Kobayashi-Royden vs. Hahn pseudometric in \mathbb{C}^{2}

by Witold Jarnicki (Kraków)

Abstract

For a domain $D \subset \mathbb{C}$ the Kobayashi-Royden \varkappa and Hahn h pseudometrics are equal iff D is simply connected. Overholt showed that for $D \subset \mathbb{C}^{n}, n \geq 3$, we have $h_{D} \equiv \varkappa_{D}$. Let $D_{1}, D_{2} \subset \mathbb{C}$. The aim of this paper is to show that $h_{D_{1} \times D_{2}} \equiv \varkappa_{D_{1} \times D_{2}}$ iff at least one of D_{1}, D_{2} is simply connected or biholomorphic to $\mathbb{C} \backslash\{0\}$. In particular, there are domains $D \subset \mathbb{C}^{2}$ for which $h_{D} \not \equiv \varkappa_{D}$.

1. Introduction. For a domain $D \subset \mathbb{C}^{n}$, the Kobayashi-Royden pseudometric \varkappa_{D} and the Hahn pseudometric h_{D} are defined by the formulas

$$
\begin{aligned}
& \varkappa_{D}(z ; X):=\inf \left\{|\alpha|: \exists_{f \in \mathcal{O}(E, D)} f(0)=z, \alpha f^{\prime}(0)=X\right\} \\
& h_{D}(z ; X):=\inf \left\{|\alpha|: \exists_{f \in \mathcal{O}(E, D)} f(0)=z, \alpha f^{\prime}(0)=X,\right.f \text { is injective }\} \\
& z \in D, X \in \mathbb{C}^{n}
\end{aligned}
$$

where E denotes the unit disc (cf. [Roy], [Hah], [Jar-Pfl]). Obviously $\varkappa_{D} \leq$ h_{D}. It is known that both pseudometrics are invariant under biholomorphic mappings, i.e., if $f: D \rightarrow \widetilde{D}$ is biholomorphic, then

$$
\begin{aligned}
& h_{D}(z ; X)=h_{\widetilde{D}}\left(f(z) ; f^{\prime}(z)(X)\right), \\
& \varkappa_{D}(z ; X)=\varkappa_{\widetilde{D}}\left(f(z) ; f^{\prime}(z)(X)\right), \quad z \in D, X \in \mathbb{C}^{n} .
\end{aligned}
$$

It is also known that for a domain $D \subset \mathbb{C}$ we have: $h_{D} \equiv \varkappa_{D}$ iff D is simply connected. In particular $h_{D} \not \equiv \varkappa_{D}$ for $D=\mathbb{C}_{*}:=\mathbb{C} \backslash\{0\}$. It has turned out that $h_{D} \equiv \varkappa_{D}$ for any domain $D \subset \mathbb{C}^{n}, n \geq 3$ ([Ove]). The case $n=2$ was investigated for instance in [Hah], [Ves], [Vig], [Cho], but neither a proof nor a counterexample for the equality was found (existing "counterexamples" were based on incorrect product properties of the Hahn pseudometric).

[^0]Key words and phrases: Hahn pseudometric, Kobayashi pseudometric.

2. The main result

Theorem 1. Let $D_{1}, D_{2} \subset \mathbb{C}$ be domains. Then:

1. If at least one of D_{1}, D_{2} is simply connected, then $h_{D_{1} \times D_{2}} \equiv \varkappa_{D_{1} \times D_{2}}$.
2. If at least one of D_{1}, D_{2} is biholomorphic to \mathbb{C}_{*}, then $h_{D_{1} \times D_{2}} \equiv$ $\varkappa_{D_{1} \times D_{2}}$.
3. Otherwise $h_{D_{1} \times D_{2}} \not \equiv \varkappa_{D_{1} \times D_{2}}$.

Let $p_{j}: D_{j}^{*} \rightarrow D_{j}$ be a holomorphic universal covering of $D_{j}\left(D_{j}^{*} \in\right.$ $\{\mathbb{C}, E\}), j=1,2$. Recall that if D_{j} is simply connected, then $h_{D_{j}} \equiv \varkappa_{D_{j}}$. If D_{j} is not simply connected and D_{j} is not biholomorphic to \mathbb{C}_{*}, then, by the uniformization theorem, $D_{j}^{*}=E$ and p_{j} is not injective.

Hence, Theorem 1 is an immediate consequence of the following three propositions (we keep the above notation).

Proposition 2. If $h_{D_{1}} \equiv \varkappa_{D_{1}}$, then $h_{D_{1} \times D_{2}} \equiv \varkappa_{D_{1} \times D_{2}}$ for any domain $D_{2} \subset \mathbb{C}$.

Proposition 3. If D_{1} is biholomorphic to \mathbb{C}_{*}, then $h_{D_{1} \times D_{2}} \equiv \varkappa_{D_{1} \times D_{2}}$ for any domain $D_{2} \subset \mathbb{C}$.

Proposition 4. If $D_{j}^{*}=E$ and p_{j} is not injective, $j=1,2$, then $h_{D_{1} \times D_{2}} \not \equiv \varkappa_{D_{1} \times D_{2}}$.

Observe the following property that will be helpful in proving the propositions.

Remark 5. For any domain $D \subset \mathbb{C}^{n}$ we have $h_{D} \equiv \varkappa_{D}$ iff for any $f \in$ $\mathcal{O}(E, D)$ with $f^{\prime}(0) \neq 0$, and $\vartheta \in(0,1)$, there exists an injective $g \in \mathcal{O}(E, D)$ such that $g(0)=f(0)$ and $g^{\prime}(0)=\vartheta f^{\prime}(0)$.

Proof of Proposition 2. Let $f=\left(f_{1}, f_{2}\right) \in \mathcal{O}\left(E, D_{1} \times D_{2}\right)$ and let $\vartheta \in(0,1)$.

First, consider the case where $f_{1}^{\prime}(0) \neq 0$. By Remark 5, there exists an injective function $g_{1} \in \mathcal{O}\left(E, D_{1}\right)$ such that $g_{1}(0)=f_{1}(0)$ and $g_{1}^{\prime}(0)=\vartheta f_{1}^{\prime}(0)$. Put $g(z):=\left(g_{1}(z), f_{2}(\vartheta z)\right)$.

Obviously $g \in \mathcal{O}\left(E, D_{1} \times D_{2}\right)$ and g is injective. Moreover, $g(0)=f(0)$ and $g^{\prime}(0)=\left(g_{1}^{\prime}(0), f_{2}^{\prime}(0) \vartheta\right)=\left(\vartheta f_{1}^{\prime}(0), \vartheta f_{2}^{\prime}(0)\right)=\vartheta f^{\prime}(0)$.

Suppose now that $f_{1}^{\prime}(0)=0$. Take $0<d<\operatorname{dist}\left(f_{1}(0), \partial D_{1}\right)$ and put

$$
\begin{aligned}
h(z) & :=\frac{f_{2}(\vartheta z)-f_{2}(0)}{f_{2}^{\prime}(0)}, \quad M:=\max \{|h(z)|: z \in \bar{E}\}, \\
g_{1}(z) & :=f_{1}(0)+\frac{d}{M+1}(h(z)-\vartheta z), \\
g(z) & :=\left(g_{1}(z), f_{2}(\vartheta z)\right), \quad z \in E .
\end{aligned}
$$

Obviously $g \in \mathcal{O}\left(E, \mathbb{C} \times D_{2}\right)$. Since $\left|g_{1}(z)-f_{1}(0)\right|<d$, we get $g_{1}(z) \in$ $B\left(f_{1}(0), d\right) \subset D_{1}, z \in E$. Hence $g \in \mathcal{O}\left(E, D_{1} \times D_{2}\right)$. Take $z_{1}, z_{2} \in E$ such that $g\left(z_{1}\right)=g\left(z_{2}\right)$. Then $h\left(z_{1}\right)=h\left(z_{2}\right)$, and consequently $z_{1}=z_{2}$.

Finally,

$$
\begin{aligned}
& g(0)=\left(g_{1}(0), f_{2}(0)\right)=\left(f_{1}(0)+\frac{d}{M+1} h(0), f_{2}(0)\right)=f(0) \\
& g^{\prime}(0)=\left(g_{1}^{\prime}(0), \vartheta f_{2}^{\prime}(0)\right)=\left(\frac{d}{M+1}\left(h^{\prime}(0)-\vartheta\right), \vartheta f_{2}^{\prime}(0)\right)=\vartheta f^{\prime}(0)
\end{aligned}
$$

Proof of Proposition 3. We may assume that $D_{1}=\mathbb{C}_{*}$ and $D_{2} \neq \mathbb{C}$. Using Remark 5 , let $f=\left(f_{1}, f_{2}\right) \in \mathcal{O}\left(E, \mathbb{C}_{*} \times D_{2}\right)$ and let $\vartheta \in(0,1)$. Applying an appropriate automorphism of \mathbb{C}_{*}, we may assume that $f_{1}(0)=1$.

For the case where $f_{2}^{\prime}(0)=0$, we apply the above construction to the domains $\widetilde{D}_{1}=f_{2}(0)+\operatorname{dist}\left(f_{2}(0), \partial D_{2}\right) E, \widetilde{D}_{2}=\mathbb{C}_{*}$ and mappings $\widetilde{f}_{1} \equiv f_{2}(0)$, $\widetilde{f_{2}}=f_{1}$.

Now, consider the case where $f_{2}^{\prime}(0) \neq 0$ and $\vartheta f_{1}^{\prime}(0)=1$. We put

$$
g_{1}(z):=1+z, \quad g(z):=\left(g_{1}(z), f_{2}(\vartheta z)\right), \quad z \in E
$$

Obviously, $g \in \mathcal{O}\left(E, \mathbb{C}_{*} \times D_{2}\right)$ and g is injective. We have $g(0)=\left(1, f_{2}(0)\right)=$ $f(0)$ and $g^{\prime}(0)=\left(1, \vartheta f_{2}^{\prime}(0)\right)=\vartheta f^{\prime}(0)$.

In all other cases, let $M:=\max \left\{\left|f_{2}(z):|z| \leq \vartheta\right\}\right.$. Take a $k \in \mathbb{N}$ such that $\left|c_{k}\right|>M$, where

$$
c_{k}:=f_{2}(0)-k \frac{\vartheta f_{2}^{\prime}(0)}{\vartheta f_{1}^{\prime}(0)-1}
$$

Put

$$
\begin{gathered}
h(z):=\frac{f_{2}(\vartheta z)-c_{k}}{f_{2}(0)-c_{k}} \\
g_{1}(z):=(1+z) h^{k}(z), \quad g_{2}(z):=f_{2}(\vartheta z), \\
g(z):=\left(g_{1}(z), g_{2}(z)\right), \quad z \in E .
\end{gathered}
$$

Obviously, $g \in \mathcal{O}\left(E, \mathbb{C} \times D_{2}\right)$. Since $h(z) \neq 0$, we have $g_{1}(z) \neq 0, z \in E$. Hence $g \in \mathcal{O}\left(E, \mathbb{C}_{*} \times D_{2}\right)$. Take $z_{1}, z_{2} \in E$ such that $g\left(z_{1}\right)=g\left(z_{2}\right)$. Then $h\left(z_{1}\right)=h\left(z_{2}\right)$, and consequently $z_{1}=z_{2}$.

Finally $g(0)=\left(h^{k}(0), f_{2}(0)\right)=f(0)$ and

$$
\begin{aligned}
g^{\prime}(0) & =\left(g_{1}^{\prime}(0), \vartheta f_{2}^{\prime}(0)\right)=\left(h^{k}(0)+k h^{k-1}(0) h^{\prime}(0), \vartheta f_{2}^{\prime}(0)\right) \\
& =\left(1+k \frac{\vartheta f_{2}^{\prime}(0)}{f_{2}(0)-c_{k}}, \vartheta f_{2}^{\prime}(0)\right)=\left(1+\vartheta f_{1}^{\prime}(0)-1, \vartheta f_{2}^{\prime}(0)\right)=\vartheta f^{\prime}(0)
\end{aligned}
$$

Proof of Proposition 4. It suffices to show that there exist $\varphi_{1}, \varphi_{2} \in$ $\operatorname{Aut}(E)$ and a point $q=\left(q_{1}, q_{2}\right) \in E^{2}, q_{1} \neq q_{2}$, such that $p_{j}\left(\varphi_{j}\left(q_{1}\right)\right)=$ $p_{j}\left(\varphi_{j}\left(q_{2}\right)\right), j=1,2$, and $\operatorname{det}\left[\left(p_{j} \circ \varphi_{j}\right)^{\prime}\left(q_{k}\right)\right]_{j, k=1,2} \neq 0$.

Indeed, put $\widetilde{p}_{j}:=p_{j} \circ \varphi_{j}, j=1,2$, and suppose that $h_{D_{1} \times D_{2}} \equiv \varkappa_{D_{1} \times D_{2}}$. Put $a:=\left(\widetilde{p}_{1}(0), \widetilde{p}_{2}(0)\right)$ and $X:=\left(\widetilde{p}_{1}^{\prime}(0), \widetilde{p}_{2}^{\prime}(0)\right) \in\left(\mathbb{C}_{*}\right)^{2}$. Take an arbitrary $f \in \mathcal{O}\left(E, D_{j}\right)$ with $f(0)=a_{j}$. Let \widetilde{f} be the lifting of f with respect to \widetilde{p}_{j} such that $\widetilde{f}(0)=0$. Since $\left|\tilde{f}^{\prime}(0)\right| \leq 1$, we get $\left|f^{\prime}(0)\right| \leq\left|X_{j}\right|$. Consequently $\varkappa_{D_{j}}\left(a_{j} ; X_{j}\right)=1, j=1,2$. In particular, $\varkappa_{D_{1} \times D_{2}}(a ; X)=$ $\max \left\{\varkappa_{D_{1}}\left(a_{1} ; X_{1}\right), \varkappa_{D_{2}}\left(a_{2} ; X_{2}\right)\right\}=1$.

Let $(0,1) \ni \alpha_{n} \nearrow 1$. Fix an $n \in \mathbb{N}$. Since $\varkappa_{D_{1} \times D_{2}}(a ; X)=1$, there exists $f_{n} \in \mathcal{O}\left(E, D_{1} \times D_{2}\right)$ such that $f_{n}(0)=a$ and $f_{n}^{\prime}(0)=\alpha_{n} X$. By Remark 5 , there exists an injective holomorphic mapping $g_{n}=\left(g_{n, 1}, g_{n, 2}\right): E \rightarrow$ $D_{1} \times D_{2}$ such that $g_{n}(0)=a$ and $g_{n}^{\prime}(0)=\alpha_{n}^{2} X$. Let $\widetilde{g}_{n, j}$ be the lifting with respect to \widetilde{p}_{j} of $g_{n, j}$ with $\widetilde{g}_{n, j}(0)=0, j=1,2$.

By the Montel theorem, we may assume that the sequence $\left(\widetilde{g}_{n, j}\right)_{n=1}^{\infty}$ is locally uniformly convergent, $\widetilde{g}_{0, j}:=\lim _{n \rightarrow \infty} \widetilde{g}_{n, j}$. We have $\widetilde{g}_{0, j}^{\prime}(0)=1$, $\widetilde{g}_{0, j}: E \rightarrow E$. By the Schwarz lemma we have $\widetilde{g}_{0, j}=\operatorname{id}_{E}, j=1,2$.

Let $h_{0, j}\left(z_{1}, z_{2}\right):=\widetilde{p}_{j}\left(z_{1}\right)-\widetilde{p}_{j}\left(z_{2}\right),\left(z_{1}, z_{2}\right) \in E^{2}$, and

$$
V_{j}=V\left(h_{0, j}\right)=\left\{\left(z_{1}, z_{2}\right) \in E^{2}: h_{0, j}\left(z_{1}, z_{2}\right)=0\right\}, \quad j=1,2 .
$$

Since

$$
\operatorname{det}\left[\frac{\partial h_{0, j}}{\partial z_{k}}(q)\right]_{j, k=1,2}=-\operatorname{det}\left[\widetilde{p}_{j}^{\prime}\left(q_{k}\right)\right]_{j, k=1,2} \neq 0
$$

V_{1} and V_{2} intersect transversally at q. Let $U \subset \subset\left\{\left(z_{1}, z_{2}\right) \in E^{2}: z_{1} \neq z_{2}\right\}$ be a neighborhood of q such that $V_{1} \cap V_{2} \cap \bar{U}=\{q\}$. For $n \in \mathbb{N}, j=1,2$, define

$$
h_{n, j}\left(z_{1}, z_{2}\right):=g_{n, j}\left(z_{1}\right)-g_{n, j}\left(z_{2}\right), \quad\left(z_{1}, z_{2}\right) \in E^{2}
$$

Observe that the sequence $\left(h_{n, j}\right)_{n=1}^{\infty}$ converges uniformly on \bar{U} to $h_{0, j}$, $j=1,2$. In particular (cf. [Two-Win]), we have $V\left(h_{n, 1}\right) \cap V\left(h_{n, 2}\right) \cap \bar{U}=$ $\left\{z \in \bar{U}: h_{n, 1}(z)=h_{n, 2}(z)=0\right\} \neq \emptyset$ for some $n \in \mathbb{N}$-contradiction.

We now move to the construction of φ_{1}, φ_{2} and q. Let $\psi_{j} \in \operatorname{Aut}(E)$ be a nonidentity lifting of p_{j} with respect to $p_{j}\left(p_{j} \circ \psi_{j} \equiv p_{j}, \psi_{j} \not \equiv \mathrm{id}\right), j=1,2$. Observe that ψ_{j} has no fixed points (a lifting is uniquely determined by its value at one point), $j=1,2$.

To simplify notation, let

$$
h_{a}(z):=\frac{z-a}{1-\bar{a} z}, \quad a, z \in E
$$

One can easily check that

$$
\sup _{z \in E} m\left(z, \psi_{j}(z)\right)=1, \quad j=1,2,
$$

where

$$
m(z, w):=\left|h_{w}(z)\right|=\left|\frac{z-w}{1-z \bar{w}}\right|
$$

is the Möbius distance. Hence there exist $\varepsilon \in(0,1)$ and $z_{1}, z_{2} \in E$ with $m\left(z_{1}, \psi_{1}\left(z_{1}\right)\right)=m\left(z_{2}, \psi_{2}\left(z_{2}\right)\right)=1-\varepsilon$. Let $d \in(0,1), h_{1}, h_{2} \in \operatorname{Aut}(E)$ be such that $h_{j}(-d)=z_{j}, h_{j}(d)=\psi_{j}\left(z_{j}\right), j=1,2$.

If $\left(p_{j} \circ h_{j}\right)^{\prime}(-d) \neq \pm\left(p_{j} \circ h_{j}\right)^{\prime}(d)$ for some j (we may assume $j=1$), then at least one of the determinants

$$
\begin{gathered}
\operatorname{det}\left[\begin{array}{cc}
\left(p_{1} \circ h_{1}\right)^{\prime}(-d) & \left(p_{1} \circ h_{1}\right)^{\prime}(d) \\
\left(p_{2} \circ h_{2}\right)^{\prime}(-d) & \left(p_{2} \circ h_{2}\right)^{\prime}(d)
\end{array}\right], \\
\operatorname{det}\left[\begin{array}{cc}
\left(p_{1} \circ h_{1} \circ(-\mathrm{id})\right)^{\prime}(-d) & \left(p_{1} \circ h_{1} \circ(-\mathrm{id})\right)^{\prime}(d) \\
\left(p_{2} \circ h_{2}\right)^{\prime}(-d) & \left(p_{2} \circ h_{2}\right)^{\prime}(d)
\end{array}\right],
\end{gathered}
$$

is nonzero.
Otherwise, let

$$
\widetilde{\psi}_{j}=h_{j}^{-1} \circ \psi_{j} \circ h_{j} \quad \text { and } \quad \widetilde{p}_{j}=p_{j} \circ h_{j}, \quad j=1,2
$$

Observe that $\widetilde{\psi}_{j}(-d)=d$ and $\left(\widetilde{\psi}_{j}^{\prime}(-d)\right)^{2}=1, j=1,2$. Thus, each $\widetilde{\psi}_{j}$ is either -id or h_{c}, where $c=-2 d /\left(1+d^{2}\right)$. The case $\widetilde{\psi}_{j}=-\mathrm{id}$ is impossible since $\widetilde{\psi}_{j}$ has no fixed points. By replacing p_{j} by \widetilde{p}_{j} and ψ_{j} by $\widetilde{\psi}_{j}, j=1,2$, the proof reduces to the case where $\psi_{1}=\psi_{2}=h_{c}=$: ψ for some $-1<c<0$.

We claim that there exists a point $a \in E$ such that if an automorphism $\varphi=\varphi_{a} \in \operatorname{Aut}(E)$ satisfies $\varphi(a)=\psi(a)$ and $\varphi(\psi(a))=a$, then $\varphi^{\prime}(a) \neq$ $\pm \psi^{\prime}(a)$. Suppose for a moment that such an a has been found. Notice that $\varphi \circ \varphi=\mathrm{id}$ and hence $\varphi^{\prime}(\psi(a))=1 / \varphi^{\prime}(a)$. Put $\varphi_{1}:=\mathrm{id}, \varphi_{2}:=\varphi, q:=$ $(a, \psi(a))$. We have

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{ccc}
\left(p_{1} \circ \varphi_{1}\right)^{\prime}(a) & \left(p_{1} \circ \varphi_{1}\right)^{\prime}(\psi(a)) \\
\left(p_{2} \circ \varphi_{2}\right)^{\prime}(a) & \left(p_{2} \circ \varphi_{2}\right)^{\prime}(\psi(a))
\end{array}\right] \\
&=\operatorname{det}\left[\begin{array}{cc}
p_{1}^{\prime}(a) & p_{1}^{\prime}(\psi(a)) \\
p_{2}^{\prime}(\varphi(a)) \varphi^{\prime}(a) & p_{2}^{\prime}\left(\varphi(\psi(a)) \varphi^{\prime}(\psi(a))\right.
\end{array}\right] \\
&=\operatorname{det}\left[\begin{array}{cc}
\left(p_{1} \circ \psi\right)^{\prime}(a) & p_{1}^{\prime}(\psi(a)) \\
p_{2}^{\prime}(\psi(a)) \varphi^{\prime}(a) & \left(p_{2} \circ \psi\right)^{\prime}(a) \frac{1}{\varphi^{\prime}(a)}
\end{array}\right] \\
&=\operatorname{det}\left[\begin{array}{cc}
p_{1}^{\prime}(\psi(a)) \psi^{\prime}(a) & p_{1}^{\prime}(\psi(a)) \\
p_{2}^{\prime}(\psi(a)) \varphi^{\prime}(a) & p_{2}^{\prime}(\psi(a)) \psi^{\prime}(a) \frac{1}{\varphi^{\prime}(a)}
\end{array}\right] \\
&=p_{1}^{\prime}(\psi(a)) p_{2}^{\prime}(\psi(a)) \operatorname{det}\left[\begin{array}{cc}
\psi^{\prime}(a) & 1 \\
\varphi^{\prime}(a) & \frac{\psi^{\prime}(a)}{\varphi^{\prime}(a)}
\end{array}\right] \neq 0
\end{aligned}
$$

which finishes the construction.
It remains to find a. First observe that the equality $\varphi_{a}^{\prime}(a)=\psi^{\prime}(a)$ is impossible since then we would have $\varphi_{a}=\psi$ and consequently $\psi \circ \psi=\mathrm{id}$; contradiction. We only need to find an $a \in E$ such that $\varphi_{a}^{\prime}(a) \neq-\psi^{\prime}(a)$.

One can easily check that

$$
\varphi_{a}=h_{-a} \circ(-\mathrm{id}) \circ h_{h_{a}(\psi(a))} \circ h_{a} .
$$

Direct calculations show that $\varphi_{a}^{\prime}(a)=-\psi^{\prime}(a) \Leftrightarrow a \in \mathbb{R}$. Thus it suffices to take any $a \in E \backslash \mathbb{R}$.

Acknowledgements. I would like to thank Professors Peter Pflug and Włodzimierz Zwonek for their valuable remarks.

References

[Cho] K. S. Choi, Injective hyperbolicity of product domain, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 5 (1998), 73-78.
[Hah] K. T. Hahn, Some remark on a new pseudo-differential metric, Ann. Polon. Math. 39 (1981), 71-81.
[Jar-Pff] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, de Gruyter Exp. Math. 9, de Gruyter, Berlin, 1993.
[Ove] M. Overholt, Injective hyperbolicity of domains, Ann. Polon. Math. 62 (1995), 79-82.
[Roy] H. L. Royden, Remarks on the Kobayashi metric, in: Several Complex Variables, II, Lecture Notes in Math. 189, Springer, 1971, 125-137.
[Two-Win] P. Tworzewski and T. Winiarski, Continuity of intersection of analytic sets, Ann. Polon. Math. 42 (1983), 387-393.
[Ves] E. Vesentini, Injective hyperbolicity, Ricerche Mat. 36 (1987), 99-109.
[Vig] J.-P. Vigué, Une remarque sur l'hyperbolicité injective, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 83 (1989), 57-61.

Institute of Mathematics
Jagiellonian University
Reymonta 4
30-059 Kraków, Poland
E-mail: wmj@im.uj.edu.pl

[^0]: 2000 Mathematics Subject Classification: Primary 32F45.

