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On the Cartan–Norden theorem for
affine Kähler immersions

by Maria Robaszewska (Kraków)

Abstract. In [O2] the Cartan–Norden theorem for real affine immersions was proved
without the non-degeneracy assumption. A similar reasoning applies to the case of affine
Kähler immersions with an anti-complex shape operator, which allows us to weaken the
assumptions of the theorem given in [NP]. We need only require the immersion to have a
non-vanishing type number everywhere on M .

1. Introduction. Let M be an n-dimensional complex manifold with
a complex linear torsion-free connection ∇. A holomorphic immersion f :
M → Cn+1 is called an affine holomorphic immersion if there exists a com-
plex transversal bundle N such that ∇ is induced by its local sections in
the following way. For x ∈M let ξ be a local section of N in the neighbour-
hood U of x (we require all local sections of N considered to be nowhere
vanishing). Let X,Y be vector fields on U . Then we have the decomposition

DXf∗Y = f∗∇XY + h(X,Y )ξ − h(JX, Y )Jξ,

known as the Gauss formula. We denote by J the complex structure on M
as well as that on Cn+1 and we write D for the standard connection on
Cn+1. The symmetric bilinear form h is called the affine fundamental form.
The Gauss formula may also be written in the complex version

DXf∗Y = f∗∇XY + hc(X,Y )ξ

with C-bilinear hc(X,Y ) = h(X,Y )− ih(JX, Y ). The (complex) rank of hc

is called the type number of f and denoted by tf .
The shape operator S and the transversal forms µ, ν are defined on U

by the Weingarten formula:

DXξ = −f∗SX + µ(X)ξ + ν(X)Jξ.
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A connection ∇ whose curvature tensor satisfies the condition

(1) R(JX, JY ) = R(X,Y ) for all vector fields X,Y

is called an affine Kähler connection [NPP] and in this case an affine holo-
morphic immersion f : (M,∇) → (Cn+1, D) is said to be an affine Kähler
immersion. The Cartan–Norden theorem deals with Kähler connections,
which are known to have the property (1).

We recall the fundamental equations for an affine holomorphic immer-
sion:

R(X,Y )Z = h(Y,Z)SX − h(X,Z)SY − h(JY, Z)JSX + h(JX,Z)JSY
= hc(Y, Z)SX − hc(X,Z)SY (Gauss),

(∇Xh)(Y,Z) + µ(X)h(Y,Z) + ν(X)h(JY, Z)
= (∇Y h)(X,Z) + µ(Y )h(X,Z) + ν(Y )h(JX,Z) (Codazzi I ),

(∇XS)Y − µ(X)SY − ν(X)JSY
= (∇Y S)X − µ(Y )SX − ν(Y )JSX (Codazzi II ),

h(X,SY )− h(Y, SX) = 2dµ(X,Y ) (Ricci I ),
h(SX, JY )− h(SY, JX) = 2dν(X,Y ) (Ricci II ).

2. The Cartan–Norden theorem for affine holomorphic immer-
sions with anti-complex shape operator. The theorem to be proved is
the following:

Theorem. Let (M, g) be a connected , n-dimensional , pseudokählerian
manifold with the Levi-Civita connection ∇ of g. Let f : (M,∇)→ Cn+1 be
an affine Kähler immersion such that the corresponding shape operator S is
anti-complex.

1) If tf > 0 on M , then either ∇ is flat or Rx 6= 0 for every x ∈M .
2) If Rx 6= 0 for every x ∈ M , then there exists a Hermitian product G

on Cn+1 such that f : (M, g)→ (Cn+1, G) is an isometric immersion.

Remark. The assumption that S is anti-complex is needed only if tf = 1
everywhere on M , because if ∇ is affine Kähler and tf > 1 at some point of
M , then the shape operator must be anti-complex [O1].

P r o o f. We will first prove the following lemma:

Lemma. Let W be a connected component of the set {x ∈M : Rx 6= 0}.
Under the hypotheses of the theorem, there exists a Hermitian product G
on Cn+1 such that f |W : (W, g) → (Cn+1, G) is an isometric immersion.
Moreover , if ξ is a transversal vector field inducing the connection ∇ on an
open set U and h, S are the affine fundamental form and the shape operator
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associated with ξ respectively , then

h(X,Y ) =
1

G(ξ, ξ)
g(SX, Y )

for all vector fields X, Y on U ∩W .

P r o o f. We have divided the proof into a sequence of steps, similar to
those in [O2]. In Steps 1–6 we shall prove that there exists a non-vanishing
function β on U ∩W such that

h(X,Y ) = βg(SX, Y )

on U ∩W , for all vector fields X, Y on U ∩W .

Step 1. If hx 6= 0, then imRx = imSx.

It follows from the Gauss equation that the complex subspace

imRx = span{R(X,Y )Z : X,Y, Z ∈ TxM}
is included in imSx. Let now X ∈ TxM . If X ∈ kerhc, take Y , Z such that
hc(Y, Z) 6= 0. Then

SX =
R(X,Y )Z
hc(Y,Z)

∈ imRx.

If X 6∈ kerhc, take Y such that hc(X,Y ) 6= 0. Then

R(X, JX)JY = hc(JX, JY )SX − hc(X, JY )SJX = −2hc(X,Y )SX,

so

SX =
−R(X, JX)JY

2hc(X,Y )
∈ imRx.

Step 2. If Sx 6= 0, then kerhx = kerRx.

We only have to prove that kerhx ⊃ kerRx, where

kerhx = {X ∈ TxM : ∀Y ∈ TxM, h(X,Y ) = 0} = kerhcx,
kerRx = {X ∈ TxM : ∀Y,Z ∈ TxM, R(Y,Z)X = 0}.

Let Z ∈ kerRx and let Y ∈ TxM .
If SY = 0, then for arbitrary X ∈ TxM ,

0 = R(X,Y )Z = hc(Y, Z)SX.

We can choose X such that SX 6= 0, so hc(Y, Z) = 0.
If SY 6= 0, then the equality

0 = R(Y, JY )JZ = hc(JY, JZ)SY − hc(Y, JZ)SJY = −2hc(Y,Z)SY

implies that hc(Y,Z) = 0.

Step 3. If Rx 6= 0, then kerhx = kerSx = kerRx.

From the Gauss equation we obtain Sx 6= 0 and hx 6= 0, therefore
kerhx= kerRx and imRx= imSx. It remains to prove that kerhx= kerSx.
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We first show that dim kerSx = dim kerhx.
If ∇ is the Levi-Civita connection for a Kählerian metric g, then for all

X, Y , Z, W in TxM we have g(R(X,Y )Z,W ) = −g(R(X,Y )W,Z), which
implies

(imRx)⊥g = kerRx
because of the non-degeneracy of g. For the non-degenerate g we have

2n = dimR(imRx) + dimR(imRx)⊥g

= dimR(imRx) + dimR(kerRx)
= dimR(imSx) + dimR(kerhx).

On the other hand we have

2n = dimR(imSx) + dimR(kerSx).

It now remains to prove the inclusion kerSx ⊃ kerhx.
Let X ∈ kerhx. The assertion of Step 2 implies that X ∈ kerRx. Recall

that if ∇ is metrizable and torsion-free, then

kerRx = {Y ∈ TxM : ∀X ∈ TxM, R(X,Y ) = 0}.
Consequently, for all Y,Z we have R(X,Y )Z = 0. Using the Gauss equation
we obtain

0 = hc(Y, Z)SX − hc(X,Z)SY = hc(Y,Z)SX

for all Y, Z. Since hx 6= 0, we can find Y, Z such that hc(Y,Z) 6= 0, therefore
SX must equal 0.

Step 4. If Rx 6= 0, then SX = 0 implies that g(SZ,X) = 0 for all
Z ∈ TxM .

Let X ∈ kerSx = (imRx)⊥g. Then for all Y, Z ∈ TxM we have

g(R(JZ,Z)Y,X) = 0 and g(R(JZ,Z)JY,X) = 0.

Using the Gauss equation we obtain

(2)
h(Z, Y )g(SJZ,X)− h(Z, JY )g(SZ,X) = 0,
h(Z, JY )g(SJZ,X) + h(Z, Y )g(SZ,X) = 0

for all Y,Z ∈ TxM . Let Z ∈ TxM . If Z ∈ kerh, then, by Step 3, Z ∈
kerS, so g(SZ,X) = 0. If Z 6∈ kerh, then there exists Y ∈ TxM such that
h(Z, Y ) 6= 0. If we now consider (2), we obtain g(SZ,X) = g(SJZ,X) = 0.

Step 5. If Rx 6= 0, then h(X,Z) = 0 implies g(SX,Z) = 0.

Let h(X,Z) = 0. There are three possibilities:

(i) h(JZ,X) 6= 0,
(ii) h(JZ,X) = 0, but Z 6∈ kerh,
(iii) Z ∈ kerh.
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If (i) holds, then from the equalities g(R(X, JX)Z,Z) = 0, h(X,Z) = 0
we obtain h(JX,Z)g(SX,Z) = 0. Hence g(SX,Z) = 0.

If (ii) holds, then we take Y such that h(Y,Z) 6= 0. From

g(R(X,Y )Z,Z) = 0 and g(R(X,JY )Z,Z) = 0

we obtain
h(Y, Z)g(SX,Z) + h(JY, Z)g(SJX,Z) = 0,
h(JY, Z)g(SX,Z)− h(Y,Z)g(SJX,Z) = 0,

which together with h(Y,Z) 6= 0 yields g(SX,Z) = g(SJX,Z) = 0.
If (iii) holds, then, by Step 3, Z ∈ kerS. Hence g(SX,Z) = 0 by Step 4.

Step 6. There exists a non-vanishing function β on U ∩W such that

(3) h(X,Y ) = βg(SX, Y )

on U ∩W , for all vector fields X, Y on U ∩W .

Let x ∈ U ∩W . The forms hx(·, ·) and gx(Sx·, ·) are bilinear and for all
X,Y ∈ TxM if hx(X,Y ) = 0, then gx(SxX,Y ) = 0. If that is the case, one
can find λx ∈ R such that gx(Sx·, ·) = λxhx(·, ·). Moreover, λx 6= 0 because
of the non-degeneracy of g and the fact that Sx 6= 0. For x ∈ U ∩W we
now define βx = 1/λx. As a function of x, β is smooth, because for every
x ∈ U ∩ W we can find vector fields X,Y such that g(SX, Y ) 6= 0 on a
neighbourhood U ′ ⊂ U ∩W of x, and then write

β = h(X,Y )/g(SX, Y ).

Step 7. If h(X,Y ) = βg(SX, Y ) on some open subset of {x ∈ M :
Rx 6= 0}, then β satisfies the following equation:

dβ + 2βµ = 0.

The proof is the same as in the case of anti-holomorphic transversal
bundle in [NP], the difference is that now we do not have the condition
ν(X) = µ(JX).

From the first Codazzi equation we have, for all X,Y, Z,

0 = (∇Xh)(Y,Z) + µ(X)h(Y,Z) + ν(X)h(JY, Z)
− (∇Y h)(X,Z)− µ(Y )h(X,Z)− ν(Y )h(JX,Z)

= X(h(Y,Z))− h(∇XY, Z)− h(Y,∇XZ)
+ µ(X)h(Y,Z) + ν(X)h(JY, Z)
− Y (h(X,Z)) + h(∇YX,Z) + h(X,∇Y Z)
− µ(Y )h(X,Z)− ν(Y )h(JX,Z)

= X(βg(SY,Z))− βg(S(∇XY ), Z)− βg(SY,∇XZ)
+ µ(X)βg(SY,Z) + ν(X)βg(SJY, Z)
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− Y (βg(SX,Z)) + βg(S(∇YX), Z) + βg(SX,∇Y Z)
− µ(Y )βg(SX,Z)− ν(Y )βg(SJX,Z)

= X(β)g(SY,Z) + βg((∇XS)(Y ), Z)
− µ(X)βg(SY,Z)− ν(X)βg(JSY, Z) + 2µ(X)βg(SY,Z)
− Y (β)g(SX,Z)− βg((∇Y S)(X), Z)
+ µ(Y )βg(SX,Z) + ν(Y )βg(JSX,Z)− 2µ(Y )βg(SX,Z)

= (X(β) + 2µ(X)β)g(SY,Z)− (Y (β) + 2µ(Y )β)g(SX,Z)
+ βg((∇XS)(Y )− µ(X)SY − ν(X)JSY ), Z)
− βg((∇Y S)(X)− µ(Y )SX − ν(Y )JSX,Z)

= (X(β) + 2µ(X)β)g(SY,Z)− (Y (β) + 2µ(Y )β)g(SX,Z),

in which the last equality follows from the second Codazzi equation. We
have

g((dβ + 2βµ)(X)SY − (dβ + 2βµ)(Y )SX,Z) = 0

for all X,Y, Z and from the non-degeneracy of g it follows that

(4) (dβ + 2βµ)(X)SY − (dβ + 2βµ)(Y )SX = 0

for all X,Y . We claim that

(5) (dβ + 2βµ)(X) = 0

for all X.
Let X ∈ TxM . If SX = 0, then (dβ+ 2βµ)(X)SY = 0 for all Y ∈ TxM .

Since Sx 6= 0, we can find Y such that SY 6= 0. Hence (5) holds. If SX 6= 0,
then we write (4) with Y = JX. From the linear independence of SX and
SJX = −JSX we conclude that (5) holds.

Using the function β we now define a Hermitian product Gξx on Cn+1:

Gξx(f∗X, f∗Y ) = g(X,Y ),
Gξx(ξx, ξx) = Gξx(Jξx, Jξx) = 1/βx,

Gξx(f∗X, ξx) = Gξx(f∗X, Jξx) = Gξx(ξx, Jξx) = 0

for each x ∈ U ∩W .
It is easy to show that if we have two local sections of the transversal

bundle N , ξ and ξ̃ = φξ + ψJξ, both defined on some open set U , then on
U ∩W we have Gξ = Gξ̃. Indeed, let x∈U ∩W . Compare the values of Gξx
and Gξ̃x, taking all the vectors f∗X with X ∈ TxM and ξ̃x as generators of
Cn+1:

Gξx(f∗X, f∗Y ) = g(X,Y ) = Gξ̃x(f∗X, f∗Y ),

Gξx(f∗X, ξ̃x) = Gξx(f∗X,φ(x)ξx + ψ(x)Jξx) = 0 = Gξ̃x(f∗X, ξ̃x),
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Gξx(f∗X, Jξ̃x) = −Gξx(f∗JX, ξ̃x) = 0 = Gξ̃x(f∗X, Jξ̃x),

Gξx(ξ̃x, ξ̃x) = Gξx(φ(x)ξx + ψ(x)Jξx, φ(x)ξx + ψ(x)Jξx) =
(φ2 + ψ2)(x)

βx
,

whereas
Gξ̃x(ξ̃x, ξ̃x) = 1/β̃x.

It remains to show that

(6) β̃ =
β

φ2 + ψ2
.

Recall that we have

h̃(X,Y ) =
φh(X,Y )− ψh(JX, Y )

φ2 + ψ2
, S̃X = φSX + ψJSX.

If we put h(X,Y ) = βg(SX, Y ) into the first equation and make use of the
anti-complexity of S, we obtain

h̃(X,Y ) =
β

φ2 + ψ2
g(φSX + ψJSX, Y ).

From the other equation it follows that

h̃(X,Y ) =
β

φ2 + ψ2
g(S̃X, Y ).

Comparing this with the equation (3̃) defining β̃ we have (6).

We can now define for x ∈ W a Hermitian product Gx on Cn+1: Gx :=
Gξx, where ξ is a local section of the transversal bundle N whose domain
contains x.

Step 8. G is parallel relative to D.

Let X ∈ TM . For Y,Z ∈ X (M) we have

(DXG)(f∗Y, f∗Z) = X(G(f∗Y, f∗Z))−G(DXf∗Y, f∗Z)−G(f∗Y,DXf∗Z)
= X(G(f∗Y, f∗Z))
−G(f∗∇XY + h(X,Y )ξ − h(JX, Y )Jξ, f∗Z)
−G(f∗Y, f∗∇XZ + h(X,Z)ξ − h(JX,Z)Jξ)

= X(g(Y, Z))− g(∇XY,Z)− g(Y,∇XZ)
= (∇Xg)(Y,Z) = 0,

(DXG)(f∗Y, ξ) = X(G(f∗Y, ξ))−G(DXf∗Y, ξ)−G(f∗Y,DXξ)
= −G(f∗∇XY + h(X,Y )ξ − h(JX, Y )Jξ, ξ)
−G(f∗Y,−f∗SX + µ(X)ξ + ν(X)Jξ)

= − h(X,Y )
1
β

+ g(Y, SX) = 0,
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(DXG)(ξ, ξ) = X(G(ξ, ξ))− 2G(DXξ, ξ)
= X(G(ξ, ξ))− 2G(−f∗SX + µ(X)ξ + ν(X)Jξ, ξ)

= X

(
1
β

)
− 2µ(X)

1
β

= − 1
β2

(X(β) + 2βµ(X)) = 0.

Since DXG is hermitian as G is, we conclude that DXG = 0. As W is
assumed to be connected, the map x 7→ Gx is constant on W . The proof of
the lemma is now complete.

In Steps 9 and 10 we shall prove 1) of the theorem.

Step 9. If hx 6= 0, then Rx = 0 implies Sx = 0.

Let e1, . . . , en be a complex basis of TxM such that hc(ei, ei) = 1 for
i ∈ {1, . . . , r}, hc(ei, ei) = 0 for i ∈ {r + 1, . . . , n} and hc(ei, ej) = 0 for
i 6= j. We have r > 0 since hx 6= 0.

Using the Gauss equation we obtain 0 = R(ej , e1)e1 = Sej for j 6= 0 and
0 = R(e1, Je1)Je1 = −2Se1.

Step 10. The connected components of the set {x ∈ M : Rx 6= 0} are
closed in M .

Let W be a non-empty connected component of {x ∈ M : Rx 6= 0} in
M . According to the lemma there is a Hermitian product G on Cn+1 such
that f |W : (W, g) → (Cn+1, G) is an isometric immersion. Let y ∈ W . Let
U be a neighbourhood of y with a local section ξ of the transversal bundle
N and the corresponding C∞ objects h, S on U . On U ∩W we then have
a smooth function β : U ∩W → R\{0} such that β = 1/G(ξ, ξ) on U ∩W
and h(X,Y ) = βg(SX, Y ) for vector fields X,Y on U ∩W .

Define
α : U 3 x 7→ G(ξx, ξx) ∈ R.

We claim that

(i) α 6= 0 on W ∩ U ,
(ii) if X,Y are vector fields on U , then

αh(X,Y ) = g(SX, Y ) on W ∩ U.

Let z ∈W ∩U . Let V be an open neighbourhood of z such that V ⊂ U ;
W ∩ V ⊂W ∩ V , since V is open; W ∩ V ⊂W ∩ V ⊂W ∩ U ⊂ U .

For arbitrary vector fields X,Y we define on U the continuous functions
ψXY1 := αh(X,Y ) − g(SX, Y ) and ψX2 := G(f∗X, ξ). Since ψXY1 and ψX2
vanish on W ∩V , we also have ψXY1 (W ∩ V ) = {0} and ψX2 (W ∩ V ) = {0}.
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In particular, they vanish at the point z. Since z was an arbitrary point
from W ∩ U , we have (i) and (ii).

We aim to show that y ∈W . Since hy 6= 0, we can find vectors Xy, Yy ∈
TyM such that h(Xy, Yy) 6= 0 and then from the equality

αyh(Xy, Yy) = g(SyXy, Yy)

we conclude that Sy 6= 0. Step 9 now implies Ry 6= 0. If W1 denotes the
connected component of {x ∈ M : Rx 6= 0} containing y, then obviously
W1 = W , so y ∈W .

From Step 10 and the assumed connectedness of M it follows that if ∇ is
not flat, then Rx 6= 0 for every x ∈M . The second assertion of the theorem
follows immediately from the lemma upon taking W = M .
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