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Abstract. Various proofs of the Factorization Theorem for representations of Banach
algebras are compared with its original proof due to P. Cohen.

Various proofs of the Cohen–Hewitt Factorization Theorem for represen-
tations of Banach algebras are presented and discussed in [H–R;II], pp. 263–
290, [D–W], pp. 93–106 and 248–251, and [Pal], pp. 534–538.

The purpose of the present paper is to stress that all these proofs, and
also some others, essentially rely upon a lemma which is implicitly con-
tained in Cohen’s paper [C]. This lemma appears below as Lemma 1 of
Section 2.

Our discussion of various proofs of the Cohen–Hewitt Factorization The-
orem is contained in Sections 2 and 3.2–3.4. Section 3.1 concerns the earlier
factorization results of R. Salem, A. Zygmund and W. Rudin. In Sections
3.5–3.7 some papers are mentioned containing either more elaborate fac-
torization theorems of the Cohen–Hewitt type or factorization results of
another nature.

Acknowledgements. The author is greatly indebted to Wojciech Choj-
nacki for stimulating discussions and bibliographical hints.

1. The Cohen–Hewitt Factorization Theorem. The left approxi-

mate identity in a Banach algebra A is, by definition, a net (eι)ι∈I ⊂ A such
that

(1) lim
ι

‖eιa − a‖A = 0 for every a ∈ A.
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A left approximate identity (eι)ι∈I ⊂ A is said to be bounded if

sup
ι∈I

‖eι‖A < ∞.

If A is a Banach algebra with bounded left approximate identity (eι)ι∈I and
T is a continuous representation of A on a Banach space X, then

(2) lim
ι

‖T (eι)y − y‖X = 0 for every y ∈ spanT (A)X.

This follows from the fact that (T (eι))ι∈I is a bounded net in L(X) such
that limι ‖T (eι)y − y‖ = 0 for every y ∈ T (A)X (1).

The Factorization Theorem (P. Cohen [C], 1959; E. Hewitt [H],
1964). If A is a Banach algebra with bounded left approximate identity

(eι)ι∈I and T is a continuous representation of A on a Banach space X,
then T (A)X is a closed subspace of X. Furthermore, for every y ∈ T (A)X
and every ε > 0 there are a ∈ A and x ∈ T (A)y such that T (a)x = y,
‖x − y‖ ≤ ε, and

(3) a =

∞∑

n=1

pneιn
where ιn ∈ I, pn > 0 for n = 1, 2, . . . and

∞∑

n=1

pn = 1.

The assertions of the Factorization Theorem may be expressed by the
single condition

(4) for every y ∈ spanT (A)X and every ε > 0 there are a ∈ A and
x ∈ T (A)y such that T (a)x = y, ‖x − y‖ ≤ ε and (3) is satisfied.

2.Cohen’s proof of the Factorization Theorem. Let A be a Banach
algebra, and T a continuous representation of A on a Banach space X. Sup-
pose that there is a bounded left approximate identity in A. Then Cohen’s
proof of the existence of a factorization

y = T (a)x, a ∈ A, x ∈ X,

of an element y of span T (A)X consists in approximation by a sequence of
factorizations

y = T̃ (an)xn, an ∈ G, xn = T̃ (a−1
n )y, n = 1, 2, . . . ,

where G is the set of invertible elements of the unitization Au of A, and T̃
is a representation of Au on X extending the representation T .

(1) From (2) it follows at once that spanT (A)X = T (A)X, i.e. T (A)X is a closed
linear subspace of X. The factorization theorem says more: T (A)X itself is a closed linear
subspace. This last is almost trivial when A contains a unit e. Indeed, since T (e) =
T (e · e) = T (e)T (e), it follows that T (e) is a projector and hence T (e)X is a closed
subspace. Furthermore, T (A)X = T (eA)X = T (e)T (A)X ⊂ T (e)X ⊂ T (A)X, so that
T (A)X = T (e)X.
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The unitization Au of A is the Banach algebra with unit such that

1o as a linear space, Au is equal to the direct sum K+A, where K is the
field of scalars of A,

2o Au = K + A is equipped with the norm ‖ ‖Au
such that ‖λ + a‖Au

=
|λ| + ‖a‖A for every λ ∈ K and a ∈ A,

3o the multiplication in Au is defined by

(λ + a)(µ + b) = λµ + (µa + λb + ab),

where λ, µ ∈ K and a, b ∈ A.

The unit in Au is 1 = 1 + 0 ∈ K + A (2). Let

ϕ : Au → K, π : Au → A

be the projectors corresponding to the splitting Au = K+A. From 3o it fol-
lows that ϕ is a multiplicative functional on Au. Let T̃ be the representation
of Au on X such that

T̃ (a) = ϕ(a) + T (πa) for every a ∈ Au.

The following lemma is implicitly contained in Cohen’s paper [C].

Lemma 1. Under the assumptions of the Factorization Theorem, let

E = {eι : ι ∈ I}, M = sup
e∈E

‖e‖A.

Take any y ∈ span T (A)X, a ∈ G, γ ∈ (0, 1/(M + 1)), δ > 0. Then there

exists an ã ∈ G satisfying the three conditions:

ϕ(ã) = ϕ(a) − γϕ(a),(i)

πã = πa + γϕ(a)e for some e ∈ E ,(ii)

‖T̃ (ã−1)y − T̃ (a−1)y‖X ≤ δ.(iii)

Note that (i)&(ii) may be written as one condition

(iv) ã = a + γϕ(a)(e − 1),

and that (i)&(ii) implies

(v) ‖πã − πa‖A ≤ γM |ϕ(a)| = M |ϕ(ã) − ϕ(a)|.

Lemma 1 implies the Factorization Theorem. Let

pn = λn−1 − λn for n = 1, 2, . . . ,

where λ0, λ1, . . . is a positive strictly decreasing sequence such that

(5)

λ0 = 1, lim
n→∞

λn = 0,

1 −
λn

λn−1
= γn ∈

(
0,

1

M + 1

)
for n = 1, 2, . . .

(2) If A has a unit e, then Au makes sense, but e is no longer a unit in Au.
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Then

(6)

λn = (1 − γn)λn−1,

pn = γnλn−1 > 0 for n = 1, 2, . . . , and

∞∑

n=1

pn = 1.

The concrete form of the sequence λ0, λ1, . . . is inessential. One can follow
[C] and take λn = (1 − γ)n, γ = const ∈ (0, 1/(M + 1)), so that γn = γ,
or λn = (1 + M)/(1 + M + n), so that γn = 1/(1 + M + n). From (5), (6)
and (i)&(v)&(iii) it follows that for every y ∈ span T (A)X and every ε > 0
there exists a sequence a0, a1, . . . of elements of G such that a0 = 1 and

ϕ(an) = λn,(i)0

‖πan − πan−1‖A ≤ Mpn,(v)0

‖T̃ (a−1
n )y − T̃ (a−1

n−1)y‖X ≤ εpn(iii)0

for n = 1, 2, . . . From (i)0&(v)0&(iii)0 it follows that limn→∞ ‖an−a‖Au
= 0

for some a ∈ A such that

‖a‖A =
∥∥∥π

∞∑

n=1

(an − an−1)
∥∥∥

A
≤ M

∞∑

n=1

pn = M,

and, if xn = T̃ (a−1
n )y, then limn→∞ ‖xn − x‖X = 0 for some x ∈ X such

that

‖x − y‖X = ‖x − x0‖X ≤
∞∑

n=1

‖xn − xn−1‖X ≤ ε

∞∑

n=1

pn = ε.

Since y = T̃ (an)xn for every n = 0, 1, . . . , a passage to the limit implies that

y = T̃ (a)x = T (a)x. By (2), y = limι T (eι)y ∈ T (A)y, whence

xn = T̃ (a−1
n )y = ϕ(a−1

n )y + T (πa−1
n )y ∈ T (A)y

for n = 0, 1, . . . , and so x = limn→∞ xn ∈ T (A)y. Thus (i)&(v)&(iii) implies

(4)M for every y ∈ spanT (A)X and every ε > 0 there are a ∈ A and

x ∈ T (A)y such that ‖a‖A ≤ M , ‖x − y‖X ≤ ε and T (a)x = y.

The statement (4)M is aweakened version of (4): the condition (3) is replaced
by a ∈ A, ‖a‖A ≤ M . In order to prove (4), instead of (i)&(v)&(iii) one has
to use (iv)&(iii). Indeed, (iv)&(iii) implies that for every y ∈ span T (A)X
and every ε > 0 there exists a sequence a0, a1, . . . of elements of G such that
a0 = 1, the conditions (i)0 and (iii)0 are satisfied, and

(iv)0 for every n = 1, 2, . . . there is en ∈ E such that

an = an−1 + γnϕ(an−1)(en − 1) = an−1 + pn(en − 1).

Since (iv)0 implies (v)0, the preceding argument leading to (4)M remains in
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force. Furthermore, from (iv)0 it follows that an = λn + p1e1 + . . . + pnen

for every n = 1, 2, . . . and hence, by (5) and (6), limn→∞ ‖an − a‖Au
= 0,

where a =
∑∞

n=1 pnen.

Proof of Lemma 1 (3). For every ι ∈ I define

ãι = a + bι, bι = γϕ(a)(eι − 1).

Lemma 1 will follow once it is shown that

(I) there is ι0 ∈ I such that ãι ∈ G whenever ι0 ≺ ι,

and

(II) lim
ι

‖T̃ (ã−1
ι )y − T̃ (a−1)y‖X = 0.

In the proof of (I) we will use the equality

ãι = (1 + bιa
−1)a.

Notice that
bιa

−1 = γϕ(a)(eι − 1)[ϕ(a−1) + πa−1]

= γ(eι − 1) + γϕ(a)(eι − 1)πa−1,

whence

(7) ‖bιa
−1‖Au

≤ γ(M + 1) + γ|ϕ(a)| · ‖(eι − 1)πa−1‖A.

Since γ ∈ (0, 1/(M + 1)), one can choose θ such that

γ(M + 1) < θ < 1.

By (1) and (7), there is ι0 ∈ I such that

‖bιa
−1‖Au

≤ θ whenever ι0 ≺ ι.

An application of the C. Neumann series shows that then 1 + bιa
−1 ∈ G

and ‖(1 + bιa
−1)−1‖Au

≤ (1 − θ)−1. In consequence, whenever ι0 ≺ ι, then
ãι = (1 + bιa

−1)a ∈ G (4) and

(8) ‖ã−1
ι ‖Au

≤ ‖a−1‖Au
(1 − θ)−1.

For the proof of (II) observe that if ι0 ≺ ι, then

ã−1
ι − a−1 = ã−1

ι (a − ãι)a
−1 = −ã−1

ι bιa
−1 = −γϕ(a)ã−1

ι (eι − 1)a−1.

As a consequence, by (8),

‖T̃ (ã−1
ι )y − T̃ (a−1)y‖X

≤ γ|ϕ(a)| · ‖T̃ ‖L(Au;L(X))‖a
−1‖Au

(1 − θ)−1‖[T (eι) − 1]T̃ (a−1)y‖X .

(3) This proof differs from the argument in [C]; see Section 3.2.

(4) This proof of the invertibility of ãι follows [P;3], pp. 283–284, and [P–P], p. 136.
The elements b, b′ and c of Au appearing in [P;3] correspond to our a

−1, ã−1ι and (1 +
bιa
−1)−1. In [P–P] the elements of Au are written in the form a + r, a ∈ A, r ∈ K, so

that our πa−1 corresponds to (a+ r)−1 − r−1 in [P–P].



182 J. Kisyński

From this estimate and from (2) the equality (II) follows, because T̃ (a−1)y =
ϕ(a−1)y + T (πa−1)y ∈ spanT (A)X.

3. Forerunners of the Cohen–Hewitt Factorization Theorem,

variants of the proof, and references to other factorization results

3.1. Forerunners of the Cohen–Hewitt theorem. Let G be a locally
compact group with a fixed left-invariant Haar measure µ, and let L1(G) be
the space of the equivalence classes of functions on G integrable with respect
to µ. The convolution a ∗ b of two elements, a and b, of L1(G) is defined by

(a ∗ b)(g) =
\
G

a(h)b(h−1g)µ(dh) for a.e. g ∈ G.

Then L1(G) is a convolution Banach algebra. Cohen’s paper [C] contains
the following results which follow from the Factorization Theorem applied
to A = L1(G), X = L1(G), or X = C(G) if G is compact, and to the
representation of A on X defined by T (a)x = a ∗ x:

(a) L1(G) = L1(G)∗L1(G) for every locally compact group G. This was
proved earlier in particular cases: for G = T, the circle group, by R. Salem
and A. Zygmund, and for G = R and G a locally euclidian abelian group by
W. Rudin [R;1], [R;2].

(b) C(G) = L1(G) ∗C(G) for every compact group G. In the particular
case of G = T this was proved earlier by R. Salem and A. Zygmund.

(c) Strictly positive factorization: if G is a compact group, y ∈ C(G) and
infG y > 0, then there are a∈L1(G) and x∈C(G) such that ess infG a> 0,
infG x > 0 and a ∗ x = y. In the deduction of this result from the Fac-
torization Theorem the conditions (3) and ‖x − y‖ ≤ ε are essential. Note
that Cohen [C] proved that an analogous non-negative factorization does
not hold.

In their proofs of the particular cases of (a) and (b), R. Salem, A. Zyg-
mund and W. Rudin used the Fourier methods which are not applicable
in the general situation. Nevertheless it seems interesting to compare the
condition (3) from the factorization theorem with the formulas labelled be-
low by (∗) and (∗∗∗), appearing in the proof of the factorization L1(R) =
L1(R) ∗ L1(R) presented in [R;2]. The approximate identity in L1(R) ap-
pears there in the from et = Kt for t ∈ (0,∞), where

Kt(x) =
t

2π

(
sin(tx/2)

tx/2

)2

is the Fejér kernel. The Fourier transform of Kt is

K̂t(ξ) = (1 − |ξ|/t)+.
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For given f ∈ L1(R) Rudin proves that f = a ∗ g where a ∈ L1(R) and
g ∈ L1(R) are defined as the integrals of continuous L1(R)-valued functions

a =

∞\
0

tλ′′(t)Kt dt,(∗)

g = f +

∞\
0

α(t)(f − Kt ∗ f) dt.(∗∗)

Here α ∈ C[0,∞) and λ ∈ C2[0,∞) are positive functions such that

∞\
0

α(t) dt = ∞,

∞\
0

α(t)

(
‖Kt ∗ f − f‖ +

1

t

)
dt < ∞, λ(t) =

1

Φ(t)
,

where

Φ(t) = 1 +

t\
0

α(s) ds + t

∞\
t

α(s)

s
ds.

These definitions imply that g ∈ L1(R), λ′′ is positive and

(∗∗∗)
∞\
0

tλ′′(t) dt = 1,

so that a ∈ L1(R), and furthermore, â(ξ) = λ(|ξ|) and ĝ(ξ) = Φ(|ξ|)f̂(ξ) (5),

whence âĝ = f̂ , and so a ∗ g = f .

Discrete forerunners of (∗) and (∗∗∗) appear in the book of A. Zygmund
[Z;I] as (1.7) on p. 183, (4.2) on p. 93, and Theorem 1.5 on p. 183 (attributed
on p. 378 to H. W. Young (1913) and A. N. Kolmogorov (1923)). A discrete
forerunner of (∗∗) is the second formula in line 1113 of R. Salem’s paper [S],
related to a limit passage in (3) on p. 110 of [S]. A. Zygmund [Z;I], p. 37811-6,
points out that the theorems from [S] together with Theorem 1.5 of Chap. V
of [Z;I], p. 183, lead to the factorization results for G = T mentioned in (a)
and (b). A discrete analogue of the whole elegant Rudin construction is
used in Sec. 7.5 of the book of R. E. Edwards [E;I] for reproving the Salem–
Zygmund results. Remarks on the Fourier factorization may be found in
Sec. 3.1.1(c) and 7.5.2–4 of [E;I] and Sec. 11.4.18(6) of [E;II].

(5) Indeed, Φ′(t) =
T∞
t
(α(s)/s) ds, Φ′′(t) = −α(t)/t ≤ 0, λ′(t) = −Φ′(t)/[Φ(t)]2 ≤ 0,

λ′′(t) = (2[Φ′(t)]2 − Φ′′(t)Φ(t))[Φ(t)]−3 ≥ 0. Hence 0 ≤ −tλ′(t) = tΦ′(t)/[Φ(t)]2 ≤

[Φ(t)]−1, so limt→∞ tλ
′(t) = limt→∞ λ(t) = 0 and

T∞
0
tλ′′(t) dt = tλ′(t)|t=∞t=0 −

T∞
0
λ′(t) dt

= λ(0) = 1. Moreover, (∗) implies â(ξ) =
T∞
0
tλ′′(t)(1− |ξ|/t)+ dt =

T∞
|ξ|
(t− |ξ|)λ′′(t) dt =

(t − |ξ|)λ′(t)|t=∞t=|ξ| −
T∞
|ξ|
λ′(t) dt = λ(|ξ|), and ĝ(ξ) = [1 +

T∞
0
α(t)(1 − K̂t(ξ)) dt]f̂(ξ) =

Φ(|ξ|)f̂(|ξ|) by (∗∗).
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3.2. The original calculations of Cohen. As already mentioned, Lemma
1 is implicitly contained in Cohen’s paper [C]. The argument used in [C] for
proving this implicit lemma was repeated in [V], [H], [C–FT], [J], [G–L–R],
[T], [S–T], [H–R;II], [B–D], [A–S], [D–W], [G] and [Pal]. In our notation,
this argument is as follows. For every ι ∈ I one has ‖γ(eι−1)‖ ≤ γ(M +1) =
ϑ < 1, whence 1 − γ + γeι ∈ G and ‖(1 − γ + γeι)

−1‖ ≤ (1 − ϑ)−1. The
possibility of choosing ι0 ∈ I so that

(I) ãι = a + γϕ(a)(eι − 1) ∈ G whenever ι0 ≺ ι

is proved in [C] by means of the formulas

(9) ãι = (1 − γ + γeι)aι, aι = ϕ(a) + (1 − γ + γeι)
−1πa.

Since
‖aι − a‖ = ‖(1 − γ + γeι)

−1πa − πa‖

= ‖γ(1 − γ + γeι)
−1(1 − eι)πa‖

≤ γ(1 − ϑ)−1‖eιπa − πa‖,

it follows by (1) that

(10) lim
ι

‖aι − a‖ = 0.

Hence there is ι0 ∈ I such that if ι0 ≺ ι, then ‖aι − a‖ ≤ 1
2‖a

−1‖−1, and so
aι = [1 + (aι − a)a−1]a ∈ G and ‖a−1

ι ‖ ≤ 2‖a−1‖. In consequence, if ι0 ≺ ι,
then ãι = (1 − γ + γeι)aι ∈ G, proving (I). The equality

(II) lim
ι

‖T̃ (ã−1
ι )y − T̃ (a−1)y‖ = 0

is proved in [C] as follows. If ι0 ≺ ι, then

ã−1
ι − a−1 = (a−1

ι − a−1)(1 − γ + γeι)
−1 + a−1[(1 − γ + γeι)

−1 − 1]

= − a−1
ι (aι − a)a−1(1 − γ + γeι)

−1

− γa−1(1 − γ + γeι)
−1(eι − 1),

whence

‖T̃ (ã−1
ι )y − T̃ (a−1)y‖

≤ ‖T̃‖ · ‖a−1‖(1 − ϑ)−1{2‖a−1‖ · ‖y‖ · ‖aι − a‖ + γ‖T (eι)y − y‖}.

This estimate implies (II), by (10) and (2).

3.3. Variants of Cohen’s proof. The method of Koosis. The reasoning
presented in Section 3.2 becomes simpler when the elements ãι = a +
γϕ(a)(eι − 1) satisfying (9) are replaced by

âι = (1 − γ + γeι)a.

Then, for every ι ∈ I, ϕ(âι) = (1 − γ)ϕ(a),
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‖πâι − πa‖ = ‖γϕ(a)eι + γ(eι − 1)πa‖ ≤ γ|ϕ(a)|M + γ‖eιπa − πa‖,

âι ∈ G, and â−1
ι − a−1 = −γa−1(1 − γ + γeι)

−1(eι − 1), whence

‖T̃ (â−1
ι )y−T̃ (a−1)y‖ ≤ γ‖T̃‖·‖a−1‖(1−ϑ)−1‖T (eι)y−y‖, ϑ = γ(M+1).

This yields

Lemma 2. Under the notation of Sections 1 and 2, and the assump-

tions of the Factorization Theorem, let y ∈ spanT (A)X, a ∈ G, γ ∈
(0, 1/(M + 1)), δ > 0. Then there is â ∈ G such that â = (1 − γ + γe)a
for some e ∈ E ,

‖πâ − πa‖ ≤ γ|ϕ(a)|M + δ and ‖T̃ (â−1)y − T̃ (a−1)y‖ ≤ δ.

For given y ∈ spanT (A)X, ε > 0 and γ ∈ (0, 1/(M+1)), using Lemma 2,
one can define inductively e1, e2, . . . in E so that the formulas

(11) a0 = 1, an = (1 − γ + γen)an−1 for n = 1, 2, . . .

define a sequence a0, a1, . . . in G such that ϕ(an) = (1−γ)n, ‖πan−πan−1‖ ≤

γ(1−γ)n−1(M+ε) and ‖T̃ (a−1
n )y−T̃ (a−1

n−1)y‖ ≤ γ(1−γ)n−1ε for n = 1, 2, . . .
This yields

(4̂)M for every y ∈ spanT (A)X and every ε > 0 there are â ∈ A and
x̂ ∈ T (A)y such that ‖â‖ ≤ M + ε, ‖x̂ − y‖ ≤ ε and T (â)x̂ = y.

If, for given y ∈ span T (A)X and ε > 0, â and x̂ satisfy (4̂)M , then for
a = M

M+ε
â and x = M+ε

M
x̂ one has ‖a‖ ≤ M and

‖x−y‖ ≤ ‖x̂−y‖+
ε

M
‖x̂‖ ≤ ‖x̂−y‖+

ε

M
‖y‖+

ε

M
‖x̂−y‖ ≤

(
1+

‖y‖ + ε

M

)
ε.

Hence (4̂)M is equivalent to (4)M from Section 2.

It was P. Koosis [K] who showed that the elements a ∈ A and x ∈
T (A)y satisfying T (a)x = y for a given y ∈ spanT (A)X may be determined

by an approximation a = lim an, x = lim T̃ (a−1
n )y, where a0 = 1 ∈ Au,

an = (1 − γ + γen)an−1 for n = 1, 2, . . . , γ = const ∈ (0, 1/(M + 1)), and
e1, e2, . . . is a suitable sequence of elements of E . This idea was continued
by M. Altman [A;1–5], R. S. Doran and J. Wichmann [D–W], pp. 97–100,
J. Esterle [Es;4] and H. G. Feichtinger and M. Leinert [F–L], still for Banach
algebras.

W. Żelazko [Ż], Sec. 6.4, pp. 24–26, showed that the Koosis–Altman
formulas (11) may be replaced by

(12) a0 = 1, an = Φγ(en)an−1 for n = 1, 2, . . . ,

where γ > 0 is a constant such that γ(M − 1) < 1, and

Φγ(e) = (1 + γ − γe)−1
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for every e ∈ E . Then

‖Φγ(e)‖ ≤ (1 + γ − γM)−1, Φγ(e) − 1 = γΦγ(e)(e − 1),

[Φγ(e)]−1 − 1 = −γ(e − 1),

which implies

Lemma 3. Under the notation of Sections 1 and 2, and the assump-

tions of the Factorization Theorem, let y ∈ span T (A)X, a ∈ G, γ > 0,
γ(M − 1) < 1, δ > 0. Then there is e ∈ E such that if ̂̂a = Φγ(e)a, then
̂̂a ∈ G,

‖π̂̂a− πa‖ = ‖̂̂a− a‖ − |ϕ(̂̂a)−ϕ(a)| ≤
γ(1 + M)

1 + γ − γM
|ϕ(a)|+ δ −

γ

1 + γ
|ϕ(a)|

and

‖T̃ (̂̂a−1)y − T̃ (a)y‖ ≤ δ.

For given y ∈ spanT (A)X, ε > 0 and γ > 0 such that γ(M − 1) < 1,
using Lemma 3, one can define inductively e1, e2, . . . in E so that the sequence
a0, a1, . . . of elements of G defined by (12) satisfies

ϕ(an) = (1 + γ)−n,

‖πan − πan−1‖ ≤

(
γ(1 + M)

1 + γ − γM
−

γ

1 + γ

)
(1 + γ)1−n +

ε

2n+1
,

and ‖T̃ (a−1
n )y− T̃ (a−1

n−1)y‖ ≤ ε/2n. If a = lim an and x = lim T̃ (a−1
n )y, then

a ∈ A, x ∈ T (A)y, y = T (a)x, ‖x − y‖ ≤ ε and

‖a‖ ≤
∞∑

n=1

‖πan − πan−1‖ ≤
(1 + γ)(1 + M)

1 + γ − γM
− 1 +

ε

2
.

For γ > 0 such that

γ(M − 1) < 1 and
(1 + γ)(1 + M)

1 + γ − γM
≤ 1 + M +

ε

2
,

one obtains (4̂)M , which is equivalent to (4)M .
In [H–R;II], Sec. 32.50, pp. 287–288, an argument similar to that of

Żelazko is carried out under the assumptions that M = 1 and the approxi-
mate identity is two-sided. Instead of (12) Hewitt and Ross use the formula

an = an−1ϕ(en) where ϕ(e) = 1
3

[
1 +

∑∞

k=1

(
1
3
[1 + e]

)k]
is equal to our

Φ1(e) = (2 − e)−1 = 1
3

(
1 − 1

3 [1 + e]
)−1

. A construction similar to that of

Żelazko also appears in [Es;1] in the proof of Theorem 2.8.
In Section 3.5 some papers will be mentioned in which the constructions

of Koosis and Żelazko are applied to representations of some non-Banach
algebras. These applications are possible thanks to the fact that these con-
structions lead to sequences of factorizations y = T̃ (an)xn, xn = T̃ (a−1

n )y,



Factorization Theorem 187

for which the proofs of the invertibility of an’s and of the existence of
lim T̃ (a−1

n )y are simpler than in the case of Cohen’s construction.

3.4. Deduction of the Cohen–Hewitt Factorization Theorem from some

results of V. Pták and J. Esterle. In a somewhat weakened version, namely
with the condition a ∈ conv{eι : ι ∈ I} but without (3) (6), the Factor-
ization Theorem may be deduced from the “induction theorem” of V. Pták
([P;3], p. 280; [P–P], p. 5; [P;1]; [P;2]), and also from the theorem of J. Es-
terle about projective systems ([Es;4], p. 109, Th. 2.1). The applicability
of these theorems to the factorization problem follows from Lemmas 1–3.
The proofs of both theorems are similar to the part of Cohen’s argument
presented above as “Lemma 1 implies the Factorization Theorem”. Nev-
ertheless, the approach to factorization via the theorem of Pták or that of
Esterle is interesting because it emphasizes the geometric nature of Cohen’s
construction.

Under the notation of Sections 1 and 2, consider in Au the subset

E = conv({1} ∪ E) =
⋃

0≤λ≤1

(λ + (1 − λ)conv E).

Take any y ∈ span T (A)X and ε > 0. For every λ ∈ (0, 1] let

Z(λ) = {(a, x) ∈ (E ∩ G) × X :

‖x − y‖ ≤ ε(1 − ϕ(a)), T̃ (a)x = y, 0 < ϕ(a) ≤ λ}.

Then (1, y) ∈ Z(1) and Z(λ′) ⊂ Z(λ′′) ⊂ (E ∩ G) × T (A)y whenever 0 <
λ′ < λ′′ ≤ 1. If (a, x) ∈

⋂
0<λ≤1 Z(λ), then a ∈ conv E ⊂ A, x ∈ T (A)y,

‖x − y‖ ≤ ε, and T (a)x = y. Hence the weakened version of the statement
(4) will follow once it is shown that

(∗)
⋂

0<λ≤1

Z(λ) 6= ∅.

A proof of (∗) may be obtained by using Lemma 1 and applying Pták’s or
Esterle’s theorem. Indeed, Lemma 1 implies

Corollary. Fix any y ∈ span T (A)X and ε > 0. Then for every λ ∈
(0, 1], (a, x) ∈ Z(λ) and γ ∈ (0, 1/(M + 1)) there exists (ã, x̃) ∈ Z((1− γ)λ)
such that ϕ(ã) = (1 − γ)ϕ(a) and

‖πã − πa‖

M
∨

‖x̃ − x‖

ε
≤ γϕ(a) = ϕ(a) − ϕ(ã).

Define in Au × X the norm

|||(a, x)||| =

(
‖πa‖

M
∨

‖x‖

ε

)
+ |ϕ(a)|, a ∈ Au, x ∈ X.

(6) Sometimes this may be an essential loss of information, see (c) in Section 3.1.
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From the Corollary it follows that for every λ ∈ (0, 1], (a, x) ∈ Z(λ) and
γ ∈ (0, 1/(M +1)) there is (ã, x̃) ∈ Z((1− γ)λ) such that |||(ã, x̃)− (a, x)||| ≤
2γλ. Since (1, y) ∈ Z(1), it follows that Z(λ) 6= ∅ for every λ ∈ (0, 1],
and

(∗∗) sup
(a,x)∈Z(λ)

dist((a, x);Z((1 − γ)λ)) ≤ 2γλ

for every λ ∈ (0, 1] and γ ∈ (0, 1/(M + 1)), where the distance is defined by
the norm ||| |||.

The implication (∗∗)⇒(∗) is a consequence of Pták’s theorem, and also

of Esterle’s. Indeed, if Z̃(t) = Z(t/(2γ)) for t ∈ (0, 2γ], then (∗∗) takes the
form

sup
(a,x)∈Z̃(t)

dist((a, x); Z̃(w(t))) ≤ t for every t ∈ (0, 2γ],

where w(t) = (1−γ)t. Since w(t)+(w◦w)(t)+. . . =
∑∞

n=1(1−γ)nt < ∞ for
every t ∈ (0, 2γ], the function w is a rate of convergence on (0, 2γ] ([P–P],
p. 2, Def. 1). Hence the theorem of Pták ([P–P], p. 5, Proposition 1.7)

implies that
⋂

0<t≤2γ Z̃(t) 6= ∅, proving (∗).

In order to see that (∗∗)⇒(∗) is a consequence of Esterle’s theorem ([Es;4],
p. 109, Th. 2.1), take any positive strictly decreasing sequence λ0, λ1, . . .
satisfying (5). Then, by (∗∗),

sup
(a,x)∈Z(λn−1)

dist((a, x);Z(λn)) ≤ 2γnλn−1 = 2(λn−1 − λn)

for n = 1, 2, . . . Since
∑∞

n=1 2(λn−1 −λ) = 2 < ∞, Esterle’s theorem implies

that
⋂∞

n=0 Z(λn) 6= ∅, proving (∗).
Similar applications of the theorems of Pták and Esterle to the factoriza-

tion problem are presented in [K–V]; [P–P], pp. 134–137; [D–W], pp. 100–
104; [Es;4], pp. 115–119. In [P;3] a more sophisticated factorization theorem
is deduced from the “induction theorem”.

3.5. Extensions of the Cohen–Hewitt theorem to representations of some

non-Banach algebras. It was observed in [O] and [Cr] that the argument of
Koosis, presented in Remark 3, works in every Fréchet algebra (7) with a
uniformly bounded left approximate identity (u.b.l.a.i.). This idea was taken
up in [W.H.S], [M.K.S], [Vo;1] and [Vo;2]. Examples of Fréchet algebras with
u.b.l.a.i. are discussed in [O] and [Vo;1]. In [D] the u.b.l.a.i. is defined for any
metrizable algebra, and the argument of Żelazko, described in our Sec. 3.3,
is used for extending the factorization theorem to any essential continuous
representation T of a complete metrizable locally convex algebra A with

(7) That is, an algebra which is a complete metrizable l.c.v.s. and, moreover, is locally
multiplicatively convex.
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u.b.l.a.i. on a complete metrizable vector space X. In [AP] this last result
is generalized to complete metrizable algebras which need not be locally
convex, but are fundamental ([AP], p. 54, Def. 2.1).

3.6. Simultaneous factorization, factorization involving an analytic func-

tion, power factorization, and factorization by means of a one-parameter

semigroup. The arguments discussed in Sections 2 and 3.1–4 were also used
for proving theorems about simultaneous factorization of all the elements
of a subset of spanT (A)X by means of a single element of A. For the
case of Banach algebras see [R;2]; [V]; [J]; [T]; [Ri]; [S–T]; [C–S];
[H–R;II], pp. 268–269, Theorem 32.23 and Corollary 32.24; [W.H.S]; [P1];
[B–D], p. 62, Corollary 12; [Ż], p. 23, Theorem 6.4; [Pal], pp. 538–539, Corol-
lary 5.2.3. For extensions to Fréchet algebras (and more general algebras)
see [O]; [Cr]; [M.K.S]; [Ż], p. 34, Theorem C.6.1; [Vo;1]; [Vo;2]; [D], Corol-
lary 4.2.

Cohen’s basic idea of imbedding a Banach algebra A into its unitiza-
tion Au and using an approximation in Au also appears in [C–St] and [S;2]
in connection with the factorization y = T (f(a))x where f is an analytic
function, in [A–S], [Es;1], [P;2] and [G] where the power factorization is con-
sidered, and in [S;1,3,4] and [Pal], Sec. 5.3, pp. 543–548, in connection with
the factorization by means of a one-parameter semigroup. The factorization
theorem of A. M. Sinclair [S;4], pp. 35–37, concerns a representation T of a
complex Banach algebra A on a complex Banach space X, and states that if
there is a countable bounded two-sided approximate identity in A, then for
every y ∈ span T (A)X there are a holomorphic map C ∋ z 7→ xz ∈ X and
a holomorphic semigroup C

+ ∋ z 7→ az ∈ A defined on the complex right
half plane C

+ = {z ∈ C : Re z > 0}, such that y = x0 = T (az)xz for every
z ∈ C

+, and limU(Ψ)∋z→0 ‖a
zb − b‖A = 0 for every b ∈ A and every sector

U(Ψ) = {z ∈ C
+ : |Arg z| ≤ Ψ}, 0 < Ψ < π/2. The growth properties of

the holomorphic semigroups C
+ ∋ z 7→ az ∈ A influence the structure of a

Banach algebra A. See [Es;2,3], [S;4], [W], [G–W], [G–R] and other papers
quoted there.

3.7. Factorization without a bounded approximate identity. Not all fac-
torization theorems for topological algebras and their representations are
proved by arguments of Cohen’s type, related to bounded approximate
identities. Indeed, the papers [Pas], [L], [D–M], [P–V], [Vo;1] and [Ou]
deal with factorization and weak factorization in Banach algebras, and non-
Banach function algebras (with pointwise multiplication) and convolution
algebras, without bounded approximate identities. Also the proofs of weak
factorization theorems for general separable Banach algebras, presented in
[Pal], Sec. 5.3, pp. 549–552, have nothing in common with Cohen’s argu-
ment.
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[Ż] W. Że lazko, Banach Algebras, Elsevier, Amsterdam, and PWN–Polish Sci.
Publ., Warszawa, 1973.

Faculty of Electrical Engineering
Technical University of Lublin
Nadbystrzycka 38A, P.O. Box 189
20-618 Lublin, Poland
E-mail: kisynski.wzipt@antenor.pol.lublin.pl
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