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Local characterization of algebraic manifolds
and characterization of components of the set Sf

by Zbigniew Jelonek (Kraków)

Abstract. We show that every n-dimensional smooth algebraic variety X can be
covered by Zariski open subsets Ui which are isomorphic to closed smooth hypersurfaces
in Cn+1.

As an application we show that for every (pure) n− 1-dimensional C-uniruled variety
X ⊂ Cm there is a generically-finite (even quasi-finite) polynomial mapping f : Cn → Cm
such that X ⊂ Sf .

This gives (together with [3]) a full characterization of irreducible components of the
set Sf for generically-finite polynomial mappings f : Cn → Cm.

1. Introduction. In Section 2 we prove the following theorem:

Let X be an n-dimensional algebraic variety and x ∈ X be a smooth
point on X. Then there is a Zariski open neighborhood Ux ⊂ X of x which
is isomorphic to a closed smooth hypersurface in Cn+1.

In particular it implies that every n-dimensional smooth algebraic variety
X can be covered by Zariski open subsets Ui which are isomorphic to closed
smooth hypersurfaces in Cn+1. Moreover, we find that every algebraic vari-
ety of dimension n > 0 has infinitely many pairwise non-isomorphic smooth
models in Cn+1.

As an application of the theorem above we give a characterization of
components of the set Sf of points at which a polynomial mapping f :
Cn → Cm is not proper. Let us recall that f is not proper at a point y if
there is no neighborhood U of y such that f−1(cl(U)) is compact. In [3]
we showed that the set Sf (if non-empty) has pure dimension n − 1 and
it is C-uniruled , i.e., for every point x ∈ Sf there is an affine parametric
curve through this point. In this paper we show that, conversely, for every
C-uniruled n − 1-dimensional variety X ⊂ Cm (where 2 ≤ n ≤ m), there
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is a generically-finite (even quasi-finite) polynomial mapping F : Cn → Cm

such that X ⊂ SF . This gives (together with [3]) a full characterization of
irreducible components of the set Sf .

2. Zariski open subsets which are affine hypersurfaces. We begin
with the following lemma:

Lemma 2.1. Let X be an n-dimensional affine algebraic variety and
w ∈ X be a smooth point on X. Then there is a finite, regular birational
mapping φ : X → Cn+1 such that

(1) φ−1(φ(w)) = {w},
(2) the mapping dwφ : TwX → Cn+1 is an embedding.

P r o o f. We can assume that X ⊂ Cm. Observe that there is a finite
projection f : X → Cn such that dwf : TwX → Cn is an isomorphism. We
can assume that f : X 3 (x1, . . . , xn, xn+1, . . . , xm) 7→ (x1, . . . , xn) ∈ Cn.
Let f−1(f(w)) = {w1, . . . , wk}. By the theorem on the primitive element
there is a linear form z(x) =

∑m
i=n+1 cixi such that the mapping φ := (f, z)

is birational. Moreover, we can assume that z(wi) 6= z(wj) for i 6= j and
consequently φ−1(φ(w)) = {w}. This finishes the proof.

Remark 2.2. In particular, the point φ(w) is smooth on the variety
φ(X).

For our next step it is convenient to introduce the following special bi-
rational mapping Fh.

Definition 2.3. Let h ∈ C[x1, . . . , xn] and define

Fh : Cn+1 3 (x1, . . . , xn, xn+1) 7→ (x1, . . . , xn, h(x1, . . . , xn)xn+1) ∈ Cn+1.

The mapping Fh will be called the h-process given by the polynomial h. The
hypersurface Vh := {x ∈ Cn+1 : h(x) = 0} is the vertical hypersurface of
the h-process Fh and the hyperplane Hh := {x ∈ Cn+1 : xn+1 = 0} is the
horizontal hyperplane of Fh.

Lemma 2.4. The h-process Fh given by a polynomial h ∈ C[x1, . . . , xn]
is a birational mapping and the restriction Fh : Cn+1 \ Vh → Cn+1 \ Vh is
an isomorphism. Moreover , for every hypersurface

X :=
{
x ∈ Cn+1 : xk

n+1 +
k−1∑
j=1

aj(x1, . . . , xn)xk−j
n+1 = 0

}
,

we have cl(Fh(X)) ∩ Vh ⊂ Vh ∩Hh.

P r o o f. Indeed, it is easy to see that the hypersurface cl(Fh(X)) has
equation xk

n+1 +
∑k−1

j=1 aj(x1, . . . , xn)hjxk−j
n+1 = 0, and the lemma follows.

Our first main result is:
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Theorem 2.5. Let X be an n-dimensional algebraic variety and x ∈ X
be a smooth point on X. Then there is a Zariski open neighborhood Ux ⊂ X
of x which is isomorphic to a closed smooth hypersurface in Cn+1.

P r o o f. Let φ : X → Cn+1 be a birational embedding as in Lemma 2.1.
Set X1 := φ(X). By a change of variable we can assume that

X1 =
{
x ∈ Cn+1 : xk

n+1 +
k−1∑
j=1

aj(x1, . . . , xn)xk−j
n+1 = 0

}
.

Let π : Cn+1 3 (x1, . . . , xn+1) 7→ (x1, . . . , xn) ∈ Cn be the projection.
Let Y = Sing(X1) be the singular locus of X1 and set Y ′ = π(Y ). It is
easy to see that Y ′ is contained in some hypersurface H ⊂ {x : xn+1 = 0}.
The hypersurface H is described by a reduced polynomial h ∈ C[x1, . . . , xn].
Without restriction of generality we can assume that π(x) 6∈ H. Moreover,
we can assume that h(0) 6= 0 and 0 6∈ X1.

Now consider the h-process Fh and X2 := cl(Fh(X1)). From Lemma 2.4
we see that X1 \ Vh

∼= X2 \Hh and 0 6∈ X2.
Consider the mapping

σ : Cn+1 3 (x1, . . . , xn, xn+1) 7→
(x1xn+1, x2xn+1, . . . , xnxn+1, xn+1) ∈ Cn+1.

Since h(0) 6= 0 and 0 6∈ X1, we have σ−1(X2) = σ−1(X2) \Hh
∼= X1 \ Vh

∼=
X \ φ−1(Vh). Hence, if we take U := σ−1(X2) and f = φ−1 ◦ Fh

−1 ◦ σ,
then f : U → X is an open embedding and Ux := f(U) is a smooth affine
neighborhood we are looking for.

Corollary 2.6. Let X be a smooth n-dimensional algebraic variety.
Then there is an open covering {U1, . . . , Uk} of X such that every Ui is
isomorphic to a closed hypersurface Si ⊂ Cn+1.

Corollary 2.7. Let X be an n-dimensional algebraic variety (n > 0).
Then there are infinitely many smooth affine hypersurfaces Ys ⊂ Cn+1,
s ∈ N, such that each Ys is birationally isomorphic to X, and Ys is not
isomorphic to Ys′ for s 6= s′.

P r o o f. We construct the sequence of hypersurfaces Ys ⊂ Cn, s ∈ N
inductively. A hypersurface Y1 ⊂ X exists by Corollary 2.6. Now assume
that we have a sequence Yk ⊂ Yk−1 ⊂ . . . ⊂ Y1 (with all inclusions strict)
such that all Yi are isomorphic to hypersurfaces in Cn+1. We show how to
construct Yk+1. Take points a, b ∈ Yk and let Yk+1 be a Zariski open neigh-
borhood Ua ⊂ Yk \ {b} of a which is isomorphic to a smooth hypersurface
in Cn+1. Of course we have the strict inclusion Yk+1 ⊂ Yk.

Now if s 6= s′ then Ys ⊂ Ys′ or conversely (and the inclusion is strict).
We can assume that Ys ⊂ Ys′ . If Ys were isomorphic to Ys′ , then we would
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have an injective mapping f : Ys′ → Ys ⊂ Ys′ . But by [4] this means that
the mapping f : Ys′ → Ys′ is an isomorphism, in particular Ys = Ys′ , a
contradiction.

We also have a stronger version of Theorem 2.5:

Theorem 2.8. Let X1, . . . , Xr be n-dimensional algebraic varieties. Then
there are Zariski open subsets Ui ⊂ Xi such that every Ui is isomorphic to
a closed smooth hypersurface Si ⊂ Cn+1 and Si ∩ Sj = ∅ for i 6= j.

P r o o f. Let φj : Xj → Cn+1 be birational embeddings as in Lemma 2.1.
Define X ′j := φ(Xj). We can assume that X ′i 6= X ′j for i 6= j. Let X :=⋃r

j=1Xj and X ′ :=
⋃r

j=1X
′
j .

Now we follow the proof of Theorem 2.5. By changing variables we can
assume that

X ′ :=
{
x ∈ Cn+1 : xk

n+1 +
k−1∑
j=1

aj(x1, . . . , xn)xk−j
n+1 = 0

}
.

Let π : Cn+1 3 (x1, . . . , xn+1) 7→ (x1, . . . , xn) ∈ Cn be the projec-
tion. Let Y = Sing(X ′) and Y ′ = π(Y ). Then Y ′ is contained in some
hypersurface H ⊂ {x : xn+1 = 0}, described by a reduced polynomial
h ∈ C[x1, . . . , xn]. Without restriction of generality we can assume that
h(0) 6= 0 and 0 6∈ X ′.

Now consider the h-process Fh and set X ′′ := cl(Fh(X ′)). From Lemma
2.4 we see that X ′ \ Vh

∼= X ′′ \Hh and 0 6∈ X ′′.
Consider the mapping σ : Cn+1 → Cn+1. Since h(0) 6= 0 and 0 6∈X ′′, we

have

σ−1(X ′′) = σ−1(X ′′) \Hh
∼= X ′ \ Vh

∼= X \ φ−1(Vh) ∼=
r⋃

j=1

(Xj \ φ−1
j (Vh)).

Hence, it is enough to take Uj := Xj \φ−1
j (Vh) and Sj := σ−1 ◦Fh ◦φ(Uj).

3. Known results. Let us recall some facts about the set of points at
which a polynomial mapping f : Cn → Cm is not proper (cf. [2], [3]).

Definition 3.1. Let f : Cn → Cm be a polynomial generically-finite
mapping. We say that f is proper at a point y ∈ Cn if there exists an open
neighborhood U of y such that resf−1(U)f : f−1(U)→ U is a proper map.

Remark 3.2. A polynomial mapping f is finite if and only if it is proper
at every point y ∈ Cm.

In [2], [3] we have studied the set Sf of points at which a mapping
f : Cn → Cm is not proper. To formulate the main result of this study



Characterization of algebraic manifolds 11

we need the notion of a C-uniruled variety. The following proposition was
proved in [3], Proposition 5.1:

Proposition 3.3. Let X be an irreducible affine variety of dimension
≥ 1. The following conditions are equivalent :

(1) for every x ∈ X there is an affine parametric line Γx in X through x;
(2) there exists a Zariski-open, non-empty subset U of X such that for

every x ∈ U there is an affine parametric line Γx in X through x;
(3) there exists a subset U of X of the second Baire category such that

for every point x ∈ U there is an affine parametric line Γx in X through x;
(4) there exists an affine variety W with dimW = dimX − 1 and a

dominant polynomial mapping φ : W × C→ X.

Now we can introduce our basic definition (cf. [3]):

Definition 3.4. An affine irreducible variety X is called C-uniruled if
it is of dimension ≥ 1 and satisfies one of the equivalent conditions (1)–
(4) of Proposition 3.3. More generally, if X is an affine variety then X is
called C-uniruled if it has pure dimension ≥ 1 and every component of X is
C-uniruled. Additionally we assume that the empty set is C-uniruled.

Finally we have the following description of the set Sf (cf. [3], Theo-
rem 5.8):

Proposition 3.5. Let f : Cn → Cm be a polynomial generically-finite
mapping. Then the set Sf of points at which the mapping f is not proper
is either empty or it has pure dimension n− 1. Moreover , the variety Sf is
C-uniruled.

In what follows we also need the following theorem (cf. [3], Theorem 5.4):

Theorem 3.6. Let X be an affine variety and Y ⊂ X be a closed subva-
riety. Let f : Y → Cn be a polynomial mapping. Assume that dimX ≤ n.
Then there exists a polynomial mapping F : X → Cn such that

(1) resY F = f ,
(2) the mapping resX\Y F : X \ Y → Cn is quasi-finite.

4. A characterization of components of Sf . Now we can prove our
second main result.

Theorem 4.1. Let 2 ≤ n ≤ m and let X ⊂ Cm be an n− 1-dimensional
C-uniruled subset of Cm. Then there is a polynomial quasi-finite mapping
F : Cn → Cm such that X ⊂ SF .

P r o o f. First assume that F : Cn+1 → Cn+1 and X = S × C where
S ⊂ Cn = {x ∈ Cn+1 : xn+1 = 0}. This means that the subset X is
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described by a polynomial h ∈ C[x1, . . . , xn]. Consider the mapping

F : Cn+1 3 (x1, . . . , xn, xn+1) 7→
(x1, . . . , xn, h(x1, . . . , xn)x2

n+1 + xn+1) ∈ Cn+1.

It is easy to see that F is a quasi-finite mapping and SF = X.

We now turn to the general case. Let X ⊂ Cm be an n− 1-dimensional
C-uniruled algebraic set. We have a decomposition X =

⋃r
j=1Xj , where Xj

are n− 1-dimensional C-uniruled irreducible varieties.
From Proposition 3.3, there are affine varieties Wj with dimWj = n− 2

and dominant polynomial mappings φj : Wj×C→ Xj . By Corollary 2.7, we
can assume that Wj ⊂ Cn−1 and Wi ∩Wj = ∅ for i 6= j. Put Yj := Wj ×C.
Hence Yj ⊂ Cn and Yi ∩ Yj = ∅ for i 6= j.

By the first part of our proof there is a quasi-finite polynomial mapping
G : Cn → Cn such that SG =

⋃r
j=1 Yj . Since G is quasi-finite, by the Zariski

Main Theorem there is an affine variety Z which contains Cn as an open
dense subset and a finite mapping G1 : Z → Cn such that resCnG1 = G. Set
P := Z \Cn. It is easy to see that SG = G1(P ). In particular if P =

⋃s
i=1 Pi,

then for every Yj there is an appropriate Pi such that Yj = G1(Pi).
Now we return to the set X =

⋃r
j=1Xj . Recall that we have dominant

mappings φj : Yj → Xj . Since Yi ∩ Yj = ∅ for i 6= j, we also have the
mapping φ =

⋃r
i=1 φi. Consider the mapping f : P 3 z 7→ φ ◦G1(z) ∈ Cm.

It is easy to see that cl(f(P )) = X. By Theorem 3.6 we can extend f to a
mapping F1 : Z → Cm such that

(1) resPF1 = f ,
(2) the mapping resZ\PF1 : Z \ P → Cm is quasi-finite.

If we set F = resCnF1, then the mapping F is quasi-finite and X ⊂ SF by
the construction.

Corollary 4.2. Let 2 ≤ n ≤ m and let X ⊂ Cm be an irreducible vari-
ety. Then X is an irreducible component of the set SF for some generically-
finite polynomial mapping F : Cn → Cm if and only if X is C-uniruled and
dimX = n− 1.

The author does not know whether the (last) inclusion in Theorem 4.1
can be replaced by equality. However in some cases it is possible:

Proposition 4.3. Let 2 ≤ n ≤ m and let S1, . . . , Sr ⊂ Cm be affine
n − 1-dimensional irreducible varieties such that there are finite mappings
φi : Cn−1→ Si, i = 1, . . . , r. Then there exists a polynomial mapping F :
Cn → Cm with finite fibers such that SF =

⋃r
i=1 Si.
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P r o o f. Consider the mapping

G : Cn 3 (x1, . . . , xn) 7→
(
x1, . . . , xn−1,

( r∏
i=1

(x1 − i)
)
x2

n + xn

)
∈ Cn.

It is easy to see thatG is quasi-finite and SG = {x ∈ Cn :
∏r

i=1 (x1 − i) = 0}.
In particular SG =

⋃r
i=1Wi, where Wi

∼= Cn−1 for i = 1, . . . , r and Wi ∩
Wj = ∅ for i 6= j.

Now let S1, . . . , Sr ⊂ Cm be affine n−1-dimensional irreducible varieties
such that there are finite mappings φi : Cn−1 → Si, i = 1, . . . , r. We can
assume that φi : Wi → Si. In particular we have a finite mapping φ :⋃r

i=1Wi →
⋃r

i=1 Si ⊂ Cm. By [2], Proposition 21, we can extend φ to a
finite mapping Φ : Cn → Cm. Now it is enough to set F = Φ ◦G.
Corollary 4.4. Let 2 ≤ n ≤ m and let S1, . . . , Sr ⊂ Cm be n − 1-

dimensional linear subspaces. Then there exists a polynomial mapping F :
Cn → Cm with finite fibers such that SF =

⋃r
i=1 Si.
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