overline{V} \subset \overline{W} \cap U \subset U$.

For arbitrary vector fields X, Y we define on U the continuous functions $\psi_1^{XY} := \alpha h(X, Y) - g(SX, Y)$ and $\psi_2^X := G(f_*X, \xi)$. Since ψ_1^{XY} and ψ_2^X vanish on $W \cap V$, we also have $\psi_1^{XY}(\overline{W \cap V}) = \{0\}$ and $\psi_2^X(\overline{W \cap V}) = \{0\}$.

In particular, they vanish at the point z. Since z was an arbitrary point from $\overline{W} \cap U$, we have (i) and (ii).

We aim to show that $y \in W$. Since $h_y \neq 0$, we can find vectors $X_y, Y_y \in T_y M$ such that $h(X_y, Y_y) \neq 0$ and then from the equality

$$\alpha_y h(X_y, Y_y) = g(S_y X_y, Y_y)$$

we conclude that $S_y \neq 0$. Step 9 now implies $R_y \neq 0$. If W_1 denotes the connected component of $\{x \in M : R_x \neq 0\}$ containing y, then obviously $W_1 = W$, so $y \in W$.

From Step 10 and the assumed connectedness of M it follows that if ∇ is not flat, then $R_x \neq 0$ for every $x \in M$. The second assertion of the theorem follows immediately from the lemma upon taking W = M.

References

- [NPP] K. Nomizu, U. Pinkall and F. Podesta, On the geometry of affine Kähler immersions, Nagoya Math. J. 120 (1990), 205-222.
 - [NP] K. Nomizu and F. Podesta, On the Cartan-Norden theorem for affine Kähler immersions, Nagoya Math. J. 121 (1991), 127–135.
 - [O1] B. Opozda, On some properties of the curvature and Ricci tensors in complex affine geometry, Geom. Dedicata 55 (1995), 141–163.
 - [O2] —, On the Cartan–Norden theorem, Math. Z. 226 (1997), 309–316.

Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland E-mail: robaszew@im.uj.edu.pl

Reçu par la Rédaction le 20.10.1999