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Finite extensions of mappings from a smooth variety

by Marek Karaś (Kraków)

Abstract. Let V, W be algebraic subsets of kn, km respectively, with n ≤ m. It
is known that any finite polynomial mapping f : V → W can be extended to a finite
polynomial mapping F : kn → km. The main goal of this paper is to estimate from
above the geometric degree of a finite extension F : kn → kn of a dominating mapping
f : V →W, where V and W are smooth algebraic sets.

1. Introduction. Letk be any algebraically closed field of characteristic
zero and V, W be algebraic subsets of kn, km, respectively, with n ≤ m. It
is known (under the assumption that k is an infinite field) that any finite
mapping f : V →W can be extended to a finite mapping F : kn → km (see
[6]). There is the following natural problem: to estimate from above the
number gdegF (geometric degree of F ) of points in the “generic fiber” of
the best extension F (with gdegF minimal). The author ([3]–[5]) solved
this problem in a few cases.

If n = m and gdegF = 1, then F : kn → kn is an isomorphism. Thus
the answer to the above question is very important.

In this paper we consider a finite mapping from a smooth algebraic set
such that the image is also a smooth algebraic set. We will show

Theorem 4.4. Let V,W ⊂ Cn be smooth algebraic sets and let f : V
→W be a finite dominating mapping that is dominating on every irreducible
component. If dimV = dimW = k and 4k+2 ≤ n, then there exists a finite
mapping F : Cn → Cn such that F |V = f and

gdegF ≤ (gdeg f)2k+1.

This is a generalization of the main Theorem of [2] which was the answer
to the problem of extension of embeddings into affine space. The problem
was set by S. S. Abhyankar [1].
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2. Preliminaries. The coordinate ring of the algebraic set V will be
denoted by k[V ]. For any polynomial mapping f = (f1, . . . , fn) : V →W the
homomorphism of the coordinate rings k[W ] 3 P 7→ P (f1, . . . , fn) ∈ k[V ]
will be denoted by f∗.

Definition 2.1. A polynomial mapping f : V → W is called finite if
k[V ] is an integral extension of the ring f∗(k[W ]) = k[f1, . . . , fm].

Finite mappings have the following properties:

Theorem 2.2. (1) If f is finite, then there exists a number d ∈ N such
that #f−1(y) ≤ d for all y ∈W .

(2) If k = C, then f is finite iff f is proper (in the natural topology).
(3) If f, g are finite, then g ◦ f is finite.
(4) If f, g are polynomial mappings and g ◦ f is finite, then f is finite.

If , moreover , f is dominating , then g is finite.
(5) If f is finite and dominating , then f is surjective.
(6) If f : V → W is finite and Z is an algebraic subset of V, then f |Z

is finite.
(7) If f : V → W is finite and Z is an algebraic subset of V, then

dim f(Z) = dimZ.

(8) If fi : Vi → Wi are finite for i = 1, 2, and f1|V1∩V2 = f2|V1∩V2 , then
f1 ∪ f2 is finite.

P r o o f. Assertions (1), (3), (4), (6) and (8) are easy consequences of the
definition. For the proof of (2) see e.g. [8]. The proof of (5) can be found e.g.
in [9] (Thm. I.5.5), and (7) is a consequence of the definition of dimension.

If f : V →W is dominating then f∗ : k[W ]→ k[V ] is a monomorphism.
In this case we will identify k[W ] with f∗(k[W ]) ⊂ k[V ]. If V and W are
irreducible, then k[W ] and k[V ] are integral domains and therefore f∗ can
be extended to a monomorphism f∗ : k(W ) → k(V ) of fields. In the same
way as before we will identify k(W ) with f∗(k(W )) ⊂ k(V ).

We have the following

Theorem 2.3 (see e.g. [7], Thm. 3.17). Let V ⊂ kn and W ⊂ km be ir-
reducible algebraic sets of the same dimension. If f : V →W is dominating
then there exists an open and dense subset U ⊂W such that

#f−1(y) = [k(V ) : k(W )] for y ∈ U.

In [7] Theorem 2.3 is stated for k = C but the proof given there works
for an algebraically closed field of characteristic zero.

From Theorem 2.3 and the theorem about the dimension of the fibers
(see e.g. [9], Thm. I.6.7) we have
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Lemma 2.4. Let V ⊂ kn and W ⊂ km be algebraic sets. If W is ir-
reducible and f : V → W dominating then there is an open and dense set
U ⊂W such that the function U 3 y 7→ #f−1(y) ∈ N ∪ {∞} is constant.

P r o o f. Let V = V1∪ . . .∪Vr be the decomposition of V into irreducible
components. We have f(V ) = f(V1)∪. . .∪f(Vr) and, since W is irreducible,
f(Vi) = W for some i ∈ {1, . . . , r}.

Let W ∗ be the union of those f(Vi) for which f(Vi) 6= W. Since W is irre-
ducible, W\W ∗ is an open and dense subset of W for which f−1(W\W ∗) ⊂⋃
i∈I Vi, where I := {i ∈ {1, . . . , r} | f(Vi) = W}. We may assume that

I = {1, . . . , k} for some k ≤ r. By Theorem 2.3 for all i = 1, . . . , k there
exist Ui ⊂W open and dense in W such that

#(f |Vi
)−1(y) = [k(Vi) : k(W )] for y ∈ Ui.

For the set Ũ := U1 ∩ . . . ∩ Uk, which is also open and dense, we infer that

#(f |Vi
)−1 = [k(Vi) : k(W )] for y ∈ Ũ , i = 1, . . . , k.

For i ∈ {1, . . . , k} set V ∗i := Vi∩
⋃
j 6=i Vj . Since V ∗i 6= Vi and Vi is irreducible,

we see that dimV ∗i < dimVi and f(V ∗i ) 6= W.

By irreducibility of W we get f(V ∗1 )∪ . . .∪f(V ∗k ) 6= W, and consequently
U∗ := W\(f(V ∗1 ) ∪ . . . ∪ f(V ∗k )) is open and dense in W.

Now we have

#(f |V1∪...∪Vk
)−1(y) =

k∑
i=1

[k(Vi) : k(V )] for y ∈ Ũ ∩ U∗,

where Ũ ∩ U∗ is open and dense in W. Finally U := Ũ ∩ U∗ ∩ (W\W ∗) is
an open and dense subset of W such that

#f−1(y) =
k∑
i=1

[k(Vi) : k(V )] for y ∈ U.

Now we can state

Definition 2.5. Let f : V →W be a dominating polynomial mapping.
If W is an irreducible set then the constant number of points in the fibers
of f on the set U (see Lemma 2.4) is called the geometric degree of the
mapping f and denoted by gdeg f . If the set W is reducible then

gdeg f := max{gdeg(f |f−1(Z)) | Z ⊂W
is an irreducible component of W}.

For any polynomial mapping we can define its geometric degree by
putting W = f(V ). In particular we can define the geometric degree for
any finite mapping.
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In the general case there may exists y ∈W with #f−1(y) > gdeg f. This
is illustrated by

Example 2.6. Let F : C 3 t 7→ (t2−1, t(t2−1)) ∈ C2. Then F (C) = W,
where W = {(x, y) ∈ C2 | y2 = x2 + x3} and gdegF = 1, because F is a
parametrization of the rational curve W, but F−1((0, 0)) = {−1, 1}. If we
take f = F |{−1,1}, then we obtain a finite mapping f : {−1, 1} → C2 with
extension F and gdeg f = 2 > gdegF.

The following theorem gives a condition under which it is impossible to
find a point y ∈W with #f−1(y) > gdeg f.

Theorem 2.7 (see e.g. [9], Thm. II 5.6). If f : V → W is finite and
dominating , V and W are irreducible and W is normal then

#f−1(y) ≤ gdeg f for y ∈W.

3. Extensions of projections. In [4] we proved

Theorem 3.1 ([4], Thm. 3.10). Let V ⊂ kk × kn be an irreducible al-
gebraic set , and π : V → 0 × kn the natural projection. If π is finite and
π(V ) is normal then there exists a finite mapping Π : kk × kn → kk × kn

such that Π|V = π and

gdegΠ ≤ (gdeg π)k.

Here, we prove a slight generalization (Theorem 3.6). A reducible set is
meant to be normal if each of its points is normal.

First we define an auxiliary notion.

Definition 3.2. A polynomial mapping f : V →W is called dominating
on the irreducible component V ′ ⊂ V if f(V ′) is an irreducible component
of W.

Example 3.3. Let V = {(x, y) ∈ C2 | xy = 0}, W = C and f : V 3
(x, y) 7→ x ∈ W. The mapping f is dominating and dominating on the
component {(x, y) ∈ C2 | y = 0} but it is not dominating on the component
{(x, y) ∈ C2 | x = 0}.

Example 3.4. Let V = W = {(x, y) ∈ C2 | xy = 0} and f : v 3 (x, y) 7→
(x+ y, 0) ∈W. The mapping f is dominating on every component of V but
it is not dominating.

Remark 3.5. If f : V → W is finite and dominating, then it is domi-
nating on every component of maximal dimension.

Theorem 3.6. Let V ⊂ kk × kn be an algebraic set , and let π : V →
0× kn be the natural projection. If π : V → π(V ) is finite and dominating
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on every component , and π(V ) is normal , then there exists a finite mapping
Π : kk × kn → kk × kn such that Π|V = π and

gdegΠ ≤ (gdeg π)k.

P r o o f. Let V = V1∪ . . .∪Vr and W = W1∪ . . .∪Ws be decompositions
into irreducible components. Because W is normal, Wi ∩Wj = ∅ for i 6= j.
We have

π−1(W1) =
⋃
i∈I1

Vi, . . . , π−1(Ws) =
⋃
i∈Is

Vi

where I1∪. . .∪Is = {1, . . . , r} and Ii∩Ij = ∅ for i 6= j. For any l ∈ {1, . . . , s}
consider the mapping

πl = π|π−1(Wl) : π−1(Wl)→Wl.

By Definition 2.5 we have
gdeg πl ≤ gdeg π.

The mapping f is dominating on every component, so

gdeg πl =
∑
j∈Il

[k(Vj) : k(Wl)]

(see the proof of Lemma 2.4). For any j ∈ Il and i ∈ {1, . . . , k} let Hi,j,l ∈
k(Wl)[T ] be the minimal monic polynomial for xi|Vj (restriction of xi to the
set Vj) over the field k(Wl), where x1, . . . , xk and y1, . . . , yn are coordinates
in kk and kn respectively. We have degHi,j,l ≤ [k(Vj) : k(Wl)]. The element
xi|VJ

is integral over the ring k[Wl]. The ring k[Wl] is normal, so Hi,j,l ∈
k[Wl][T ]. Now we put

Hi,l =
∏
j∈Il

Hi,j,l.

The polynomial Hi,l is monic and

Hi,l(xi) = 0 on
⋃
j∈Il

Vj .

Also
degHi,l =

∑
j∈Il

degHi,j,l ≤
∑
j∈Il

[k(Vj) : k(Wl)] = gdeg πl ≤ gdeg π.

Multiplying Hi,l, if necessary, by some power of T, we can assume that
degHi,l = gdeg π. Thus we can write

Hi,l = T d + ai,l,d−1T
d−1 + . . .+ ai,l,0

where d = gdeg π and ai,l,j ∈ k[Wl]. The functions ai,j = ai,1,j ∪ . . . ∪ ai,s,j
are regular on W1 ∪ . . . ∪Ws = W. Thus

Hi = T d + ai,d−1T
d−1 + . . .+ ai,0

is a monic polynomial in k[W ][T ] such that
Hi(xi) = 0 on V.
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Let Gi be a polynomial of k[y1, . . . , yn][T ] obtained from Hi by replacing
yi|W with yi and

Π : kk × kn 3 (x, y) 7→ (G1(x1, y), . . . , Gk(xk, y), y) ∈ kk × kn.
Because Hi(xi|V ) = 0, we have Π|V = π. Furthermore Π is finite.

Indeed, k[x1, . . . , xk, y1, . . . , yn] is an integral extension of k[G1(x1, y), . . .
. . . , Gk(xk, y), y1, . . . , yn] because

Gi(T, y)−Gi(xi, y) ∈ k[G1(x1, y), . . . , Gk(xk, y), y1, . . . , yn][T ]
is a monic polynomial which vanishes at xi.

Finally, for each (x′, y′) ∈ kk × kn we have
#{(x, y) ∈ kk × kn : Π(x, y) = (x′, y′)}

= #{(x, y) ∈ kk × kn : y = y′, Gi(xi, y) = x′i for i = 1, . . . , k}

≤ degG1 · . . . · degGk ≤ (gdeg π)k.

Thus Π is a finite extension of π such that gdegΠ ≤ (gdeg π)k.

An example showing that the normality of π(V ) is necessary in Theorems
3.1 and 3.6 can be found in [4].

4. Proof of the main result. Let us recall some facts about embed-
dings.

Definition 4.1. A polynomial mapping f : V → kn is called an embed-
ding if f is an isomorphism onto its image f(V ) = f(V ).

We have the following well known lemma (see e.g. [2]):

Lemma 4.2. If X ⊂ Cn is a closed algebraic smooth set , dimX = k and
n > 2k+1, then we can change coordinates in such a way that the projection

φ : X 3 (x, y) 7→ (0, y) ∈ 0× C2k+1

is an embedding.

We also have

Theorem 4.3 ([2], Thm. 1.2). Let X ⊂ Cn be a closed algebraic set
which is smooth and not necessarily irreducible of (not necessarily pure)
dimension k. Let φ : X → Cn be an embedding. If n ≥ 4k + 2 then there
exists an isomorphism Φ : Cn → Cn such that Φ|X = φ.

Now we are in a position to prove the main result.

Theorem 4.4. Let V,W ⊂ Cn be smooth algebraic sets, and let f : V
→W be a finite dominating mapping that is dominating on every irreducible
component. If dimV =dimW = k and 4k+ 2≤n, then there exists a finite
mapping F : Cn → Cn such that F |V = f and

gdegF ≤ (gdeg f)2k+1.
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P r o o f. By Lemma 4.2 we can assume that the projections

φ1 : V → 0× C2k+1 and φ2 : W → 0× Cn−2k−1

are embeddings. Put

Ṽ = φ1(V ), W̃ = φ2(W ) and f̃ = φ2 ◦ f ◦ φ−1
1 : Ṽ → W̃ .

The mapping f̃ is finite with gdeg f̃ = gdeg f.
Because Ṽ ⊂0×C2k+1, W̃ ⊂ 0×Cn−2k−1, we can consider the sets Ṽ and

W̃ as subsets of C2k+1 and Cn−2k−1, respectively. Consider the isomorphism

ψ : Ṽ 3 x 7→ (x, f̃(x)) ∈ C2k+1 × Cn−2k−1,

the set V̂ = ψ(Ṽ ), and the projection

π : V̂ 3 (x, y) 7→ (0, y) ∈ 0× Cn−2k−1.

We have f̃ = π ◦ ψ, and ψ is an isomorphism, so π is finite and gdeg π =
gdeg f̃ = gdeg f. The set π(V̂ ) = W̃ is smooth, because W is smooth, and
by Theorem 3.6 there exists a finite mapping Π : C2k+1 × Cn−2k−1 →
C2k+1 × Cn−2k−1 such that Π|V̂ = π and

gdegΠ ≤ (gdeg π)2k+1.

By Theorem 4.3 applied to ψ : Ṽ → V̂ , φ1 : V → Ṽ and φ2 : W → W̃ there
exist isomorphisms Ψ, Φ1, Φ2 : Cn → Cn such that

Ψ |Ṽ = ψ, Φ1|V = φ1, Φ2|W = φ2.

Putting F = Φ−1
2 ◦ Π ◦ Ψ ◦ Φ1 we have a finite extension of f such that

gdegF ≤ (gdeg f)2k+1.

Note that Theorem 4.4 is a generalization of Theorem 4.3. Indeed, if
f : V → Cn is an embedding and V is smooth then f(V ) is also smooth,
f is a finite dominating mapping that is dominating on every component
and gdeg f = 1. By Theorem 4.4 there exists a finite mapping F : Cn → Cn
such that F |V = f and gdegF = 1. Now F is a birational mapping, and by
Zariski’s Main Theorem, it is an isomorphism.

Note, also, that if V is a pure dimensional set, then the assumption
that f is dominating on every irreducible component is not necessary (see
Remark 3.5).

By Theorem 4.4 we have

Corollary 4.5. Under the assumptions of Theorem 4.4 there are in-
finitely many finite mappings F : Cn → Cn such that F |V = f and

gdegF ≤ (gdeg f)2k+1.

P r o o f. Let x ∈ Cn\V. For any point y ∈ Cn\W we define a mapping
fy : V ∪{x} →W ∪{y} such that fy|V = f and fy(x) = y. By Theorem 4.4
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there exists a finite mapping Fy : Cn → Cn such that Fy|V ∪{x} = fy and

gdegFy ≤ (gdeg fy)2k+1 = (gdeg f)2k+1.

Obviously Fy|V = f and Fy 6= Fy′ for y 6= y′.

By Theorem 4.4 we also have

Corollary 4.6. Let V,W ⊂ Cn, where n > 1, be finite sets. For any
mapping f : V → W there exists a finite mapping F : Cn → Cn such that
F |V = f and gdegF = gdeg f.

Because Lemma 4.2 and Theorem 4.3 are true for any algebraically closed
field, we have

Remark 4.7. Theorem 4.4 holds for any algebraically closed field of
characteristic zero.

References

[1] S. S. Abhyankar, On the Semigroup of a Meromorphic Curve, Kinokuniya Book-
Store, Tokyo, 1978.

[2] Z. Je lonek, The extension of regular and rational embeddings, Math. Ann. 277
(1987), 113–120.
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