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Invariant measures for iterated function systems

by Tomasz Szarek (Katowice and Rzeszów)

Abstract. A new criterion for the existence of an invariant distribution for Markov
operators is presented. Moreover, it is also shown that the unique invariant distribution
of an iterated function system is singular with respect to the Hausdorff measure.

1. Introduction. The main aim of our paper is to present sufficient
conditions for the existence of an invariant measure for general Markov op-
erators. These operators are defined on a Polish space X. When the Markov
operators are defined on a compact space, the proof of the existence goes
as follows. First we construct a positive, invariant functional defined on the
space of all continuous and bounded functions f : X → R and then us-
ing the Riesz representation theorem we define an invariant measure. This
method was extended by A. Lasota and J. Yorke to the case when X is
a locally compact and σ-compact metric space [11]. When X is a Polish
space this idea breaks down, since a positive functional may not correspond
to a measure. Therefore in our considerations we base on the concept of
tightness.

Further, we apply our criteria to iterated function systems (ifs for short).
Iterated function systems are closely related to the construction of fractals.
By a fractal set we mean a fixed point of the operator

H(A) =

N
⋃

i=1

Si(A), A ⊂ X,

where Si : X→X, i= 1, . . . , N , are continuous transformations and X is a
metric space. It is well known that if all Si are Lipschitzian with Lipschitz
constants Li < 1, then the operator H admits a fixed point F . Moreover, F
is compact and unique. Under some additional assumptions on the transfor-
mations Si (see [3, 4, 7, 8]) we are able to calculate the Hausdorff dimension
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of F . In this case it is known that

0 < Hs(F ) < ∞,

where s is equal to the Hausdorff dimension of F .

The last inequalities are the starting point for our considerations. We
will study the Markov operator

Pµ(A) =

N
∑

i=1

\
S−1

i
(A)

pi(x)µ(dx),

which maps Borel measures on X into Borel measures on X. Here Si : X→X
are again continuous transformations and pi : X → [0, 1] are continuous and

such that
∑N

i=1 pi(x) = 1. A pair (Si, pi) is called an iterated function

system. In fact, we will be interested in the unique invariant distribution
µ∗ of P . The main purpose of this paper is to give conditions which ensure
that this unique measure µ∗ supported on the fractal set F is singular with
respect to Hs. Similar problems were studied by many authors (see for
example [1, 6]).

The material is divided into two sections. The existence of an invariant
measure for a general Markov operator P is discussed in Section 1. This
part of the paper generalizes our earlier results (see [12]). In fact, we formu-
lated the definitions of globally and locally concentrating Markov operators,
which seemed to be a very useful tool in studying iterated function systems
and stochastic differential equations. Now we are going to weaken these def-
initions. In Section 2 we study the invariant distribution of P corresponding
to an iterated function system and prove its singularity with respect to the
Hausdorff measure Hs.

2. Invariant measures for Markov operators. Let (X, ̺) be a Polish
space, i.e. a separable, complete metric space. This assumption will not be
repeated in the statements of theorems.

By K(x, r) we denote the closed ball with center x and radius r.

By B(X) and Bb(X) we denote the family of all Borel sets and all
bounded Borel sets, respectively. Further, by B(X) we denote the space
of all bounded Borel measurable functions f : X → R with the supremum
norm.

By Mfin and M1 we denote the sets of Borel measures (non-negative,
σ-additive) on X such that µ(X) < ∞ for µ ∈ Mfin and µ(X) = 1 for
µ ∈ M1. The elements of M1 are called distributions.

We say that µ ∈ Mfin is concentrated on A ∈ B(X) if µ(X \ A) = 0. By
MA

1 we denote the set of all distributions concentrated on A.
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Given µ ∈ Mfin we define the support of µ by the formula

suppµ = {x ∈ X : µ(K(x, r)) > 0 for every r > 0}.

An operator P : Mfin → Mfin is called a Markov operator if it satisfies
the following two conditions:

(i) positive linearity:

P (λ1µ1 + λ2µ2) = λ1Pµ1 + λ2Pµ2

for λ1, λ2 ≥ 0 and µ1, µ2 ∈ Mfin,
(ii) preservation of the norm:

Pµ(X) = µ(X) for µ ∈ Mfin.

It is easy to prove that every Markov operator can be extended to the
space of signed measures

Msig = {µ1 − µ2 : µ1, µ2 ∈ Mfin}.

Namely for every ν ∈ Msig, ν = µ1 − µ2, we set

Pν = Pµ1 − Pµ2.

To simplify the notation we write

〈f, ν〉 =
\
X

f(x) ν(dx) for f ∈ B(X), ν ∈ Msig.

In the space Msig we introduce the Fortet–Mourier norm (see [5])

‖ν‖ = sup{|〈f, ν〉| : f ∈ F},

where F ⊂ B(X) consists of all functions such that |f | ≤ 1 and |f(x) −
f(y)| ≤ ̺(x, y).

A Markov operator P is called non-expansive if

‖Pµ1 − Pµ2‖ ≤ ‖µ1 − µ2‖ for µ1, µ2 ∈ M1.

Let P be a Markov operator. A measure µ∗ ∈ Mfin is called stationary

or invariant if Pµ∗ = µ∗.
To ensure existence and uniqueness of an invariant measure for a Markov

operator P we assume conditions similar to those in [12]. More precisely, we
assume that the Markov operator P is locally concentrating but the globally

concentrating property is replaced by a weaker one. The main aim of this
part of our paper is to give general and at the same time explicit conditions
implying existence and uniqueness of an invariant measure for P . It is
worthwhile to add that the proofs presented in this paper are more elegant
than those in [12].

We call P a locally concentrating Markov operator if for every ε > 0
there is α > 0 such that for every A ∈ Bb(X) there exists C ∈ Bb(X) with
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diam C < ε and n0 ∈ N satisfying

(2.1) Pn0µ(C) > α for µ ∈ MA
1 .

Now for every A ∈ Bb(X) and η ∈ [0, 1] we set

MA,η
1 = {µ ∈ M1 : Pnµ(A) ≥ 1 − η for n ∈ N}.

Define the function ϕ : Bb(X) × [0, 1] → [0, 2] ∪ {−∞} by

ϕ(A, η) = lim sup
n→∞

sup{‖Pnµ1 − Pnµ2‖ : µ1, µ2 ∈ MA,η
1 }.

As usual, we assume that the supremum of an empty set is equal to −∞.
We start with an easy but very useful lemma.

Lemma 2.1. Assume that P is a non-expansive and locally concentrating

Markov operator. Let ε > 0 and let α > 0 be such that , for ε > 0, the locally

concentrating property holds. If η < 1/2 then

(2.2) ϕ(A, η(1 − α/2)) ≤ (1 − α/2)ϕ(A, η) + αε/2

for A ∈ Bb(X).

P r o o f. Fix ε > 0, A ∈ Bb(X) and η < 1/2. Let α > 0, n0 ∈ N and C ∈
Bb(X) be such that the locally concentrating property holds. We see at once

that if M
1,η(1−α/2)
1 = ∅, then (2.2) is satisfied. Fix µ1, µ2 ∈ M

A,η(1−α/2)
1 .

As η < 1/2 we have

µi ≥
1
2µA

i ,

where µA
i ∈ MA

1 is of the form

µA
i (B) =

µi(A ∩ B)

µi(A)
for B ∈ B(X), i = 1, 2.

By the linearity of P we get

Pn0µi(C) ≥ 1
2Pn0µA

i (C) > α/2 for i = 1, 2.

Hence for i = 1, 2 we have

(2.3) Pn0µi = (1 − α/2)µi + (α/2)νi,

where νi ∈ MC
1 is defined by

νi(B) =
Pn0µi(B ∩ C)

Pn0µi(C)
for B ∈ B(X)

and µi is defined by equation (2.3). Since ν1, ν2 ∈ MC
1 and diamC < ε, we

check at once that ‖ν1 − ν2‖ < ε. From (2.3) we conclude that

Pnµi(A) ≥ (1 − α/2)−1{Pn0+nµi(A) − α/2}

≥ (1 − α/2)−1{1 − η(1 − α/2) − α/2}

= 1 − η for n ∈ N and i = 1, 2.
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This gives µ1, µ2 ∈ MA,η
1 and consequently, since P is non-expansive, we

have

‖Pn0+nµ1 − Pn0+nµ2‖

≤ (1 − α/2)‖Pnµ1 − Pnµ2‖ + (α/2)‖Pnν1 − Pnν2‖

≤ (1 − α/2) sup{‖Pnµ1 − Pnµ2‖ : µ1, µ2 ∈ MA,η
1 } + αε/2.

By the above we get

ϕ(A, η(1 − α/2)) ≤ (1 − α/2)ϕ(A, η) + αε/2.

Theorem 2.1. Assume that P is a non-expansive and locally concen-

trating Markov operator. Moreover , assume that there exists µ0 ∈ M1 such

that for every ε > 0 there is A ∈ Bb(X) satisfying

(2.4) lim inf
n→∞

Pnµ0(A) ≥ 1 − ε.

Then P admits a unique invariant distribution.

P r o o f. The proof falls naturally into two parts, concerning existence
and uniqueness.

Let µ0 ∈ M1 be as in the statement of the theorem. Since the space
M1 with the Fortet–Mourier distance is a complete metric space (for more
details see [2]), to prove the existence of an invariant distribution it is enough
to show that (Pnµ0)n≥1 satisfies the Cauchy condition. In fact, according
to the non-expansiveness of P , if Pnµ0 → µ∗ ∈ M1, then Pnµ0 → Pµ∗ as
n → ∞. Hence Pµ∗ = µ∗.

Fix ε > 0. Let α > 0 be such that, for ε/2, the locally concentrating
property holds. Let k ∈ N be such that 4(1−α/2)k < ε. Choose A ∈ Bb(X)
satisfying

Pnµ0(A) ≥ 1 − 1
3 (1 − α/2)k for n ∈ N.

Using (2.2) it is easy to verify by an induction argument that

ϕ
(

A, 1
3
(1 − α/2)k

)

≤ (1 − α/2)kϕ(A, 1/3) + αε/4(2.5)

+ αε(1 − α/2)/4 + . . . + αε(1 − α/2)k−1/4

≤ 2(1 − α/2)k + ε/2 < ε.

It is clear that Pmµ0, P
nµ0 ∈ M

A, 1
3
(1−α/2)k

1 for m,n ∈ N and from (2.5) it
follows that there exists n0 ∈ N such that

‖Pn0Pnµ0 − Pn0Pmµ0‖ < ε.

Therefore

‖Pnµ0 − Pmµ0‖ < ε for m,n ≥ n0,

which finishes the proof of the existence of an invariant measure.
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To prove uniqueness suppose, contrary to our claim, that µ1, µ2 ∈ M1

are two different invariant measures.
Set

(2.6) ε := ‖µ1 − µ2‖ > 0.

As in the first part let α > 0 be such that, for ε/2, the locally concentrating
property holds. Choose k ∈ N such that 4(1 − α/2)k < ε. Since Pnµi = µi,

i = 1, 2, n ∈ N, we conclude that µ1, µ2 ∈ M
A, 1

3
(1−α/2)k

1 for some A ∈
Bb(X). From (2.5) it follows that

‖µ1 − µ2‖ = lim
n→∞

‖Pnµ1 − Pnµ2‖ ≤ ϕ
(

A, 1
3
(1 − α/2)k

)

< ε,

contrary to (2.6), and the proof is complete.

3. Singularity of an invariant measure. A mapping S : X → X
is called a contraction if there is a constant L with 0 < L < 1 such that
̺(S(x), S(y)) ≤ L · ̺(x, y) for all x, y ∈ X, and is called a similarity if there
is a constant L with 0 < L < 1 such that ̺(S(x), S(y)) = L · ̺(x, y) for all
x, y ∈ X. In both cases the constant L is called the Lipschitz constant.

Let S1, . . . , SN be contractions. We call a subset F of X invariant for
the transformations Si if

(3.1) F =
N
⋃

i=1

Si(F ).

Recall that if U is any non-empty subset of X, the diameter of U is
defined as |U | = sup{̺(x, y) : x, y ∈ U}.

If {Ui} is a countable (or finite) collection of sets of diameter at most δ
that cover F , i.e. F ⊂

⋃∞

i=1 Ui with 0 < |Ui| ≤ δ for each i ∈ N, we say that
{Ui} is a δ-cover of F .

Suppose that F is a subset of X and s is a non-negative number. For
any δ > 0 we define

(3.2) Hs
δ(F ) = inf

{

∞
∑

i=1

|Ui|
s : {Ui} is a δ-cover of F

}

.

As δ decreases, the class of permissible covers of F in (3.2) is reduced.
Therefore, the infimum Hs

δ(F ) increases, and so approaches a limit as δ → 0.
We write

(3.3) Hs(F ) = lim
δ→0

Hs
δ(F ).

We call Hs(F ) the s-dimensional Hausdorff outer measure of F . The re-
striction of Hs to the σ-field of Hs-measurable sets, which includes B(X),
is called the Hausdorff s-dimensional measure on B(X).
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A measure µ ∈ Mfin is called absolutely continuous with respect to Hs if
µ(A) = 0 for every A ∈ B(X) such that Hs(A) = 0, and is called singular

with respect to Hs if there is Y ∈ B(X) such that Hs(Y ) = 0 and µ(Y ) =
µ(X).

Let F ⊂ X. The value

dimH F = inf{s > 0 : Hs(F ) = 0}

is called the Hausdorff dimension of F .

It can be proved (see [3, 4]) that

dimH F = sup{s > 0 : Hs(F ) = ∞}.

Moreover, if s = dimH F , then Hs(F ) may be zero or infinite, or may satisfy

0 < Hs(F ) < ∞.

In the case where S1, . . . , SN : X → X are similarities with constants
L1, . . . , LN , respectively, a theorem proved by M. Hata (see Theorem 10.3 of
[7] and Proposition 9.7 of [3]) allows us to calculate the Hausdorff dimension
of the invariant set for S1, . . . , SN . Namely, if we assume that F is an
invariant set for the similarities S1, . . . , SN and Si(F )∩Sj(F ) = ∅ for i 6= j,
then dimH F = s, where s is given by

(3.4)

N
∑

i=1

Ls
i = 1.

Moreover,

(3.5) 0 < Hs(F ) < ∞.

Let an ifs (Si, pi)
N
i=1 be given. We say that (Si, pi)

N
i=1 has a station-

ary distribution if the corresponding Markov operator P has a stationary
distribution.

Now assume that

(3.6)

N
∑

i=1

|pi(x) − pi(y)| ≤ ω(̺(x, y)),

and

(3.7)

N
∑

i=1

pi(x)̺(Si(x), Si(y)) ≤ r · ̺(x, y) for x, y ∈ X,

where r < 1 and ω : R+ → R+, R+ = [0,∞), is a non-decreasing and
concave function which satisfies the Dini condition, i.e.

a\
0

ω(t)

t
dt < ∞ for some a > 0.



94 T. Szarek

It has been proved (see Theorem 4.2 in [12] and Theorem 3.2 in [10])
that under the conditions stated above we are able to change the metric ̺
in the Polish space (X, ̺) in such a way that the new space remains Polish
and the Markov operator P is non-expansive and satisfies (2.4) for every
measure µ0 ∈ M1. Moreover, the new metric will define the same space of
continuous functions. If we assume that for some i0, 1 ≤ i0 ≤ N , Si0 is a
contraction and pi0(x) ≥ σ for x ∈ X and some σ > 0, then P is locally
concentrating. Theorem 2.1 now shows that P admits a unique invariant
distribution.

In our further considerations we will study an ifs (Si, pi)
N
i=1 such that

S1, . . . , SN are contractions with Lipschitz constants L1, . . . , LN , respec-
tively. It is obvious that it satisfies the above conditions and its unique
invariant distribution is supported on the invariant set F for the transfor-
mations Si, i = 1, . . . , N .

Following Lasota and Myjak (see [9]) we prove an easy lemma.

Lemma 3.1. Let (Si, pi)
N
i=1 satisfy conditions (3.6), (3.7). Then its

unique invariant measure µ∗ ∈ M1 is either absolutely continuous or sin-

gular with respect to Hs, where s > 0 is given by

(3.8)

N
∑

i=1

Ls
i = 1.

P r o o f. Let s > 0 satisfy (3.8) and let P be the corresponding Markov
operator for (Si, pi)

N
i=1. We first prove that Pµ is singular with respect to

Hs for every µ ∈ Mfin singular with respect to Hs. Fix such a µ ∈ Mfin.
Let Y ∈ B(X) be such that µ(Y ) = µ(X) and Hs(Y ) = 0. By a theorem
due to Ulam we can assume that Y =

⋃∞

n=1 Kn, where Kn ⊂ X, n ∈ N,
are compact. Since Si, i = 1, . . . , N, are continuous, we see at once that
⋃N

i=1 Si(Y ) ∈ B(X). We have

Pµ
(

N
⋃

i=1

Si(Y )
)

=

N
∑

i=1

\
S−1

i
(
⋃

N

i=1
Si(Y ))

pi(x)µ(dx) ≥
N

∑

i=1

\
Y

pi(x)µ(dx)

= µ(Y ) = µ(X) = Pµ(X)

and

Hs
(

N
⋃

i=1

Si(Y )
)

≤
N

∑

i=1

Hs(Si(Y )) ≤
N

∑

i=1

Ls
iH

s(Y ) = Hs(Y )

N
∑

i=1

Ls
i = Hs(Y ),

which finishes the first part of the proof.

Let µ∗ ∈ M1 be the unique invariant measure of P . By the Lebesgue
Decomposition Theorem µ∗ = µa + µs, where µa is absolutely continuous
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and µs is singular with respect to Hs. Clearly,

µ∗ = Pµ∗ = Pµa + Pµs.

By the above the measure Pµs is singular with respect to Hs. From this and
the uniqueness of the Lebesgue decomposition it follows that Pµs ≤ µs. On
the other hand, by the preservation of the norm by Markov operators, we
have Pµs(X)=µs(X). These two conditions imply Pµs =µs. Consequently,
we also have Pµa =µa. In order to complete the proof it is sufficient to show
that either µa or µs is identically equal to zero. For this, suppose that both
µa and µs are non-trivial. Then µ1 = µa/µa(X) and µ2 = µs/µs(X) are two
different invariant distributions of P , which is impossible.

Lemma 3.2. Let (Si, pi)
N
i=1 satisfy conditions (3.6), (3.7) and let P be the

corresponding Markov operator. Then for every δ > 0 and every µ ∈ Mfin

supported on a compact set we have

Hs
δ(suppPµ) ≤ Hs

δ(suppµ),

where s > 0 is given by (3.8).

P r o o f. Let s > 0 satisfy (3.8). Fix δ > 0 and µ∈ Mfin concentrated on
a compact set. Since Si, i = 1, . . . , N , are continuous, we check at once that

suppPµ ⊂
N
⋃

i=1

Si(suppµ).

Let {Ui} be a δ-cover of suppµ. Then

suppPµ ⊂
∞
⋃

j=1

N
⋃

i=1

Si(Uj).

Since 0 < |Si(Uj)| ≤ Li|Uj | < δ, we have

Hs
δ(suppPµ) ≤

∞
∑

j=1

N
∑

i=1

|Si(Uj)|
s ≤

∞
∑

j=1

N
∑

i=1

Ls
i |Uj |

s

=
N

∑

i=1

Ls
i

∞
∑

j=1

|Uj |
s =

∞
∑

j=1

|Uj |
s

and consequently

Hs
δ(suppPµ) ≤ Hs

δ(suppµ).

Theorem3.1.Let (Si, pi)
N
i=1 satisfy conditions (3.6), (3.7). Assume that

inf
x∈X

pk(x) > Ls
k for some k, 1 ≤ k ≤ N,

where s > 0 is given by (3.8). Then the unique invariant distribution of

(Si, pi)
N
i=1 is singular with respect to Hs.
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P r o o f. Let µ∗ ∈ M1 be the unique invariant measure of (Si, pi)
N
i=1.

Let k, 1 ≤ k ≤ N , be such that infx∈X pk(x) > Ls
k for s given by (3.8). Let

F ⊂ X be the unique invariant compact set for Si, i = 1 . . . , N . Obviously,
suppµ∗ ⊂ F . Let P be the corresponding Markov operator for (Si, pi)

N
i=1.

Using the properties of Markov operators we get

(3.9) Pnµ(B)

=
N

∑

i1=1

· · ·
N

∑

in=1

\
S−1

i1
◦...◦S−1

in
(B)

pin
(Sin−1

◦ . . . ◦ Si1(x)) · . . . · pi1(x)µ(dx)

≥ ( inf
x∈X

pk(x))nµ(S−n
k (B)) for B ∈ B(X), µ ∈ M1, n ∈ N.

From this

(3.10) Pnµ(Sn
k (F )) ≥ ( inf

x∈X
pk(x))nµ(S−n

k (Sn
k (F ))) = ( inf

x∈X
pk(x))n

for µ ∈ MF
1 and n ∈ N. Set Bn = Sn

k (F ) and αn = (infx∈X pk(x))n for
n ∈ N. For every n ∈ N we will define by an induction argument two
sequences of distributions (µn

l )l≥0, (νn
l )l≥0, µn

l , νn
l ∈ MF

1 , l = 0, 1, . . .
If l = 0 we define µn

0 = νn
0 = µ∗. If l ≥ 1 is fixed and µn

l−1, ν
n
l−1 are given

we define, according to (3.10),

νn
l (C) =

Pnµn
l−1(C ∩ Bn)

Pnµn
l−1(Bn)

,(3.11)

µn
l (C) =

1

1 − αn
{Pnµn

l−1(C) − αnνn
l (C)}(3.12)

for C ∈ B(X). Observe that νn
l ∈ MBn

1 for l ≥ 1. Using equations (3.11)
and (3.12) it is easy to verify that

µ∗ = P l·nµ∗ = αnP (l−1)nνn
1 + αn(1 − αn)P (l−2)nνn

2(3.13)

+ . . . + αn(1 − αn)l−1νn
l + (1 − αn)lµn

l for l > 1.

Set δn = Ln
k · diam F for n ∈ N; we see that δn → 0 as n → ∞. By Lemma

3.2 we have

Hs
δn

(

l
⋃

i=1

suppP (l−i)nνn
i

)

≤
l

∑

i=1

Hs
δn

(supp νn
i )(3.14)

≤ l · (Ln
k )s(diam F )s for l ∈ N, n ∈ N.

On the other hand, by (3.13) we have

(3.15) µ∗

(

l
⋃

i=1

suppP (l−i)nνn
i

)

≥ 1 − (1 − αn)l for l ∈ N, n ∈ N.

Define

An =

ln
⋃

i=1

suppP (ln−i)nνn
i for n ∈ N,
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where ln =[1/αn]. (We use [a] to denote the integer part of a, i.e. the largest
integer not larger than a.) Then by (3.14) and (3.15),

(3.16) Hs
δn

(An) ≤ (Ls
k/ inf

x∈X
pk(x))n(diam F )s

and

(3.17) µ∗(An) ≥ 1 − (1 − αn)1/αn−1.

Thus
lim

n→∞
Hs

δn
(An) = 0

and

lim inf
n→∞

µ∗(An) ≥ 1 − 1/e > 0.

Since Hs
δ(A) ≤ Hs

δ′(A) for δ′ < δ, A ∈ B(X), we have

(3.18) lim
n→∞

Hs
δm

(An) = 0 for m ∈ N.

We will define by an induction argument sequences of sets (Ai
n)n≥1, i =

1, 2, . . . If i = 0 we define A0
n = An for n = 1, 2, . . . If i ≥ 1 is fixed and

(Ai−1
n )n≥1 is given, we choose according to (3.18) a subsequence (Ai

n)n≥1 of
(Ai−1

n )n≥1 such that

(3.19)

∞
∑

n=1

Hs
δi

(Ai
n) ≤ 1/i.

Setting

En := An
n for n ∈ N

we define

E =

∞
⋂

i=1

∞
⋃

n=i

En.

Then

µ∗(E) = lim
i→∞

µ∗

(

∞
⋃

n=i

En

)

≥ 1 − 1/e > 0

and by (3.19) we get

Hs(E) = lim
δ→0

Hs
δ(E) = lim

i→∞
Hs

δi
(E) ≤ lim sup

i→∞

Hs
δi

(

∞
⋃

n=i

En

)

≤ lim sup
i→∞

∞
∑

n=i

Hs
δi

(En) ≤ lim sup
i→∞

∞
∑

n=i

Hs
δi

(Ai
n) ≤ lim

i→∞

1

i
= 0.

By Lemma 3.1,µ∗ must be singular with respect to Hs, which is the desired
conclusion.

Our next remark shows that in the statement of the last theorem the
condition infx∈X pk(x) > Ls

k for some k is essential to the proof.
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Remark. Consider the ifs (Si, pi)
2
i=1, where Si : R → R, i = 1, 2, are of

the form
S1(x) = 1

2x, S2(x) = 1
2x + 1

2

and p1 = p2 = 1
2 . An easy computation shows that the interval [0, 1] is an

invariant set for the transformations S1, S2, i.e.

[0, 1] = S1([0, 1]) ∪ S2([0, 1]).

Further, it is easy to prove that l1|[0,1] (l1 denotes the Lebesgue measure
on R) is the unique invariant measure of (Si, pi)

2
i=1. Since L1 + L2 = 1, we

get s = 1. This gives Hs = l1, which contradicts the fact that Hs and l1 are
mutually singular and shows that the condition infx∈X pk(x) > Ls

k for some
k cannot be omitted.
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