Local characterization of algebraic manifolds and characterization of components of the set S_{f}

by Zbigniew Jelonek (Kraków)

Abstract

We show that every n-dimensional smooth algebraic variety X can be covered by Zariski open subsets U_{i} which are isomorphic to closed smooth hypersurfaces in \mathbb{C}^{n+1}.

As an application we show that for every (pure) n - 1 -dimensional \mathbb{C}-uniruled variety $X \subset \mathbb{C}^{m}$ there is a generically-finite (even quasi-finite) polynomial mapping $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ such that $X \subset S_{f}$.

This gives (together with [3]) a full characterization of irreducible components of the set S_{f} for generically-finite polynomial mappings $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$.

1. Introduction. In Section 2 we prove the following theorem:

Let X be an n-dimensional algebraic variety and $x \in X$ be a smooth point on X. Then there is a Zariski open neighborhood $U_{x} \subset X$ of x which is isomorphic to a closed smooth hypersurface in \mathbb{C}^{n+1}.

In particular it implies that every n-dimensional smooth algebraic variety X can be covered by Zariski open subsets U_{i} which are isomorphic to closed smooth hypersurfaces in \mathbb{C}^{n+1}. Moreover, we find that every algebraic variety of dimension $n>0$ has infinitely many pairwise non-isomorphic smooth models in \mathbb{C}^{n+1}.

As an application of the theorem above we give a characterization of components of the set S_{f} of points at which a polynomial mapping f : $\mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ is not proper. Let us recall that f is not proper at a point y if there is no neighborhood U of y such that $f^{-1}(\operatorname{cl}(U))$ is compact. In [3] we showed that the set S_{f} (if non-empty) has pure dimension $n-1$ and it is \mathbb{C}-uniruled, i.e., for every point $x \in S_{f}$ there is an affine parametric curve through this point. In this paper we show that, conversely, for every \mathbb{C}-uniruled n-1-dimensional variety $X \subset \mathbb{C}^{m}$ (where $2 \leq n \leq m$), there

[^0]is a generically-finite (even quasi-finite) polynomial mapping $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ such that $X \subset S_{F}$. This gives (together with [3]) a full characterization of irreducible components of the set S_{f}.
2. Zariski open subsets which are affine hypersurfaces. We begin with the following lemma:

Lemma 2.1. Let X be an n-dimensional affine algebraic variety and $w \in X$ be a smooth point on X. Then there is a finite, regular birational mapping $\phi: X \rightarrow \mathbb{C}^{n+1}$ such that
(1) $\phi^{-1}(\phi(w))=\{w\}$,
(2) the mapping $d_{w} \phi: T_{w} X \rightarrow \mathbb{C}^{n+1}$ is an embedding.

Proof. We can assume that $X \subset \mathbb{C}^{m}$. Observe that there is a finite projection $f: X \rightarrow \mathbb{C}^{n}$ such that $d_{w} f: T_{w} X \rightarrow \mathbb{C}^{n}$ is an isomorphism. We can assume that $f: X \ni\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{m}\right) \mapsto\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}$. Let $f^{-1}(f(w))=\left\{w_{1}, \ldots, w_{k}\right\}$. By the theorem on the primitive element there is a linear form $z(x)=\sum_{i=n+1}^{m} c_{i} x_{i}$ such that the mapping $\phi:=(f, z)$ is birational. Moreover, we can assume that $z\left(w_{i}\right) \neq z\left(w_{j}\right)$ for $i \neq j$ and consequently $\phi^{-1}(\phi(w))=\{w\}$. This finishes the proof.

Remark 2.2. In particular, the point $\phi(w)$ is smooth on the variety $\phi(X)$.

For our next step it is convenient to introduce the following special birational mapping F_{h}.

Definition 2.3. Let $h \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and define

$$
F_{h}: \mathbb{C}^{n+1} \ni\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \mapsto\left(x_{1}, \ldots, x_{n}, h\left(x_{1}, \ldots, x_{n}\right) x_{n+1}\right) \in \mathbb{C}^{n+1}
$$

The mapping F_{h} will be called the h-process given by the polynomial h. The hypersurface $V_{h}:=\left\{x \in \mathbb{C}^{n+1}: h(x)=0\right\}$ is the vertical hypersurface of the h-process F_{h} and the hyperplane $H_{h}:=\left\{x \in \mathbb{C}^{n+1}: x_{n+1}=0\right\}$ is the horizontal hyperplane of F_{h}.

Lemma 2.4. The h-process F_{h} given by a polynomial $h \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is a birational mapping and the restriction $F_{h}: \mathbb{C}^{n+1} \backslash V_{h} \rightarrow \mathbb{C}^{n+1} \backslash V_{h}$ is an isomorphism. Moreover, for every hypersurface

$$
X:=\left\{x \in \mathbb{C}^{n+1}: x_{n+1}^{k}+\sum_{j=1}^{k-1} a_{j}\left(x_{1}, \ldots, x_{n}\right) x_{n+1}^{k-j}=0\right\}
$$

we have $\operatorname{cl}\left(F_{h}(X)\right) \cap V_{h} \subset V_{h} \cap H_{h}$.
Proof. Indeed, it is easy to see that the hypersurface $\operatorname{cl}\left(F_{h}(X)\right)$ has equation $x_{n+1}^{k}+\sum_{j=1}^{k-1} a_{j}\left(x_{1}, \ldots, x_{n}\right) h^{j} x_{n+1}^{k-j}=0$, and the lemma follows.

Our first main result is:

Theorem 2.5. Let X be an n-dimensional algebraic variety and $x \in X$ be a smooth point on X. Then there is a Zariski open neighborhood $U_{x} \subset X$ of x which is isomorphic to a closed smooth hypersurface in \mathbb{C}^{n+1}.

Proof. Let $\phi: X \rightarrow \mathbb{C}^{n+1}$ be a birational embedding as in Lemma 2.1. Set $X_{1}:=\phi(X)$. By a change of variable we can assume that

$$
X_{1}=\left\{x \in \mathbb{C}^{n+1}: x_{n+1}^{k}+\sum_{j=1}^{k-1} a_{j}\left(x_{1}, \ldots, x_{n}\right) x_{n+1}^{k-j}=0\right\}
$$

Let $\pi: \mathbb{C}^{n+1} \ni\left(x_{1}, \ldots, x_{n+1}\right) \mapsto\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}$ be the projection. Let $Y=\operatorname{Sing}\left(X_{1}\right)$ be the singular locus of X_{1} and set $Y^{\prime}=\pi(Y)$. It is easy to see that Y^{\prime} is contained in some hypersurface $H \subset\left\{x: x_{n+1}=0\right\}$. The hypersurface H is described by a reduced polynomial $h \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Without restriction of generality we can assume that $\pi(x) \notin H$. Moreover, we can assume that $h(0) \neq 0$ and $0 \notin X_{1}$.

Now consider the h-process F_{h} and $X_{2}:=\operatorname{cl}\left(F_{h}\left(X_{1}\right)\right)$. From Lemma 2.4 we see that $X_{1} \backslash V_{h} \cong X_{2} \backslash H_{h}$ and $0 \notin X_{2}$.

Consider the mapping

$$
\begin{aligned}
& \sigma: \mathbb{C}^{n+1} \ni\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \mapsto \\
& \quad\left(x_{1} x_{n+1}, x_{2} x_{n+1}, \ldots, x_{n} x_{n+1}, x_{n+1}\right) \in \mathbb{C}^{n+1} .
\end{aligned}
$$

Since $h(0) \neq 0$ and $0 \notin X_{1}$, we have $\sigma^{-1}\left(X_{2}\right)=\sigma^{-1}\left(X_{2}\right) \backslash H_{h} \cong X_{1} \backslash V_{h} \cong$ $X \backslash \phi^{-1}\left(V_{h}\right)$. Hence, if we take $U:=\sigma^{-1}\left(X_{2}\right)$ and $f=\phi^{-1} \circ F_{h}^{-1} \circ \sigma$, then $f: U \rightarrow X$ is an open embedding and $U_{x}:=f(U)$ is a smooth affine neighborhood we are looking for.

Corollary 2.6. Let X be a smooth n-dimensional algebraic variety. Then there is an open covering $\left\{U_{1}, \ldots, U_{k}\right\}$ of X such that every U_{i} is isomorphic to a closed hypersurface $S_{i} \subset \mathbb{C}^{n+1}$.

Corollary 2.7. Let X be an n-dimensional algebraic variety $(n>0)$. Then there are infinitely many smooth affine hypersurfaces $Y_{s} \subset \mathbb{C}^{n+1}$, $s \in \mathbb{N}$, such that each Y_{s} is birationally isomorphic to X, and Y_{s} is not isomorphic to $Y_{s^{\prime}}$ for $s \neq s^{\prime}$.

Proof. We construct the sequence of hypersurfaces $Y_{s} \subset \mathbb{C}^{n}, s \in \mathbb{N}$ inductively. A hypersurface $Y_{1} \subset X$ exists by Corollary 2.6. Now assume that we have a sequence $Y_{k} \subset Y_{k-1} \subset \ldots \subset Y_{1}$ (with all inclusions strict) such that all Y_{i} are isomorphic to hypersurfaces in \mathbb{C}^{n+1}. We show how to construct Y_{k+1}. Take points $a, b \in Y_{k}$ and let Y_{k+1} be a Zariski open neighborhood $U_{a} \subset Y_{k} \backslash\{b\}$ of a which is isomorphic to a smooth hypersurface in \mathbb{C}^{n+1}. Of course we have the strict inclusion $Y_{k+1} \subset Y_{k}$.

Now if $s \neq s^{\prime}$ then $Y_{s} \subset Y_{s^{\prime}}$ or conversely (and the inclusion is strict). We can assume that $Y_{s} \subset Y_{s^{\prime}}$. If Y_{s} were isomorphic to $Y_{s^{\prime}}$, then we would
have an injective mapping $f: Y_{s^{\prime}} \rightarrow Y_{s} \subset Y_{s^{\prime}}$. But by [4] this means that the mapping $f: Y_{s^{\prime}} \rightarrow Y_{s^{\prime}}$ is an isomorphism, in particular $Y_{s}=Y_{s^{\prime}}$, a contradiction.

We also have a stronger version of Theorem 2.5:
Theorem 2.8. Let X_{1}, \ldots, X_{r} be n-dimensional algebraic varieties. Then there are Zariski open subsets $U_{i} \subset X_{i}$ such that every U_{i} is isomorphic to a closed smooth hypersurface $S_{i} \subset \mathbb{C}^{n+1}$ and $S_{i} \cap S_{j}=\emptyset$ for $i \neq j$.

Proof. Let $\phi_{j}: X_{j} \rightarrow \mathbb{C}^{n+1}$ be birational embeddings as in Lemma 2.1. Define $X_{j}^{\prime}:=\phi\left(X_{j}\right)$. We can assume that $X_{i}^{\prime} \neq X_{j}^{\prime}$ for $i \neq j$. Let $X:=$ $\bigcup_{j=1}^{r} X_{j}$ and $X^{\prime}:=\bigcup_{j=1}^{r} X_{j}^{\prime}$.

Now we follow the proof of Theorem 2.5. By changing variables we can assume that

$$
X^{\prime}:=\left\{x \in \mathbb{C}^{n+1}: x_{n+1}^{k}+\sum_{j=1}^{k-1} a_{j}\left(x_{1}, \ldots, x_{n}\right) x_{n+1}^{k-j}=0\right\} .
$$

Let $\pi: \mathbb{C}^{n+1} \ni\left(x_{1}, \ldots, x_{n+1}\right) \mapsto\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}$ be the projection. Let $Y=\operatorname{Sing}\left(X^{\prime}\right)$ and $Y^{\prime}=\pi(Y)$. Then Y^{\prime} is contained in some hypersurface $H \subset\left\{x: x_{n+1}=0\right\}$, described by a reduced polynomial $h \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Without restriction of generality we can assume that $h(0) \neq 0$ and $0 \notin X^{\prime}$.

Now consider the h-process F_{h} and set $X^{\prime \prime}:=\operatorname{cl}\left(F_{h}\left(X^{\prime}\right)\right)$. From Lemma 2.4 we see that $X^{\prime} \backslash V_{h} \cong X^{\prime \prime} \backslash H_{h}$ and $0 \notin X^{\prime \prime}$.

Consider the mapping $\sigma: \mathbb{C}^{n+1} \rightarrow \mathbb{C}^{n+1}$. Since $h(0) \neq 0$ and $0 \notin X^{\prime \prime}$, we have

$$
\sigma^{-1}\left(X^{\prime \prime}\right)=\sigma^{-1}\left(X^{\prime \prime}\right) \backslash H_{h} \cong X^{\prime} \backslash V_{h} \cong X \backslash \phi^{-1}\left(V_{h}\right) \cong \bigcup_{j=1}^{r}\left(X_{j} \backslash \phi_{j}^{-1}\left(V_{h}\right)\right)
$$

Hence, it is enough to take $U_{j}:=X_{j} \backslash \phi_{j}^{-1}\left(V_{h}\right)$ and $S_{j}:=\sigma^{-1} \circ F_{h} \circ \phi\left(U_{j}\right)$.
3. Known results. Let us recall some facts about the set of points at which a polynomial mapping $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ is not proper (cf. [2], [3]).

Definition 3.1. Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ be a polynomial generically-finite mapping. We say that f is proper at a point $y \in \mathbb{C}^{n}$ if there exists an open neighborhood U of y such that $\operatorname{res}_{f^{-1}(U)} f: f^{-1}(U) \rightarrow U$ is a proper map.

Remark 3.2. A polynomial mapping f is finite if and only if it is proper at every point $y \in \mathbb{C}^{m}$.

In [2], [3] we have studied the set S_{f} of points at which a mapping $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ is not proper. To formulate the main result of this study
we need the notion of a \mathbb{C}-uniruled variety. The following proposition was proved in [3], Proposition 5.1:

Proposition 3.3. Let X be an irreducible affine variety of dimension ≥ 1. The following conditions are equivalent:
(1) for every $x \in X$ there is an affine parametric line Γ_{x} in X through x;
(2) there exists a Zariski-open, non-empty subset U of X such that for every $x \in U$ there is an affine parametric line Γ_{x} in X through x;
(3) there exists a subset U of X of the second Baire category such that for every point $x \in U$ there is an affine parametric line Γ_{x} in X through x;
(4) there exists an affine variety W with $\operatorname{dim} W=\operatorname{dim} X-1$ and a dominant polynomial mapping $\phi: W \times \mathbb{C} \rightarrow X$.

Now we can introduce our basic definition (cf. [3]):
Definition 3.4. An affine irreducible variety X is called \mathbb{C}-uniruled if it is of dimension ≥ 1 and satisfies one of the equivalent conditions (1)(4) of Proposition 3.3. More generally, if X is an affine variety then X is called \mathbb{C}-uniruled if it has pure dimension ≥ 1 and every component of X is \mathbb{C}-uniruled. Additionally we assume that the empty set is \mathbb{C}-uniruled.

Finally we have the following description of the set S_{f} (cf. [3], Theorem 5.8):

Proposition 3.5. Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ be a polynomial generically-finite mapping. Then the set S_{f} of points at which the mapping f is not proper is either empty or it has pure dimension $n-1$. Moreover, the variety S_{f} is \mathbb{C}-uniruled.

In what follows we also need the following theorem (cf. [3], Theorem 5.4):
Theorem 3.6. Let X be an affine variety and $Y \subset X$ be a closed subvariety. Let $f: Y \rightarrow \mathbb{C}^{n}$ be a polynomial mapping. Assume that $\operatorname{dim} X \leq n$. Then there exists a polynomial mapping $F: X \rightarrow \mathbb{C}^{n}$ such that
(1) $\operatorname{res}_{Y} F=f$,
(2) the mapping $\operatorname{res}_{X \backslash Y} F: X \backslash Y \rightarrow \mathbb{C}^{n}$ is quasi-finite.
4. A characterization of components of S_{f}. Now we can prove our second main result.

Theorem 4.1. Let $2 \leq n \leq m$ and let $X \subset \mathbb{C}^{m}$ be an n-1-dimensional \mathbb{C}-uniruled subset of \mathbb{C}^{m}. Then there is a polynomial quasi-finite mapping $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ such that $X \subset S_{F}$.

Proof. First assume that $F: \mathbb{C}^{n+1} \rightarrow \mathbb{C}^{n+1}$ and $X=S \times \mathbb{C}$ where $S \subset \mathbb{C}^{n}=\left\{x \in \mathbb{C}^{n+1}: x_{n+1}=0\right\}$. This means that the subset X is
described by a polynomial $h \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Consider the mapping

$$
\begin{aligned}
& F: \mathbb{C}^{n+1} \ni\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \mapsto \\
& \quad\left(x_{1}, \ldots, x_{n}, h\left(x_{1}, \ldots, x_{n}\right) x_{n+1}^{2}+x_{n+1}\right) \in \mathbb{C}^{n+1} .
\end{aligned}
$$

It is easy to see that F is a quasi-finite mapping and $S_{F}=X$.
We now turn to the general case. Let $X \subset \mathbb{C}^{m}$ be an n-1-dimensional \mathbb{C}-uniruled algebraic set. We have a decomposition $X=\bigcup_{j=1}^{r} X_{j}$, where X_{j} are n - 1 -dimensional \mathbb{C}-uniruled irreducible varieties.

From Proposition 3.3, there are affine varieties W_{j} with $\operatorname{dim} W_{j}=n-2$ and dominant polynomial mappings $\phi_{j}: W_{j} \times \mathbb{C} \rightarrow X_{j}$. By Corollary 2.7, we can assume that $W_{j} \subset \mathbb{C}^{n-1}$ and $W_{i} \cap W_{j}=\emptyset$ for $i \neq j$. Put $Y_{j}:=W_{j} \times \mathbb{C}$. Hence $Y_{j} \subset \mathbb{C}^{n}$ and $Y_{i} \cap Y_{j}=\emptyset$ for $i \neq j$.

By the first part of our proof there is a quasi-finite polynomial mapping $G: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ such that $S_{G}=\bigcup_{j=1}^{r} Y_{j}$. Since G is quasi-finite, by the Zariski Main Theorem there is an affine variety Z which contains \mathbb{C}^{n} as an open dense subset and a finite mapping $G_{1}: Z \rightarrow \mathbb{C}^{n}$ such that $\operatorname{res}_{\mathbb{C}^{n}} G_{1}=G$. Set $P:=Z \backslash \mathbb{C}^{n}$. It is easy to see that $S_{G}=G_{1}(P)$. In particular if $P=\bigcup_{i=1}^{s} P_{i}$, then for every Y_{j} there is an appropriate P_{i} such that $Y_{j}=G_{1}\left(P_{i}\right)$.

Now we return to the set $X=\bigcup_{j=1}^{r} X_{j}$. Recall that we have dominant mappings $\phi_{j}: Y_{j} \rightarrow X_{j}$. Since $Y_{i} \cap Y_{j}=\emptyset$ for $i \neq j$, we also have the mapping $\phi=\bigcup_{i=1}^{r} \phi_{i}$. Consider the mapping $f: P \ni z \mapsto \phi \circ G_{1}(z) \in \mathbb{C}^{m}$. It is easy to see that $\operatorname{cl}(f(P))=X$. By Theorem 3.6 we can extend f to a mapping $F_{1}: Z \rightarrow \mathbb{C}^{m}$ such that
(1) $\operatorname{res}_{P} F_{1}=f$,
(2) the mapping $\operatorname{res}_{Z \backslash P} F_{1}: Z \backslash P \rightarrow \mathbb{C}^{m}$ is quasi-finite.

If we set $F=\operatorname{res}_{\mathbb{C}^{n}} F_{1}$, then the mapping F is quasi-finite and $X \subset S_{F}$ by the construction.

Corollary 4.2. Let $2 \leq n \leq m$ and let $X \subset \mathbb{C}^{m}$ be an irreducible variety. Then X is an irreducible component of the set S_{F} for some genericallyfinite polynomial mapping $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ if and only if X is \mathbb{C}-uniruled and $\operatorname{dim} X=n-1$.

The author does not know whether the (last) inclusion in Theorem 4.1 can be replaced by equality. However in some cases it is possible:

Proposition 4.3. Let $2 \leq n \leq m$ and let $S_{1}, \ldots, S_{r} \subset \mathbb{C}^{m}$ be affine n-1-dimensional irreducible varieties such that there are finite mappings $\phi_{i}: \mathbb{C}^{n-1} \rightarrow S_{i}, i=1, \ldots, r$. Then there exists a polynomial mapping F : $\mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ with finite fibers such that $S_{F}=\bigcup_{i=1}^{r} S_{i}$.

Proof. Consider the mapping

$$
G: \mathbb{C}^{n} \ni\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n-1},\left(\prod_{i=1}^{r}\left(x_{1}-i\right)\right) x_{n}^{2}+x_{n}\right) \in \mathbb{C}^{n}
$$

It is easy to see that G is quasi-finite and $S_{G}=\left\{x \in \mathbb{C}^{n}: \prod_{i=1}^{r}\left(x_{1}-i\right)=0\right\}$. In particular $S_{G}=\bigcup_{i=1}^{r} W_{i}$, where $W_{i} \cong \mathbb{C}^{n-1}$ for $i=1, \ldots, r$ and $W_{i} \cap$ $W_{j}=\emptyset$ for $i \neq j$.

Now let $S_{1}, \ldots, S_{r} \subset \mathbb{C}^{m}$ be affine n-1-dimensional irreducible varieties such that there are finite mappings $\phi_{i}: \mathbb{C}^{n-1} \rightarrow S_{i}, i=1, \ldots, r$. We can assume that $\phi_{i}: W_{i} \rightarrow S_{i}$. In particular we have a finite mapping ϕ : $\bigcup_{i=1}^{r} W_{i} \rightarrow \bigcup_{i=1}^{r} S_{i} \subset \mathbb{C}^{m}$. By [2], Proposition 21, we can extend ϕ to a finite mapping $\Phi: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$. Now it is enough to set $F=\Phi \circ G$.

Corollary 4.4. Let $2 \leq n \leq m$ and let $S_{1}, \ldots, S_{r} \subset \mathbb{C}^{m}$ be $n-1$ dimensional linear subspaces. Then there exists a polynomial mapping F : $\mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ with finite fibers such that $S_{F}=\bigcup_{i=1}^{r} S_{i}$.

References

[1] R. Hartshorne, Algebraic Geometry, Springer, New York, 1987.
[2] Z. Jelonek, The set of points at which a polynomial map is not proper, Ann. Polon. Math. 58 (1993), 259-266.
[3] -, Testing sets for properness of polynomial mappings, Math. Ann. 315 (1999), 1-35.
[4] K. Nowak, Injective endomorphisms of algebraic varieties, ibid. 299 (1994), 769-778.

Institute of Mathematics	Institute of Mathematics
Polish Academy of Sciences	Jagiellonian University
Św. Tomasza 30	Reymonta 4
31-027 Kraków, Poland	30-059 Kraków, Poland
	E-mail: jelonek@im.uj.edu.pl

[^0]: 2000 Mathematics Subject Classification: 14E10, 14E22, 14E40.
 Key words and phrases: polynomial mappings, affine space, \mathbb{C}-uniruled variety.
 This paper is partially supported by a KBN grant no. 2 PO3A 03714.

