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ON ADAPTIVE CONTROL OF MARKOV
CHAINS USING NONPARAMETRIC ESTIMATION

Abstract. Two adaptive procedures for controlled Markov chains which
are based on a nonparametric window estimation are shown.

1. Introduction. Assume on a probability space (Ω,F, P ) we are given
a discrete time controlled Markov process X = (xi) with values in a finite
state space E = {1, . . . , k} and with an unknown transition matrix pv(i, j)
depending on a control parameter v ∈ [0, 1]. Assume furthermore that for
i, j ∈ E the mapping [0, 1] 3 v 7→ pv(i, j) is continuous.

Our purpose is to minimize the following average cost per unit time
functional:

(1) Jx(V ) = lim sup
n→∞

1
n

EV
x

{ n∑
i=1

c(xi, vi)
}

over all sequences V = (vi) of [0, 1]-valued σ{x0, . . . , xi}-measurable random
variables, where EV

x stands for conditional expected value given that the
controlled process (xi) starts from the state x and the control V is used,
and c : E × [0, 1] → R is a continuous function which measures the running
cost.

An element u = [u1, . . . , uk] of the set U = [0, 1]k will be later interpreted
as a Markov control in the sense that we shall use a control parameter equal
to uj when the state process xi is in the state j.
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Given a nondecreasing sequence {bn}n∈N of positive integers such that
bn →∞ as n →∞, define the set

Φ({bn}n∈N) =
{

(an
i ), i = 1, . . . , n; n = 1, 2, . . . : an

i ∈ {0, 1},
n∑

i=1

an
i ≥ bn

}
.

The following auxiliary result will be used to justify the control proce-
dures introduced in Sections 2 and 3.

Proposition 1. Let Yi be a sequence of real-valued random variables
such that E[Yi+1 | Y1, . . . , Yi] = 0 and M = supi E{Y 2

i } < ∞. Then

(2) sup
(an

i )∈Φ({bn})

∑n
i=1 an

i Yi∑n
i=1 an

i

→ 0

in probability as n →∞.

P r o o f. Assume contrary to (2) that

P

(∑n
i=1 an

i Yi∑n
i=1 an

i

≥ ε

)
does not converge to 0 as n →∞ for (an

i ) ∈ Φ({bn}). Then by the Chebyshev
inequality

P

(∑n
i=1 an

i Yi∑n
i=1 an

i

≥ ε

)
≤

E[(
∑n

i=1 an
i Yi)2]

ε2(
∑n

i=1 an
i )2

=
∑n

i=1(a
n
i )2(EYi)2

ε2(
∑n

i=1 an
i )2

≤ M

ε2
∑n

i=1 an
i

≤ M

bnε2
→ 0

and we have a contradiction.

Let ũi ∈ U , i = 0, 1, . . . , be a sequence equidistributed in U . Given a
sequence hn ↘ 0, for u = [u1, . . . , uk] ∈ U and ũi

j being the jth coordinate
of ũi define

(3) Fn(u) =
n∑

i=0

k∏
j=1

1{|uj−ũi
j |≤hn}.

In what follows we shall assume that hn is chosen such that

(4) fn := min
u∈U

Fn(u) →∞

as n → ∞. In particular, we can choose for ũi successively the centers
of cubes with edges of length 1/2j which cover the set U = [0, 1]k for
j = 0, 1, . . . and consider the sequences ũi and hi of the form
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ũ0 =
[
1
2 , . . . , 1

2

]
, h0 = 1

2 ,

ũ1 =
[
1
4 , 1

4 , . . . , 1
4

]
, h1 = . . . = h2k = 1

3 ,

ũ2 =
[
3
4 , 1

4 , . . . , 1
4

]
,

...
ũ2k

=
[
3
4 , 3

4 , . . . , 3
4

]
,

ũ2k+1 =
[
1
8 , 1

8 , . . . , 1
8

]
, h2k+1 = . . . = h2k+4k = 1

4 ,
...

ũ2k+4k

=
[
7
8 , 7

8 , . . . , 7
8

]
,

ũ2k+4k+1 =
[

1
16 , 1

16 , . . . , 1
16

]
, h2k+4k+1 = . . . = h2k+4k+8k = 1

5 ,
...

ũ2k+4k+8k

=
[
15
16 , 15

16 , . . . , 15
16

]
,

and so on.
In the theory of adaptive control of Markov processes the number of fea-

sible procedures is very limited (see the papers [2], [4] and [5]). A recursive
self-tuning algorithm proposed in [2] is based on asymptotic properties of
ordinary differential equations and requires differentiability of the transition
operator with respect to an unknown parameter. Other methods, in which
discretized MLE ([4]) or the theory of large deviation ([5]) are used, require
the construction of a finite class of ε-optimal controls, which is usually a
hard problem.

In this paper we propose an alternative approach based on a window
nonparametric estimation used for multiarmed bandit problems in [1]. As-
suming that our model is uniformly ergodic (assumptions (5) and (13)),
although we do not know the transition probabilities, it appears that we are
able to construct an adaptive procedure for which we obtain self-optimality.

The paper consists of three sections. In Section 2 we introduce an adap-
tive procedure based on nonparametric estimation of the cost functional. In
Section 3 another procedure that is based on nonparametric estimation of
the transition kernel is considered.

2. Adaptive control with cost estimation. Assume there exists a
uniformly positive recurrent state e ∈ E of the Markov process X in the
sense that

(5) sup
u∈U

Eu
e {τ2} < ∞,

where

(6) τ = inf{i > 0 : xi = e}.
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Note that the above property holds in particular when

inf
v∈[0,1]

inf
j∈E

pv(j, e) > 0.

Let

(7) τ1 = τ, . . . , τn+1 = τn + τ ·Θτn

with τ defined in (6) and Θτ being the Markov shift operator. In other
words τn are the moments of successive returns to the recurrent state e.

Assume now that in the time interval [τi, τi+1) we use a Markov con-
trol ũi. For u ∈ U define

(8) Gn(u) =
n∑

i=0

k∏
j=1

1{|uj−ũi
j |≤hn}

τi+1−1∑
r=τi

c(xr, ũ
i(xr))

and

(9) Hn(u) =
n∑

i=0

k∏
j=1

1{|uj−ũi
j |≤hn}(τi+1 − τi).

Notice that Gn(u) is the total cost incurred in the time interval [0, τn+1),
when the control ũi from the closed ball with center u and radius hn is used.
Similarly Hn(u) is the total time during which the control from the sequence
(ũi) lies in the closed ball with center u and radius hn.

Proposition 2. We have

(10) sup
u∈U

∣∣∣∣Gn(u)
Fn(u)

− Eu
{ τ−1∑

i=0

c(xi, u(xi))
}∣∣∣∣ → 0

and

(11) sup
u∈U

∣∣∣∣Hn(u)
Fn(u)

− Eu{τ}
∣∣∣∣ → 0

in probability as n →∞, and consequently

(12) sup
u∈U

∣∣∣∣Gn(u)
Hn(u)

−
∑
η∈E

c(η, u(η))πu(η)
∣∣∣∣ → 0

in probability as n → ∞, where πu is the unique invariant measure corre-
sponding to the Markov process X with Markov control u.

P r o o f. Let

Yi =
τi−1∑

r=τi−1

c(xr, ũ
i(xr))− Eũi

e

{ τ−1∑
r=0

c(xr, ũ
i(xr))

}
,

with τ0 = 0. Clearly E[Yi+1 | Y1, . . . , Yi] = 0 and from the boundedness of
c(·, ·) and (5) we have supi EeY

2
i < ∞.
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Consequently, from Proposition 1,

|
∑n

i=0

∏k
j=11{|uj−ũi

j |≤hn}(
∑τi−1

r=τi−1
c(xr, ũ

i(xr))−Eũi

e {
∑τ−1

r=0 c(xr, ũ
i(xr))})|

Fn(u)

converges to 0 in probability as n →∞, uniformly in u ∈ U .
Note that under (5), by continuity of pv(e, j) with respect to v, the

mapping

U 3 u 7→ Eu
e

{ τ−1∑
r=0

c(xr, ũ
i(xr))

}
,

where U is endowed with the Euclidean norm, is continuous. Therefore,
since hn → 0, we obtain

sup
u∈U

∣∣∣∣Gn(u)
Fn(u)

− Eu
e

{ τ−1∑
r=0

c(xr, u(xr))
}∣∣∣∣ → 0

in probability, which completes the proof of (10). The proof of (11) is similar.
We simply let c(·, ·) ≡ 1 in the previous considerations. The convergence
(12) follows directly from (10) and (11) upon noticing that

Eu
e {

∑τ−1
r=0 c(xr, u(xr))}

Eu{τ}
=

∑
η∈E

c(η, u(η))πu(η),

where the existence of a unique invariant measure πu and its form are guar-
anteed by assumption (5).

We are now in a position to formulate our first control procedure:
For a given ε > 0 find a positive integer nε such that

P

{
sup
u∈U

∣∣∣∣Gn(u)
Hn(u)

−
∑
η∈E

c(η, u(η))πu(η)
∣∣∣∣ ≥ ε

}
≤ ε

‖c‖

for n ≥ nε with ‖ · ‖ standing for the supremum norm.
For the first nε cycles, i.e. until time τnε+1, test controls from the se-

quence ũi using the Markov controls ũi in the time intervals [τi, τi+1). At
time τnε+1 find a control uδ that is δ-optimal for Gnε(u)/Hnε

(u), i.e. such
that

Gnε(uδ)
Hnε(uδ)

≤ inf
u∈U

Gnε
(u)

Hnε(u)
+ δ,

and use this control function for each i ≥ τnε+1. Denote the above control
procedure by Vc.
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Theorem 1. We have

Jx(Vc) ≤ inf
u∈U

[ ∑
η∈E

c(η, u(η))πu(η)
]

+ 3ε + δ.

P r o o f. Because of the form of the cost functional (1) and boundedness
of the cost function c, only controls after time τnε+1 have an effect on the
value of the cost functional J and therefore

Jx(Vc) = Ex

[ ∑
η∈E

c(η, uδ(η))πuδ(η)
]
.

Let

B =
{

sup
u∈U

∣∣∣∣Gnε
(u)

Hnε(u)
−

∑
η∈E

c(η, u(η))πu(η)
∣∣∣∣ < ε

}
.

For ω ∈ B have∑
η∈E

c(η, uδ(η))πuδ(η) ≤ ε +
Gnε

(uδ)
Hnε

(uδ)
≤ ε + δ + inf

u∈U

Gnε
(u)

Hnε
(u)

≤ inf
u∈U

[ ∑
η∈E

c(η, u(η))πu(η)
]

+ 2ε + δ.

Consequently,

Jx(Vc) ≤ inf
u∈U

[ ∑
η∈E

c(η, u(η))πu(η)
]

+ 2ε + δ + inf
u∈U

P [1Bc‖c‖]

≤ inf
u∈U

[ ∑
η∈E

c(η, u(η))πu(η)
]

+ 3ε + δ,

which completes the proof.

3. Adaptive control procedure with transition probability es-
timation. In this section we estimate the transition probability function
pu(i, j). Assume now that the Markov process X = (xi) is controlled using
the sequence ũi at time i. For l, l′ ∈ E let (cf. (3) and (8))

Gl,l′

n (u) =
n∑

i=0

k∏
j=1

1{|uj−ũi
j |≤hn}1l(xi)1l′(xi+1)

and

F l
n(u) =

n∑
i=0

k∏
j=1

1{|uj−ũi
j |≤hn}1l(xi).
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Assume now that there is κ > 0 such that for l, l′ ∈ E,

(13) inf
v∈[0,1]

pv(l, l′) > κ.

Proposition 3. We have

sup
u∈U

∣∣∣∣Gl,l′

n (u)
F l

n(u)
− p(l, l′, ul)

∣∣∣∣ → 0

in probability as n →∞, where p(l, l′, v) := pv(l, l′).

P r o o f. Let

Yi = 1l(xi)1l′(xi+1)− 1l(xi)p(l, l′, ũi
l).

Clearly E[Yi |Y1, . . . , Yi−1] = 0. Therefore by Proposition 1,

(14) sup
u∈U

∑n
i=0

∏k
j=1 1{|uj−ũi

j |≤hn}Yi

Fn(u)
→ 0

in probability as n → ∞. Using Proposition 1 again with Y ′
i = 1l(xi+1) −

p(xi, l, ũxi) we obtain

sup
u∈U

∑n
i=0

∏k
j=1 1{|uj−ũi

j |≤hn}Y
′
i

Fn(u)
→ 0.

Therefore by (13) for κ > ε > 0 we have

P

(
inf
u∈U

F l
n(u)

Fn(u)
> κ− ε

)
≤ P

(
sup
u∈U

∑n
i=0

∏k
j=1 1{|uj−ũi

j |≤hn}Y
′
i

Fn(u)
≥ ε

)
→ 0

in probability as n →∞, and from (14) we obtain

sup
u∈U

∑n
i=0

∏k
j=1 1{|uj−ũi

j |≤hn}Yi

F l
n(u)

→ 0

in probability as n →∞. Hence

sup
u∈U

∣∣∣∣Gl,l′

n (u)
F l

n(u)
−

∑n
i=0

∏k
j=1 1{|uj−ũi

j |≤hn}1l(xi)p(l, l′, ũi
l)

F l
n(u)

∣∣∣∣ → 0

in probability as n →∞ and by continuity of p(l, l′, v) with respect to v we
finally obtain∑n

i=0

∏k
j=1 1{|uj−ũi

j |≤hn}1l(xi)p(l, l′, ũi
l)

F l
n(u)

→ p(l, l′, ul)

uniformly in u ∈ U as n →∞, which completes the proof.
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Our second adaptive procedure consists of the following steps:

1. For a given ε > 0 find nε such that for n ≥ nε and l, l′ ∈ E,

P

{
sup
u∈U

∣∣∣∣Gl,l′

n (u)
F l

n(u)
− p(l, l′, ul)

∣∣∣∣ > ε

}
≤ ε

‖c‖k2
.

2. At time nε normalize Gl,l′

nε
(u)/F l

n(u), i.e. form a new transition matrix

p̃(l, l′, u) =
Gl,l′

n (u)∑k
r=1 Gl,r

n (u)
.

3. Then find an invariant measure πu
ε for the transition matrix p̃(l, l′, u)

and determine uδ such that∑
η

c(η, uδ(η))πuδ
ε (η) ≤ inf

u∈U

∑
η

c(η, uδ(η))πu
ε (η) + δ.

4. Starting from time nε use the control function uδ.

Denote the above control procedure by Vp.

Theorem 2. Under (13) we have

J(Vp) ≤ inf
u∈U

[ ∑
η∈E

c(η, u(η))πu(η)
]

+ ‖c‖ (1 + k)ε
(1− kε)κ

+ δ + ε,

where πu is the unique invariant measure corresponding to p(l, l′, ul).

P r o o f. If for each l, l′ ∈ E,

sup
u∈U

∣∣∣∣Gl,l′

n (u)
F l

n(u)
− p(l, l′, ul)

∣∣∣∣ ≤ ε

then we have

|p̃(l, l′, u)− p(l, l′, ul)| =
F l

n(u)∑k
r=1 Gl,r

n (u)

∣∣∣∣Gl,l′

n (u)
F l

n(u)
− p(l, l′, ul)

n∑
l′=1

Gl,l′

n (u)
F l

n(u)

∣∣∣∣
≤

(
ε + p(l, l′, ul)

∣∣∣∣1− n∑
l′=1

Gl,l′

n (u)
F l

n(u)

∣∣∣∣) 1
1− kε

≤ (1 + k)ε
1

1− kε
.

From Theorem and Corollary 2 of [7] under (13) we see that for l ∈ E,

sup
u∈U

|πu
ε (l)− πu(l)| ≤ 1

2
· (1 + k)ε
(1− kε)κ

.

Therefore for ω ∈
⋂k

l=1

⋂k
l′=1 Bll′ , where
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Bll′ =
{

sup
u∈U

∣∣∣∣Gl,l′

n (u)
F l

n(u)
− p(l, l′, ul)

∣∣∣∣ ≤ ε

}
,

we have∑
η∈E

c(η, u(η))πuδ
ε (η) ≤ inf

u∈U

∑
η∈E

c(η, u(η))πu(η) + ‖c‖ (1 + k)ε
(1− kε)κ

+ δ.

Consequently,

J(Vp) = E
[ ∑

η∈E

c(η, u(η))πuδ
ε (η)

]
≤ inf

u∈U

∑
η∈E

c(η, u(η))πu(η) + ‖c‖ (1 + k)ε
(1− kε)κ

+ δ

+ ‖c‖P
(
Ω\

k⋂
l=1

k⋂
l′=1

Bll′

)
≤ inf

u∈U

∑
η∈E

c(η, u(η))πu(η) + ‖c‖ (1 + k)ε
(1− kε)κ

+ δ + ε,

which completes the proof.

Remark. The adaptive procedures introduced in Sections 2 and 3 allow
one to determine a nearly optimal control in a finite time. Using forcing
and an increasing decision horizon from Section 3 of [3] for both adaptive
procedures it is possible to construct optimal adaptive strategies.
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[6] O. Hern ández-Lerma and R. Cavazos -Cadena, Density estimation and adap-
tive control of Markov processes; average and discounted criteria, Acta Appl. Math.
20 (1990), 285–307.



152 E. Drabik and  L. Stettner

[7] A. Nowak, A generalization of Ueno’s inequality for n-step transition probabilities,
Appl. Math. (Warsaw) 25 (1998), 295–299.

Ewa Drabik
Faculty of Economics
University of Bia lystok
Warszawska 63
15-062 Bia lystok, Poland

 Lukasz Stettner
Institute of Mathematics

Polish Academy of Sciences
Śniadeckich 8

00-950 Warszawa, Poland
E-mail: stettner@impan.gov.pl

and

Warsaw School of Management and Marketing

Received on 13.11.1998;
revised version on 27.8.1999


