Finite extensions of mappings from a smooth variety

by MAREK KARAŚ (Kraków)

Abstract. Let V, W be algebraic subsets of $\mathbf{k}^n, \mathbf{k}^m$ respectively, with $n \leq m$. It is known that any finite polynomial mapping $f: V \to W$ can be extended to a finite polynomial mapping $F: \mathbf{k}^n \to \mathbf{k}^m$. The main goal of this paper is to estimate from above the geometric degree of a finite extension $F: \mathbf{k}^n \to \mathbf{k}^n$ of a dominating mapping $f: V \to W$, where V and W are smooth algebraic sets.

1. Introduction. Let \mathbf{k} be any algebraically closed field of characteristic zero and V, W be algebraic subsets of $\mathbf{k}^n, \mathbf{k}^m$, respectively, with $n \leq m$. It is known (under the assumption that \mathbf{k} is an infinite field) that any finite mapping $f: V \to W$ can be extended to a finite mapping $F: \mathbf{k}^n \to \mathbf{k}^m$ (see [6]). There is the following natural problem: to estimate from above the number gdeg F (geometric degree of F) of points in the "generic fiber" of the best extension F (with gdeg F minimal). The author ([3]–[5]) solved this problem in a few cases.

If n = m and gdeg F = 1, then $F : \mathbf{k}^n \to \mathbf{k}^n$ is an isomorphism. Thus the answer to the above question is very important.

In this paper we consider a finite mapping from a smooth algebraic set such that the image is also a smooth algebraic set. We will show

THEOREM 4.4. Let $V, W \subset \mathbb{C}^n$ be smooth algebraic sets and let $f: V \to W$ be a finite dominating mapping that is dominating on every irreducible component. If dim $V = \dim W = k$ and $4k+2 \leq n$, then there exists a finite mapping $F: \mathbb{C}^n \to \mathbb{C}^n$ such that $F|_V = f$ and

$$\operatorname{gdeg} F \le (\operatorname{gdeg} f)^{2k+1}$$

This is a generalization of the main Theorem of [2] which was the answer to the problem of extension of embeddings into affine space. The problem was set by S. S. Abhyankar [1].

[79]

²⁰⁰⁰ Mathematics Subject Classification: Primary 14R99; Secondary 14E25. Key words and phrases: finite mapping, geometric degree, finite extension. Research partially supported by FNP (Polish Science Foundation).

2. Preliminaries. The coordinate ring of the algebraic set V will be denoted by $\mathbf{k}[V]$. For any polynomial mapping $f = (f_1, \ldots, f_n) : V \to W$ the homomorphism of the coordinate rings $\mathbf{k}[W] \ni P \mapsto P(f_1, \ldots, f_n) \in \mathbf{k}[V]$ will be denoted by f^* .

DEFINITION 2.1. A polynomial mapping $f: V \to W$ is called *finite* if $\mathbf{k}[V]$ is an integral extension of the ring $f^*(\mathbf{k}[W]) = \mathbf{k}[f_1, \dots, f_m]$.

Finite mappings have the following properties:

THEOREM 2.2. (1) If f is finite, then there exists a number $d \in \mathbb{N}$ such that $\#f^{-1}(y) \leq d$ for all $y \in W$.

(2) If $\mathbf{k} = \mathbb{C}$, then f is finite iff f is proper (in the natural topology).

(3) If f, g are finite, then $g \circ f$ is finite.

(4) If f, g are polynomial mappings and $g \circ f$ is finite, then f is finite. If, moreover, f is dominating, then g is finite.

(5) If f is finite and dominating, then f is surjective.

(6) If $f: V \to W$ is finite and Z is an algebraic subset of V, then $f|_Z$ is finite.

(7) If $f: V \to W$ is finite and Z is an algebraic subset of V, then $\dim f(Z) = \dim Z$.

(8) If $f_i: V_i \to W_i$ are finite for i = 1, 2, and $f_1|_{V_1 \cap V_2} = f_2|_{V_1 \cap V_2}$, then $f_1 \cup f_2$ is finite.

Proof. Assertions (1), (3), (4), (6) and (8) are easy consequences of the definition. For the proof of (2) see e.g. [8]. The proof of (5) can be found e.g. in [9] (Thm. I.5.5), and (7) is a consequence of the definition of dimension.

If $f: V \to W$ is dominating then $f^*: \mathbf{k}[W] \to \mathbf{k}[V]$ is a monomorphism. In this case we will identify $\mathbf{k}[W]$ with $f^*(\mathbf{k}[W]) \subset \mathbf{k}[V]$. If V and W are irreducible, then $\mathbf{k}[W]$ and $\mathbf{k}[V]$ are integral domains and therefore f^* can be extended to a monomorphism $f^*: \mathbf{k}(W) \to \mathbf{k}(V)$ of fields. In the same way as before we will identify $\mathbf{k}(W)$ with $f^*(\mathbf{k}(W)) \subset \mathbf{k}(V)$.

We have the following

THEOREM 2.3 (see e.g. [7], Thm. 3.17). Let $V \subset \mathbf{k}^n$ and $W \subset \mathbf{k}^m$ be irreducible algebraic sets of the same dimension. If $f: V \to W$ is dominating then there exists an open and dense subset $U \subset W$ such that

$$#f^{-1}(y) = [\mathbf{k}(V) : \mathbf{k}(W)] \text{ for } y \in U.$$

In [7] Theorem 2.3 is stated for $\mathbf{k} = \mathbb{C}$ but the proof given there works for an algebraically closed field of characteristic zero.

From Theorem 2.3 and the theorem about the dimension of the fibers (see e.g. [9], Thm. I.6.7) we have

LEMMA 2.4. Let $V \subset \mathbf{k}^n$ and $W \subset \mathbf{k}^m$ be algebraic sets. If W is irreducible and $f: V \to W$ dominating then there is an open and dense set $U \subset W$ such that the function $U \ni y \mapsto \#f^{-1}(y) \in \mathbb{N} \cup \{\infty\}$ is constant.

Proof. Let $V = V_1 \cup \ldots \cup V_r$ be the decomposition of V into irreducible components. We have $\overline{f(V)} = \overline{f(V_1)} \cup \ldots \cup \overline{f(V_r)}$ and, since W is irreducible, $\overline{f(V_i)} = W$ for some $i \in \{1, \ldots, r\}$.

Let W^* be the union of those $\overline{f(V_i)}$ for which $\overline{f(V_i)} \neq W$. Since W is irreducible, $W \setminus W^*$ is an open and dense subset of W for which $f^{-1}(W \setminus W^*) \subset \bigcup_{i \in I} V_i$, where $I := \{i \in \{1, \ldots, r\} \mid \overline{f(V_i)} = W\}$. We may assume that $I = \{1, \ldots, k\}$ for some $k \leq r$. By Theorem 2.3 for all $i = 1, \ldots, k$ there exist $U_i \subset W$ open and dense in W such that

$$#(f|_{V_i})^{-1}(y) = [\mathbf{k}(V_i) : \mathbf{k}(W)] \text{ for } y \in U_i.$$

For the set $\widetilde{U} := U_1 \cap \ldots \cap U_k$, which is also open and dense, we infer that

$$#(f|_{V_i})^{-1} = [\mathbf{k}(V_i) : \mathbf{k}(W)] \text{ for } y \in U, \ i = 1, \dots, k.$$

For $i \in \{1, \ldots, k\}$ set $V_i^* := V_i \cap \bigcup_{j \neq i} V_j$. Since $V_i^* \neq V_i$ and V_i is irreducible, we see that dim $V_i^* < \dim V_i$ and $\overline{f(V_i^*)} \neq W$.

By irreducibility of W we get $\overline{f(V_1^*)} \cup \ldots \cup \overline{f(V_k^*)} \neq W$, and consequently $U^* := W \setminus (\overline{f(V_1^*)} \cup \ldots \cup \overline{f(V_k^*)})$ is open and dense in W.

Now we have

$$#(f|_{V_1 \cup ... \cup V_k})^{-1}(y) = \sum_{i=1}^k [\mathbf{k}(V_i) : \mathbf{k}(V)] \text{ for } y \in \widetilde{U} \cap U^*$$

where $\widetilde{U} \cap U^*$ is open and dense in W. Finally $U := \widetilde{U} \cap U^* \cap (W \setminus W^*)$ is an open and dense subset of W such that

$$#f^{-1}(y) = \sum_{i=1}^{k} [\mathbf{k}(V_i) : \mathbf{k}(V)] \text{ for } y \in U. \blacksquare$$

Now we can state

DEFINITION 2.5. Let $f: V \to W$ be a dominating polynomial mapping. If W is an irreducible set then the constant number of points in the fibers of f on the set U (see Lemma 2.4) is called the *geometric degree* of the mapping f and denoted by gdeg f. If the set W is reducible then

$$\operatorname{gdeg} f := \max\{\operatorname{gdeg}(f|_{f^{-1}(Z)}) \mid Z \subset W$$

is an irreducible component of W.

For any polynomial mapping we can define its geometric degree by putting $W = \overline{f(V)}$. In particular we can define the geometric degree for any finite mapping.

In the general case there may exists $y \in W$ with $\#f^{-1}(y) > \text{gdeg } f$. This is illustrated by

EXAMPLE 2.6. Let $F : \mathbb{C} \ni t \mapsto (t^2 - 1, t(t^2 - 1)) \in \mathbb{C}^2$. Then $F(\mathbb{C}) = W$, where $W = \{(x, y) \in \mathbb{C}^2 | y^2 = x^2 + x^3\}$ and gdeg F = 1, because F is a parametrization of the rational curve W, but $F^{-1}((0, 0)) = \{-1, 1\}$. If we take $f = F|_{\{-1,1\}}$, then we obtain a finite mapping $f : \{-1, 1\} \to \mathbb{C}^2$ with extension F and gdeg f = 2 > gdeg F.

The following theorem gives a condition under which it is impossible to find a point $y \in W$ with $\#f^{-1}(y) > \text{gdeg } f$.

THEOREM 2.7 (see e.g. [9], Thm. II 5.6). If $f: V \to W$ is finite and dominating, V and W are irreducible and W is normal then

$$#f^{-1}(y) \le \operatorname{gdeg} f \quad for \ y \in W$$

3. Extensions of projections. In [4] we proved

THEOREM 3.1 ([4], Thm. 3.10). Let $V \subset \mathbf{k}^k \times \mathbf{k}^n$ be an irreducible algebraic set, and $\pi: V \to 0 \times \mathbf{k}^n$ the natural projection. If π is finite and $\pi(V)$ is normal then there exists a finite mapping $\Pi: \mathbf{k}^k \times \mathbf{k}^n \to \mathbf{k}^k \times \mathbf{k}^n$ such that $\Pi|_V = \pi$ and

$$\operatorname{gdeg} \Pi \leq (\operatorname{gdeg} \pi)^k.$$

Here, we prove a slight generalization (Theorem 3.6). A reducible set is meant to be normal if each of its points is normal.

First we define an auxiliary notion.

DEFINITION 3.2. A polynomial mapping $f: V \to W$ is called *dominating* on the irreducible component $V' \subset V$ if $\overline{f(V')}$ is an irreducible component of W.

EXAMPLE 3.3. Let $V = \{(x, y) \in \mathbb{C}^2 \mid xy = 0\}$, $W = \mathbb{C}$ and $f : V \ni (x, y) \mapsto x \in W$. The mapping f is dominating and dominating on the component $\{(x, y) \in \mathbb{C}^2 \mid y = 0\}$ but it is not dominating on the component $\{(x, y) \in \mathbb{C}^2 \mid x = 0\}$.

EXAMPLE 3.4. Let $V = W = \{(x, y) \in \mathbb{C}^2 \mid xy = 0\}$ and $f : v \ni (x, y) \mapsto (x + y, 0) \in W$. The mapping f is dominating on every component of V but it is not dominating.

REMARK 3.5. If $f: V \to W$ is finite and dominating, then it is dominating on every component of maximal dimension.

THEOREM 3.6. Let $V \subset \mathbf{k}^k \times \mathbf{k}^n$ be an algebraic set, and let $\pi : V \to 0 \times \mathbf{k}^n$ be the natural projection. If $\pi : V \to \pi(V)$ is finite and dominating

on every component, and $\pi(V)$ is normal, then there exists a finite mapping $\Pi: \mathbf{k}^k \times \mathbf{k}^n \to \mathbf{k}^k \times \mathbf{k}^n$ such that $\Pi|_V = \pi$ and

$$\operatorname{gdeg} \Pi \leq (\operatorname{gdeg} \pi)^k.$$

Proof. Let $V = V_1 \cup \ldots \cup V_r$ and $W = W_1 \cup \ldots \cup W_s$ be decompositions into irreducible components. Because W is normal, $W_i \cap W_j = \emptyset$ for $i \neq j$. We have

$$\pi^{-1}(W_1) = \bigcup_{i \in I_1} V_i, \quad \dots, \quad \pi^{-1}(W_s) = \bigcup_{i \in I_s} V_i$$

where $I_1 \cup \ldots \cup I_s = \{1, \ldots, r\}$ and $I_i \cap I_j = \emptyset$ for $i \neq j$. For any $l \in \{1, \ldots, s\}$ consider the mapping

$$\pi_l = \pi|_{\pi^{-1}(W_l)} : \pi^{-1}(W_l) \to W_l.$$

By Definition 2.5 we have

$$\operatorname{gdeg} \pi_l \leq \operatorname{gdeg} \pi.$$

The mapping f is dominating on every component, so

$$\operatorname{gdeg} \pi_l = \sum_{j \in I_l} [\mathbf{k}(V_j) : \mathbf{k}(W_l)]$$

(see the proof of Lemma 2.4). For any $j \in I_l$ and $i \in \{1, \ldots, k\}$ let $H_{i,j,l} \in \mathbf{k}(W_l)[T]$ be the minimal monic polynomial for $x_i|_{V_j}$ (restriction of x_i to the set V_j) over the field $\mathbf{k}(W_l)$, where x_1, \ldots, x_k and y_1, \ldots, y_n are coordinates in \mathbf{k}^k and \mathbf{k}^n respectively. We have deg $H_{i,j,l} \leq [\mathbf{k}(V_j) : \mathbf{k}(W_l)]$. The element $x_i|_{V_j}$ is integral over the ring $\mathbf{k}[W_l]$. The ring $\mathbf{k}[W_l]$ is normal, so $H_{i,j,l} \in \mathbf{k}[W_l][T]$. Now we put

$$H_{i,l} = \prod_{j \in I_l} H_{i,j,l}.$$

The polynomial $H_{i,l}$ is monic and

$$H_{i,l}(x_i) = 0$$
 on $\bigcup_{j \in I_l} V_j$.

Also

$$\deg H_{i,l} = \sum_{j \in I_l} \deg H_{i,j,l} \le \sum_{j \in I_l} [\mathbf{k}(V_j) : \mathbf{k}(W_l)] = \operatorname{gdeg} \pi_l \le \operatorname{gdeg} \pi.$$

Multiplying $H_{i,l}$, if necessary, by some power of T, we can assume that $\deg H_{i,l} = \operatorname{gdeg} \pi$. Thus we can write

$$H_{i,l} = T^d + a_{i,l,d-1}T^{d-1} + \ldots + a_{i,l,0}$$

where $d = \operatorname{gdeg} \pi$ and $a_{i,l,j} \in \mathbf{k}[W_l]$. The functions $a_{i,j} = a_{i,1,j} \cup \ldots \cup a_{i,s,j}$ are regular on $W_1 \cup \ldots \cup W_s = W$. Thus

$$H_i = T^d + a_{i,d-1}T^{d-1} + \ldots + a_{i,0}$$

is a monic polynomial in $\mathbf{k}[W][T]$ such that $H_i(x_i) = 0$ on V. Let G_i be a polynomial of $\mathbf{k}[y_1, \ldots, y_n][T]$ obtained from H_i by replacing $y_i|_W$ with y_i and

 $\Pi: \mathbf{k}^k \times \mathbf{k}^n \ni (x, y) \mapsto (G_1(x_1, y), \dots, G_k(x_k, y), y) \in \mathbf{k}^k \times \mathbf{k}^n.$

Because $H_i(x_i|_V) = 0$, we have $\Pi|_V = \pi$. Furthermore Π is finite. Indeed, $\mathbf{k}[x_1, \ldots, x_k, y_1, \ldots, y_n]$ is an integral extension of $\mathbf{k}[G_1(x_1, y), \ldots, G_k(x_k, y), y_1, \ldots, y_n]$ because

 $G_i(T,y) - G_i(x_i,y) \in \mathbf{k}[G_1(x_1,y),\dots,G_k(x_k,y),y_1,\dots,y_n][T]$

is a monic polynomial which vanishes at x_i .

Finally, for each $(x', y') \in \mathbf{k}^k \times \mathbf{k}^n$ we have $\#\{(x, y) \in \mathbf{k}^k \times \mathbf{k}^n : \Pi(x, y) = (x', y')\}$

$$= \#\{(x,y) \in \mathbf{k}^k \times \mathbf{k}^n : y = y', G_i(x_i,y) = x'_i \text{ for } i = 1, \dots, k\}$$

 $\leq \deg G_1 \cdot \ldots \cdot \deg G_k \leq (\operatorname{gdeg} \pi)^k.$

Thus Π is a finite extension of π such that $\operatorname{gdeg} \Pi \leq (\operatorname{gdeg} \pi)^k$.

An example showing that the normality of $\pi(V)$ is necessary in Theorems 3.1 and 3.6 can be found in [4].

4. Proof of the main result. Let us recall some facts about embeddings.

DEFINITION 4.1. A polynomial mapping $f: V \to \mathbf{k}^n$ is called an *embed*ding if f is an isomorphism onto its image $f(V) = \overline{f(V)}$.

We have the following well known lemma (see e.g. [2]):

 ϕ

LEMMA 4.2. If $X \subset \mathbb{C}^n$ is a closed algebraic smooth set, dim X = k and n > 2k+1, then we can change coordinates in such a way that the projection

$$: X \ni (x, y) \mapsto (0, y) \in 0 \times \mathbb{C}^{2k+1}$$

is an embedding.

We also have

THEOREM 4.3 ([2], Thm. 1.2). Let $X \subset \mathbb{C}^n$ be a closed algebraic set which is smooth and not necessarily irreducible of (not necessarily pure) dimension k. Let $\phi : X \to \mathbb{C}^n$ be an embedding. If $n \ge 4k + 2$ then there exists an isomorphism $\Phi : \mathbb{C}^n \to \mathbb{C}^n$ such that $\Phi|_X = \phi$.

Now we are in a position to prove the main result.

THEOREM 4.4. Let $V, W \subset \mathbb{C}^n$ be smooth algebraic sets, and let $f: V \to W$ be a finite dominating mapping that is dominating on every irreducible component. If dim $V = \dim W = k$ and $4k + 2 \leq n$, then there exists a finite mapping $F: \mathbb{C}^n \to \mathbb{C}^n$ such that $F|_V = f$ and

$$\operatorname{gdeg} F \le (\operatorname{gdeg} f)^{2k+1}$$

Proof. By Lemma 4.2 we can assume that the projections

$$\phi_1: V \to 0 \times \mathbb{C}^{2k+1}$$
 and $\phi_2: W \to 0 \times \mathbb{C}^{n-2k-1}$

are embeddings. Put

$$\widetilde{V} = \phi_1(V), \quad \widetilde{W} = \phi_2(W) \text{ and } \widetilde{f} = \phi_2 \circ f \circ \phi_1^{-1} : \widetilde{V} \to \widetilde{W}.$$

The mapping \widetilde{f} is finite with gdeg $\widetilde{f} = \text{gdeg } f$. Because $\widetilde{V} \subset 0 \times \mathbb{C}^{2k+1}$, $\widetilde{W} \subset 0 \times \mathbb{C}^{n-2k-1}$, we can consider the sets \widetilde{V} and \widetilde{W} as subsets of \mathbb{C}^{2k+1} and \mathbb{C}^{n-2k-1} , respectively. Consider the isomorphism $\psi: \widetilde{V} \ni x \mapsto (x, \widetilde{f}(x)) \in \mathbb{C}^{2k+1} \times \mathbb{C}^{n-2k-1}.$

the set $\widehat{V} = \psi(\widetilde{V})$, and the projection

$$\pi: \widehat{V} \ni (x, y) \mapsto (0, y) \in 0 \times \mathbb{C}^{n-2k-1}$$

We have $\tilde{f} = \pi \circ \psi$, and ψ is an isomorphism, so π is finite and gdeg $\pi =$ gdeg \tilde{f} = gdeg f. The set $\pi(\hat{V}) = \widetilde{W}$ is smooth, because W is smooth, and by Theorem 3.6 there exists a finite mapping $\Pi : \mathbb{C}^{2k+1} \times \mathbb{C}^{n-2k-1} \to \mathbb{C}^{2k+1} \times \mathbb{C}^{n-2k-1}$ such that $\Pi|_{\hat{V}} = \pi$ and

$$\operatorname{gdeg} \Pi \le (\operatorname{gdeg} \pi)^{2k+1}$$

By Theorem 4.3 applied to $\psi: \widetilde{V} \to \widehat{V}, \phi_1: V \to \widetilde{V}$ and $\phi_2: W \to \widetilde{W}$ there exist isomorphisms $\Psi, \Phi_1, \Phi_2: \mathbb{C}^n \to \mathbb{C}^n$ such that

$$\Psi|_{\widetilde{V}} = \psi, \quad \Phi_1|_V = \phi_1, \quad \Phi_2|_W = \phi_2.$$

Putting $F = \Phi_2^{-1} \circ \Pi \circ \Psi \circ \Phi_1$ we have a finite extension of f such that $\operatorname{gdeg} F \leq (\operatorname{gdeg} f)^{2k+1}$.

Note that Theorem 4.4 is a generalization of Theorem 4.3. Indeed, if $f: V \to \mathbb{C}^n$ is an embedding and V is smooth then f(V) is also smooth, f is a finite dominating mapping that is dominating on every component and gdeg f = 1. By Theorem 4.4 there exists a finite mapping $F : \mathbb{C}^n \to \mathbb{C}^n$ such that $F|_V = f$ and gdeg F = 1. Now F is a birational mapping, and by Zariski's Main Theorem, it is an isomorphism.

Note, also, that if V is a pure dimensional set, then the assumption that f is dominating on every irreducible component is not necessary (see Remark 3.5).

By Theorem 4.4 we have

COROLLARY 4.5. Under the assumptions of Theorem 4.4 there are infinitely many finite mappings $F: \mathbb{C}^n \to \mathbb{C}^n$ such that $F|_V = f$ and

$$\operatorname{gdeg} F \le (\operatorname{gdeg} f)^{2k+1}$$

Proof. Let $x \in \mathbb{C}^n \setminus V$. For any point $y \in \mathbb{C}^n \setminus W$ we define a mapping $f_y: V \cup \{x\} \to W \cup \{y\}$ such that $f_y|_V = f$ and $f_y(x) = y$. By Theorem 4.4

M. Karaś

there exists a finite mapping $F_y: \mathbb{C}^n \to \mathbb{C}^n$ such that $F_y|_{V \cup \{x\}} = f_y$ and

$$\operatorname{gdeg} F_y \leq (\operatorname{gdeg} f_y)^{2k+1} = (\operatorname{gdeg} f)^{2k+1}$$

Obviously $F_y|_V = f$ and $F_y \neq F_{y'}$ for $y \neq y'$.

By Theorem 4.4 we also have

COROLLARY 4.6. Let $V, W \subset \mathbb{C}^n$, where n > 1, be finite sets. For any mapping $f: V \to W$ there exists a finite mapping $F: \mathbb{C}^n \to \mathbb{C}^n$ such that $F|_V = f$ and gdeg F = gdeg f.

Because Lemma 4.2 and Theorem 4.3 are true for any algebraically closed field, we have

REMARK 4.7. Theorem 4.4 holds for any algebraically closed field of characteristic zero.

References

- [1] S. S. Abhyankar, On the Semigroup of a Meromorphic Curve, Kinokuniya Book-Store, Tokyo, 1978.
- [2] Z. Jelonek, The extension of regular and rational embeddings, Math. Ann. 277 (1987), 113-120.
- M. Karaś, An estimation of the geometric degree of an extension of some polynomial proper mappings, Univ. Iagell. Acta Math. 35 (1997), 131–135.
- [4] —, Geometric degree of finite extensions of projections, ibid. 37 (1999), 109–119.
- [5] —, Birational finite extensions, J. Pure Appl. Algebra 148 (2000), 251–253.
- [6] M. Kwieciński, Extending finite mappings to affine space, ibid. 76 (1991), 151–153.
- [7] D. Mumford, Algebraic Geometry I. Complex Projective Varieties, Springer, Heidelberg, 1976.
- [8] K. J. Nowak, The extension of holomorphic functions of polynomial growth on algebraic sets in Cⁿ, Univ. Iagell. Acta Math. 28 (1991), 19–28.
- [9] I. R. Shafarevich, Basic Algebraic Geometry, Springer, Heidelberg, 1974.

Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland E-mail: karas@im.uj.edu.pl

> Reçu par la Rédaction le 22.12.1999 Révisé le 4.4.2000