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Multiple positive solutions to singular

boundary value problems for superlinear

second order FDEs

by Daqing Jiang (Changchun)

Abstract. We study the existence of positive solutions to the singular boundary value
problem for a second-order FDE







u′′ + q(t)f(t, u(w(t))) = 0, for almost all 0 < t < 1,
u(t) = ξ(t), a ≤ t ≤ 0,
u(t) = η(t), 1 ≤ t ≤ b,

where q(t) may be singular at t = 0 and t = 1, f(t, u) may be superlinear at u = ∞ and
singular at u = 0.

1. Introduction and main results. Boundary value problems (abbr.
as BVP) associated with singular second order diffferential equations have
a long history and many different methods and techniques have been used
and developed in order to obtain various qualitative properties of their so-
lutions. For details, see, for instance, papers [1–6, 10–13, 20, 22–32] and
the references therein. However, there are only a few works on singular
boundary value problems for superlinear ODEs (see [1, 2, 23]). As far as
the author knows, works on the existence of multiple positive solutions to
singular boundary value problems for superlinear ODEs are quite rare.

In the recent years, together with the development of theory of the func-
tional differential equations (abbr. as FDE), more authors have paid atten-
tion to BVPs nonsingular second order FDEs such as

[p(t)x′(t)]′ = f(t, xt, x(t)),
or

x′′(t) = f(t, x(t), x(σ(t)), x′(t), x′(τ(t)))

(for examples, see [5, 17–19, 21, 33, 43]).
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To the best of the author’s knowledge, there has not been much work
done about positive solutions for singular boundary value problems with
deviating arguments [1, 7, 8, 14], although they are of importance in appli-
cations. As pointed out in [7], the background for these singular BVPs for
FDEs lies in many areas of physics, applied mathematics and variational
problems of control theory.

In this paper, we investigate the existence of positive solutions for a
singular BVP for second-order FDE of the form

(1.1)







u′′ + q(t)f(t, u(w(t))) = 0, for almost all 0 < t < 1,
u(t) = ξ(t), a ≤ t ≤ 0,
u(t) = η(t), 1 ≤ t ≤ b.

Throughout we assume that

(P1) w is a continuous function defined on [0, 1] and satisfies

p1 = inf{w(t) : 0 ≤ t ≤ 1} < 1, q1 = sup{w(t) : 0 ≤ t ≤ 1} > 0.

Hence the set E := {t ∈ [0, 1] : 0 ≤ w(t) ≤ 1} is compact and meas E > 0.
Moreover, meas{t ∈ [0, 1] : w(t) = 0 or w(t) = 1} = 0.

Moreover, we assume

(P2) ξ and η are continuous functions defined on [a, 0] and [1, b], re-
spectively, where a := min{0, p1} and b := max{1, q1}; moreover,
ξ(t) > 0 on [a, 0) and η(t) > 0 on (1, b], ξ(0) = η(1) = 0.

In [1], R. P. Agarwal and Donal O’Regan considered the singular bound-
ary value problems

(1.2)

{

u′′ + q(t)f(t, u) = 0, 0 < t < 1,
u(0) = u(1) = 0,

and

(1.3)







u′′ + q(t)f(t, u(t − r)) = 0, t ∈ (0, 1)\{r},
u(t) = ξ(t), −r ≤ t ≤ 0,
u(1) = 0, 0 < r < 1,

where q ∈ C(0, 1) with q > 0 on (0, 1) and
T1
0
q(s) ds < ∞, and f : [0, 1] ×

(0,∞) → [0,∞) is continuous. Moreover, ξ(t) > 0 on [−r, 0) and ξ(0) = 0.
For example, they considered the singular boundary value problem

(1.4)

{

u′′ + σ(u−a1 + ub1 + 1) = 0, 0 < t < 1,
u(0) = u(1) = 0, σ ≥ 0 a constant,

with 0 ≤ a1 < 1 and b ≥ 0, and showed that it has at least one positive
solution under a restriction on σ. We notice that they allowed b1 > 1 (the
superlinear problem).
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Singular boundary value problems for delay differential equations were
first examined by Erbe and Kong [7, 8]; they studied the BVP (1.1) for more
general boundary data. In [8], it is shown that if

(A1) q(t)f(t, u) : (0, 1)× (0,∞) → (0,∞) is continuous and integrable on
[0, 1] for each fixed u ∈ (0,∞);

(A2) f(t, u) is decreasing in u for each fixed t;
(A3) limu→0+ f(t, u) = ∞ uniformly on compact subsets of (0, 1);
(A4) limu→∞ f(t, u) = 0 uniformly on compact subsets of (0, 1);
(A5) for all θ > 0,

0 <

1\
0

q(t)f(t, θg1(w(t))) dt < ∞,

where

g1(t) :=

{

t − a, a ≤ t ≤ 1/2,
b − t, 1/2 ≤ t ≤ b,

then (1.1) has at least one positive solution, as an application of a fixed
point theorem for mappings that are decreasing with respect to a cone in a
Banach space.

As pointed out in [1], assumption (A4) is very restrictive. In [14], the
author and Wang replace (A4) with the very general condition that f is
sublinear at ∞. Also assumption (A3) is removed. Moreover, they observe
that the dominating function g1 in (A5) is not fit for (1.1).

Motivated by the results mentioned above, in this paper we replace (A4)
with a still more general condition (i.e., f may be superlinear at ∞). Also
assumption (A3) is removed and the dominating function g1 in (A5) is the
same as in [14]. We also relax condition (A2). For example, it is of interest
to discuss the BVP (1.1) with

f(t, u) = σ(u−a1 + ub1), σ > 0 a constant,

with a1 > 0 and b1 ≥ 0. For b1 > 1 (the superlinear problem), we find that
(1.1) has at least two positive solutions under a restriction on σ.

It is also worth remarking here that the boundary data of (1.1) can
be replaced by more general boundary data [7, 8, 14] and the existence of
multiple positive solutions could again be discussed.

We now introduce the definition of a solution to (1.1).
A function u is said to be a solution to (1.1) if (i) u is continuous and

nonnegative on [a, b], (ii) u(t) = ξ(t) on [a, 0] and u(t) = η(t) on [1, b],
(iii) u′(t) exists and is locally absolutely continuous in (0, 1), (iv) u′′(t) =
−q(t)f(t, u(w(t))) for almost all t ∈ (0, 1). Furthermore, a solution u is said
to be positive if u(t) > 0 in (0, 1).

The main purpose of this paper is to establish the existence of multiple
positive solutions to (1.1). Motivated by the example f(t, u)=σ(u−a1+ub1),
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σ > 0 with a1 > 0 and b1 ≥ 0, we establish the following general existence
results.

Theorem 1. Assume that f(t, u) = F (t, u) + Q(t, u), and

(H1) q ∈ C(0, 1) is nonnegative and there exist α, β ∈ [0, 1) such that

0 <
\
E

s(1 − s)q(s) ds ≤

1\
0

sα(1 − s)βq(s) ds < ∞,

where E is determined by (P2);

(H2) F : [0, 1] × (0,∞) → [0,∞) is continuous and nonincreasing in

u > 0;

(H3) for each fixed u > 0,\
E

t(1 − t)q(t)F (t, u) dt > 0;

(H4) for each fixed θ > 0,

0 <

1\
0

s(1 − s)q(s)F (s, u0(w(s)) + θg(w(s))) ds

≤

1\
0

sα(1 − s)βq(s)F (s, u0(w(s)) + θg(w(s))) ds < ∞,

where g, u0 : [a, b] → [0,∞) are continuous functions defined by

g(t) :=

{ 0, a ≤ t ≤ 0,
t(1 − t), 0 ≤ t ≤ 1,
0, 1 ≤ x ≤ b,

u0(t) :=







ξ(t), a ≤ t ≤ 0,
0, 0 ≤ t ≤ 1,
η(t), 1 ≤ t ≤ b;

(H5) Q : [0, 1] × [0,∞) → [0,∞) is continuous and nondecreasing in

u > 0;

(H6) we have

sup
p∈(0,∞)

pT1
0
s(1−s)q(s)[F (s, u0(w(s))+pg(w(s)))+Q(s, u0(w(s))+p)] ds

>1.

Then (1.1) has at least one positive solution.

Theorem 2. Assume that (H1)–(H5) of Theorem 1 hold , and

(H∗

6 ) there is a p > 0 such that

pT1
0
s(1 − s)q(s)[F (s, u0(w(s)) + pg(w(s))) + Q(s, u0(w(s)) + p)] ds

> 1;

(H∗

7 ) limu→∞ Q(t, u)/u = ∞ uniformly on compact subsets of (0, 1).

Then (1.1) has at least two positive solutions.
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Remark 1.1. u0 is a nonnegative solution to (1.1) with f ≡ 0.

Remark 1.2. If limu→∞ Q(t, u)/u = 0 uniformly on [0, 1], then (H6) of
Theorem 1 holds.

Clearly, our hypotheses allow but do not require q(t)f(t, u) to be singular
at u = 0, t = 0, and t = 1.

In this paper, we obtain multiple positive solutions to (1.1) by arguments
involving only positivity properties of the Green function and a fixed point
theorem in cones. In Section 2, the proof of Theorems 1 and 2 is discussed.
Next, some corollaries of Theorems 1 and 2 are given in Section 3. Finally,
in Section 4, an example is given to explain the main results.

The proof of Theorems 1 and 2 will be based on an application of the
following fixed point theorem due to Krasnosel’skĭı [16].

Theorem 3. Let X be a Banach space, and let K ⊂ X be a cone in X.

Assume Ω1, Ω2 are open subsets of X with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

Φ : K ∩ (Ω2 \ Ω1) → K

be a completely continuous operator such that either

(i) ‖Φy‖ ≤ ‖y‖ for y ∈ K ∩ ∂Ω1 and ‖Φy‖ ≥ ‖y‖ for y ∈ K ∩ ∂Ω2; or

(ii) ‖Φy‖ ≥ ‖y‖ for y ∈ K ∩ ∂Ω1 and ‖Φy‖ ≤ ‖y‖ for y ∈ K ∩ ∂Ω2.

Then Φ has a fixed point in K ∩ (Ω2 \ Ω1).

2. Proof of main results. It follows from (H6) (or (H∗

6 )) that there is
a p > 0 such that

(2.1)
pT1

0
s(1−s)q(s)[F (s, u0(w(s))+pg(w(s)))+Q(s, u0(w(s))+p)] ds

>1.

Also, it follows from (H1), (H3) and (H4) that there exists a δ ∈ (0, 1/4)
such that

(2.2) 0 <
\

Eδ

s(1 − s)q(s) ds < ∞,

and

0 <
\

Eδ

s(1 − s)q(s)F (s, pg(w(s))) ds(2.3)

≤
\

Eδ

s(1 − s)q(s)F (s, pδ2) ds < ∞,

where Eδ = {t ∈ [0, 1] : δ ≤ w(t) ≤ 1 − δ} ⊂ E.
Let r > 0 be such that

(2.4) r < min
{

pδ2,
\

Eδ

G(1/2, s)q(s)F (s, pδ2) ds
}

,
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where G(t, s) is the Green function of the BVP −u′′ = 0, u(0) = u(1) = 0,
which is explicitly given by

G(t, s) =

{

s(1 − t), 0 ≤ s ≤ t ≤ 1,
t(1 − s), 0 ≤ t ≤ s ≤ 1.

Suppose that u0 is a solution of (1.1) with f ≡ 0 (see (H4)).
Let f∗(t, y) = F ∗(t, y) + Q(t, y + u0(w(t))), where

F ∗(t, y) :=

{

F (t, u0(w(t)) + rg(w(t))) if y ≤ rg(w(t)),
F (t, u0(w(t)) + y) if y ≥ rg(w(t)).

We now consider the modified boundary value problem

(2.5)







y′′ + q(t)f∗(t, y(w(t))) = 0, for almost all 0 < t < 1,
y(t) = 0, a ≤ t ≤ 0,
y(t) = 0, 1 ≤ t ≤ b.

If y is a solution of (2.5), then

(2.6) y(t) =



















0, a ≤ t ≤ 0,
1\
0

G(t, s)q(s)f∗(s, y(w(s))) ds, 0 ≤ t ≤ 1,

0, 1 ≤ t ≤ b.

Let K be the cone in the Banach space X = C[a, b] defined by

K = {y ∈ C[a, b] : y(t) ≥ g(t)‖y‖ for all t},

where ‖y‖ := sup{|y(t)| : a ≤ t ≤ b}.
For y ∈ K, denote by (Φy)(t) the right hand side of (2.6). From the

definition of G(t, s), we obtain

t(1 − t)s(1 − s) ≤ G(t, s) ≤ G(s, s) = s(1 − s) on [0, 1] × [0, 1].

Hence, for any y ∈ K, we have

0 ≤ (Φy)(t) ≤

1\
0

s(1 − s)q(s)f∗(s, y(w(s))) ds, 0 ≤ t ≤ 1,

(Φy)(t) ≥ t(1 − t)

1\
0

s(1 − s)q(s)f∗(s, y(w(s))) ds

≥ t(1 − t)‖Φy‖[0,1], 0 ≤ t ≤ 1.

where ‖y‖[0,1] = sup{|y(t)| : 0 ≤ t ≤ 1}. Since ‖Φy‖[0,1] = ‖Φy‖, this shows
that Φ(K) ⊂ K and each fixed point of Φ is a solution to (2.5).

Moreover, we have the following lemma which will be proved at the end
of this section.

Lemma 2.1. Φ : K → K is completely continuous.
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We will only give the proof of Theorem 2 since the proof of Theorem 1
can be done in a similar way.

Proof of Theorem 2. Let y ∈ K with ‖y‖ = r; then y(t) ≥ rg(t). It
follows from (2.2)–(2.4) and (H2) that we have (noting that u0(w(t)) ≡ 0
on E)

(Φy)(1/2) =

1\
0

G(1/2, s)q(s)f∗(s, y(w(s))) ds

≥

1\
0

G(1/2, s)q(s)F (s, u0(w(s)) + r) ds

≥
\

Eδ

G(1/2, s)q(s)F (s, r) ds

≥
\

Eδ

G(1/2, s)q(s)F (s, pδ2) ds

> r = ‖y‖,

which implies that

(2.7) ‖Φy‖ > ‖y‖ ∀y ∈ K ∩ ∂Ω1,

where Ω1 := {y ∈ E : ‖y‖ < r}.

Let y ∈ K with ‖y‖ = p; then y(t) ≥ pg(t) ≥ rg(t). It follows from
(2.1)–(2.4) and (H1)–(H

∗

6 ) that

(Φy)(t) =

1\
0

G(t, s)q(s)f∗(s, y(w(s))) ds

≤

1\
0

s(1 − s)q(s)f(s, u0(w(s)) + y(w(s))) ds

≤

1\
0

s(1 − s)q(s)[F (s, u0(w(s)) + pg(w(s))) + Q(s, u0(w(s)) + p)] ds

< p = ‖y‖,

which implies that

(2.8) ‖Φy‖ < ‖y‖ ∀y ∈ K ∩ ∂Ω2,

where Ω2 := {y ∈ E : ‖y‖ < p}.

Therefore, from the second part of Theorem 3, we conclude that Φ has a
fixed point y in K ∩ (Ω2 \Ω1). It follows from (2.7) and (2.8) that ‖y‖ 6= r
and ‖y‖ 6= p. Thus 0 < r < ‖y‖ < p. This shows that y is a positive solution
to (2.5).
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Since limy→∞ Q(s, y)/y = ∞ on E, there exists an R > p such that

(2.9) Q(s, y) ≥ My whenever y > δ2R, s ∈ Eδ,

where the constant M > 0 is chosen so that

(2.10) δ2M
\

Eδ

G(1/2, s)q(s) ds > 1.

Let Ω3 := {y ∈ E : ‖y‖ < R}. Since y ∈ K with ‖y‖ = R implies that

(2.11) y(w(t)) ≥ δ2R on Eδ,

it follows from (2.8)–(2.11) that (noting that u0(w(t)) ≡ 0 on E)

(Φy)(1/2) =

1\
0

G(1/2, s)q(s)f∗(s, y(w(s))) ds

≥
\

Eδ

G(1/2, s)q(s)Q(s, y(w(s))) ds

≥ δ2MR
\

Eδ

G(1/2, s)q(s) ds > R = ‖y‖.

This shows that

(2.12) ‖Φy‖ > ‖y‖ ∀y ∈ K ∩ ∂Ω3.

Therefore, from (2.8), (2.12) and the first part of Theorem 3, we conclude
that Φ has a fixed point y in K ∩ (Ω3 \Ω2). It follows from (2.8) and (2.12)
that ‖y‖ 6= p and ‖y‖ 6= R. Thus 0 < p < ‖y‖ < R. This shows that y is
another positive solution to (2.5).

Consequently, there exist two positive solutions to (2.5): y1 in K ∩
(Ω2 \ Ω1) and y2 in K ∩ (Ω3 \ Ω2). Since 0 < r < ‖y1‖ < p < ‖y2‖,
and

yi(w(t)) ≥ rg(w(t)), i = 1, 2,

we have (for i = 1, 2)






y′′

i + q(t)f(t, u0(w(t)) + yi(w(t))) = 0, for almost all 0 < t < 1,
yi(t) = 0, a ≤ t ≤ 0,
yi(t) = 0, 1 ≤ t ≤ b.

This shows that u1(t) := u0(t) + y1(t) and u2(t) := u0(t) + y2(t) are also
two positive solutions to (1.1). The proof is therefore complete.

Proof of Lemma 2.1. Let D be a bounded subset of K and M > 0 a
constant such that ‖y‖ ≤ M for y ∈ D. Then
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‖Φy‖ ≤

1\
0

s(1 − s)q(s)f∗(s, y(w(s))) ds(2.13)

≤

1\
0

s(1 − s)q(s)F (s, u0(w(s)) + rg(w(s))) ds

+

1\
0

s(1 − s)q(s)Q(s, u0(w(s)) + M) ds,

which implies the boundedness of Φ(D).
From (2.6), it is easy to obtain

(Φy)′(t) = −

t\
0

sq(s)f∗(s, y(w(s))) ds(2.14)

+

1\
t

(1 − s)q(s)f∗(s, y(w(s))) ds, 0 < t < 1.

For any y ∈ D and 0 < t < 1, it follows from (2.14) that

|tα(1−t)β(Φy)′(t)| ≤

t\
0

s(1−s)βq(s)f∗(s, y(w(s))) ds(2.15)

+

1\
t

sα(1−s)q(s)f∗(s, y(w(s))) ds

≤

1\
0

sα(1−s)βq(s)f∗(s, y(w(s))) ds

≤

1\
0

sα(1−s)βq(s)F (s, u0(w(s)) + rg(w(s))) ds

+

1\
0

sα(1−s)βq(s)Q(s, u0(w(s)) + M) ds

=: C.

Then for 0 ≤ s, t ≤ 1 we get

|(Φy)(t) − (Φy)(s)| ≤
∣

∣

∣

t\
s

(Φy)′(x) dx
∣

∣

∣
≤ C

∣

∣

∣

t\
s

x−α(1 − x)−β dx
∣

∣

∣

≤ C ′|t − s|1−γ

where γ = max(α, β) < 1 and C ′ is a positive constant independent of y ∈ D
and t, s ∈ [0, 1]. Since y(t) = 0 on [a, 0] ∪ [b, 1], Φ(D) is equicontinuous.

We are now going to prove that the mapping Φ is continuous on D.
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Let {ym}
∞

m=0 ⊂ D converge to y0 uniformly on [a, b] as m → ∞. From
(H1)–(H5)) we know that

0 ≤ q(t)f∗(t, ym(w(t)))

≤ q(t)F (t, u0(w(t)) + rg(w(t))) + q(t)Q(t, u0(w(t)) + M),

and hence

0 ≤ G(t, s)q(s)f∗(s, ym(w(s))) ≤ s(1 − s)q(s)H(s) on (0, 1),

where H(t) := F (t, rg(w(t))) + sup{Q(t, u0(w(t)) + y) : 0 ≤ y ≤ M} and
t(1− t)q(t)H(t) is an integrable function defined on [0,1]. Consequently, we
apply the dominated convergence theorem to get

lim
m→∞

(Φym)(t) = lim
m→∞

1\
0

G(t, s)q(s)f∗(s, ym(w(s))) ds

=

1\
0

G(t, s)q(s)f∗(s, y0(w(s))) ds

= (Φy0)(t), t ∈ [0, 1],

which completes the proof of Lemma 2.1.

3. Some corollaries. If w(t) = t, then (1.1) is a singular boundary
value problem of the form

(3.1)

{

y′′ + q(t)f(t, y) = 0, 0 < t < 1,
y(0) = y(1) = 0.

Corollary 1. Assume that f(t, y) = F (t, y) + Q(t, y), and

(B1) q ∈ C(0, 1) is nonnegative and there exist α, β ∈ [0, 1) such that

0 <

1\
0

s(1 − s)q(s) ds ≤

1\
0

sα(1 − s)βq(s) ds < ∞;

(B2) F : [0, 1] × (0,∞) → [0,∞) is continuous;
(B3) F (t, y) is nonincreasing in y > 0, for each fixed t;
(B4) for each fixed θ > 0,

0 <

1\
0

s(1 − s)q(s)F (s, θs(1 − s)) ds

≤

1\
0

sα(1 − s)βq(s)F (s, θs(1 − s)) ds < ∞;

(B5) Q : [0, 1]×[0,∞) → [0,∞) is continuous and nondecreasing in y > 0;

(B6) sup
p∈(0,∞)

pT1
0
s(1 − s)q(s)[F (s, ps(1 − s)) + Q(s, p)] ds

> 1.

Then (3.1) has at least one positive solution.
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Corollary 2. Assume that (B1)–(B5) of Corollary 1 hold , and

(B∗

6 ) there is a p > 0 such that
pT1

0
s(1 − s)q(s)[F (s, ps(1 − s)) + Q(s, p)] ds

> 1;

(B∗

7 ) limy→∞ Q(t, y)/y = ∞ uniformly on compact subsets of (0, 1).

Then (3.1) has at least two positive solutions.

If w(t) = t− r, a = −r, then (1.1) is a singular boundary value problem
of the form

(3.2)







u′′ + q(t)f(t, u(t − r)) = 0, t ∈ (0, 1) \ {r},
u(t) = ξ(t), −r ≤ t ≤ 0,
u(1) = 0, 0 < r < 1,

where ξ is a continuous function defined on [−r, 0], ξ(t) > 0 on [−r, 0) and
ξ(0) = 0.

By a slight modification of the proofs of Theorems 1 and 2, we can get
the following results.

Corollary 3. Assume that f(t, u) = F (t, u) + Q(t, u), and

(K1) q ∈ C(0, 1) is nonnegative and there exist α, β ∈ [0, 1) such that

0 <

1\
r

s(1 − s)q(s) ds ≤

1\
0

sα(1 − s)βq(s) ds < ∞;

(K2) F : [0, 1] × (0,∞) → [0,∞) is continuous and nonincreasing in

u > 0;

(K3) for each fixed u > 0,
T1
r
(1 − t)q(t)F (t, u) dt > 0.

(K4) for each fixed θ > 0,

0 <

r\
0

sq(s)F (s, ξ(s − r)) ds +

1\
r

(1 − s)q(s)F (s, θ(s − r)(1 + r − s)) ds

≤

r\
0

sαq(s)F (s, ξ(s − r)) ds

+

1\
r

(1 − s)βq(s)F (s, θ(s − r)(1 + r − s)) ds < ∞;

(K5) Q : [0, 1] × [0,∞) → [0,∞) is continuous and nondecreasing in

u > 0;

(K6) sup
p∈(0,∞)

p

c +
T1
r
s(1−s)q(s)[F (s, p(s−r)(1−s + r)) + Q(s, p)] ds

>1,

where c =
Tr
0
s(1 − s)q(s)f(s, ξ(s − r)) ds.

Then (3.2) has at least one positive solution.
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Corollary 4. Assume that (K1)–(K5) of Corollary 3 hold , and

(K∗

6 ) there is a p > 0 such that

p

c +
T1
r
s(1 − s)q(s)[F (s, p(s − r)(1 − s + r)) + Q(s, p)] ds

> 1,

where c =
Tr
0
s(1 − s)q(s)f(s, ξ(s − r)) ds;

(K∗

7 ) limu→∞ Q(t, u)/u = ∞ uniformly on compact subsets of (0, 1).

Then (3.2) has at least two positive solutions.

4. An example. Consider the singular boundary value problem

(4.1)

{

y′′ + σ(y−a1 + yb1) = 0, 0 < t < 1,
y(0) = y(1) = 0, σ > 0, a constant,

with 0 < a1 < 2 and b1 ≥ 0. Put

F (t, y)=σy−a1 , Q(t, y)=σyb1 , q(t)=1, max{a1−1, 0}<α=β<1.

Obviously, (B1)–(B5) of Corollaries 1 and 2 are satisfied.
Put

(4.2) T (x) :=
6xα1+1

c1 + xa1+b1
, where c1 = 6

1\
0

[s(1 − s)]1−a1 ds.

Corollary 1 shows that (4.1) has at least one positive solution if

(4.3) σ < sup
x∈(0,∞)

T (x).

When b1 ≤ 1, (4.1) has at least one positive solution if

(i) 0 ≤ b1 < 1, or

(ii) b1 = 1, σ < [
T1
0
s(1 − s) ds]−1 = 6.

When b1 > 1 ((B∗

7 ) of Corollary 2 holds), we can see that

T (p) = sup
x∈(0,∞)

T (x), p =

[

c1(a1 + 1)

b1 − 1

]
1

a1+b1

.

By Corollary 2, (4.1) has two positive solutions if b1 > 1 and

(4.4) σ < T (p) =
6

[

c1(a1 + 1)

b1 − 1

]

b1−1

a1+b1

+ c1

[

c1(a1 + 1)

b1 − 1

]−
a1+1

a1+b1

since, if σ satisfies (4.4), we have
pT1

0
s(1 − s)q(s)[F (s, ps(1 − s)) + Q(s, p)] ds

> 1.

Thus (B∗

6 ) of Corollary 2 is satisfied.



Multiple solutions to superlinear FDEs 269

References

[1] R. P. Agarwal and D. O’Regan, Singular boundary value problems for superlin-
ear second ordinary and delay differential equations, J. Differential Equations 130
(1996), 335–355.

[2] —, —, Nonlinear superlinear singular and nonsingular second order boundary value
problems, ibid. 143 (1998), 60–95.

[3] J. V. Bax ley, A singular nonlinear boundary value problem: Membrane response
of a spherical cap, SIAM J. Appl. Math. 48 (1988), 497–505.

[4] L. E. Bobisud, D. O’Regan and W. D. Royalty, Singular boundary value prob-
lems, Appl. Anal. 23 (1986), 233–243.

[5] J. E. Boui l le t and S. M. Gomes, An equation with a singular nonlinearity related
to diffusion problems in one dimension, Quart. Appl. Math. 42 (1985), 395–402.

[6] A. Cal legar i and A. Nachman, Some singular nonlinear differential equations
arising in boundary layer theory , J. Math. Anal. Appl. 64 (1978), 96–105.

[7] L. H. Erbe and Q. K. Kong, Boundary value problems for singular second-order
functional differential equations, J. Comput. Appl. Math. 53 (1994), 377–388.

[8] L. H. Erbe, Q. K. Kong and B. G. Zhang, Oscillation Theory and Boundary
Value Problems in Functional Differential Equations, Dekker, New York, 1995.

[9] L. H. Erbe, Z. C. Wang and L. T. Li, Boundary value problems for second or-
der mixed type functional , differential equations, in: Boundary Value Problems for
Functional Differential Equations, World Sci., 1995, 143–151.

[10] J. A. Gat ica, G. E. Hernandez and P. Waltman, Radially symmetric solutions
of a class of singular elliptic equations, Proc. Edinburgh Math. Soc. 33 (1990),
168–180.

[11] J. A. Gat ica, V. Ol iker and P. Waltman, Singular nonlinear boundary value
problems for second order differential equations, J. Differential Equations 79 (1989),
62–78.

[12] S. M. Gomes and J. Spreke ls, Krasonselskii’s Theorem on operators compressing
a cone: Application to some singular boundary value problems, J. Math. Anal.
Appl. 153 (1990), 443–459.

[13] J. Janus and J. Myjak, A generalized Emden–Fowler equation with a negative
exponent , Nonlinear Anal. 23 (1994), 953–970.

[14] D. Q. Jiang and J. Y.Wang, On boundary value problems for singular second-order
functional differential equations, J. Comput. Appl. Math. 116 (2000), 231–241.

[15] D. Q. Jiang and P. X. Weng, Existence of positive solutions for boundary value
problems of second-order functional differential equations, Electron. J. Qual. The-
ory Differ. Equ. 1998, no. 6, 13 pp.

[16] M. A. Krasnose l’ sk i ı̆, Positive Solutions of Operator Equations, Noordhoff,
Groningen, 1964.

[17] B. S. Lal l i and B. G. Zhang, Boundary value problems for second order functional
differential equations, Ann. Differential Equations 8 (1992), 261–268.

[18] J. W. Lee and D. O’Regan, Existence results for differential delay equations—I ,
J. Differential Equations 102 (1993), 342–359.

[19] —, —, Existence results for differential delay equations—II , Nonlinear Anal. 17
(1991), 683–702.

[20] A. Nachman and A. Cal legar i, A nonlinear boundary value problems in the
theory of pseudoplastic fluids, SIAM J. Appl. Math. 38 (1980), 275–281.



270 D. Q. Jiang

[21] S. K. Ntouyas, Y. G. S f icas and P. C. Tsamatos, An existence principle for
boundary value problems for second order functional-differential equations, Nonlin-
ear Anal. 20 (1993), 215–222.

[22] D. O’Regan, Positive solutions to singular and nonsingular second-order boundary
value problems, J. Math. Anal. Appl. 142 (1989), 40–52.

[23] —, Singular Dirchlet boundary value problems—I , superlinear and nonresonant
case, Nonlinear Anal. 29 (1997), 221–245.

[24] S. D. Tal ia ferro, A nonlinear singular boundary value problem, ibid. 3 (1979),
897–904.

[25] C. J. Van Dui jn, S. M. Gomes and H. F. Zhang, On a class of similarity
solutions of the equation ut = (|u|

m−1ux)x with m > −1, IMA J. Appl. Math. 41
(1988), 147–163.

[26] J. Y. Wang, A two-point boundary value problem with singularity , Northeast.
Math. J. 3 (1987), 281–291.

[27] —, A free boundary problem for a generalized diffusion equation, Nonlinear Anal.
14 (1990), 691–700.

[28] —, On positive solutions of singular nonlinear two-point boundary problems, J.
Differential Equations 107 (1994), 163–174.

[29] —, Solvability of singular nonlinear two-point boundary problems, Nonlinear Anal.
24 (1995), 555–561.

[30] J. Y. Wang and W. J. Gao, A singular boundary value problem for the one-dimen-
sional p-Laplacian, J. Math. Anal. Appl. 201 (1996), 851–866.

[31] J. Y. Wang and J. J iang, The existence of positive solutions to a singular nonlinear
boundary value problem, ibid. 176 (1993), 322–329.

[32] H. J. Wein ischke, On finite displacement of circular elastic membranes, Math.
Methods Appl. Sci. 9 (1987), 76–98.

[33] P. X. Weng, Boundary value problems for second order mixed-type functional-
differential equations, Appl. Math. J. Chinese Univ. Ser. B 12 (1997), 155–164.

[34] P. X. Weng and D. Q. Jiang, Existence of positive solutions for boundary value
problem of second-order FDE , Comput. Math. Appl. 37 (1999), 1–9.

Department of Mathematics
Northeast Normal University
Changchun 130024, P.R. China
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