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RANDOM PRIORITY TWO-PERSON

FULL-INFORMATION BEST CHOICE PROBLEM

WITH IMPERFECT OBSERVATION

Abstract. The following version of the two-player best choice problem is
considered. Two players observe a sequence of i.i.d. random variables with
a known continuous distribution. The random variables cannot be perfectly
observed. Each time a random variable is sampled, the sampler is only
informed whether it is greater than or less than some level specified by him.
The aim of the players is to choose the best observation in the sequence (the
maximal one). Each player can accept at most one realization of the process.
If both want to accept the same observation then a random assignment
mechanism is used. The zero-sum game approach is adopted. The normal
form of the game is derived. It is shown that in the fixed horizon case the
game has a solution in pure strategies whereas in the random horizon case
with a geometric number of observations one player has a pure strategy and
the other one has a mixed strategy from two pure strategies. The asymptotic
behaviour of the solution is also studied.

1. Introduction. The paper deals with the following zero-sum game
version of the full-information best choice problem. Two players observe
sequentially N i.i.d. random variables from a known continuous distribution
with the objective of choosing the largest. The random variables cannot be
perfectly observed. Players specify their sensitivity (impressionability) levels
and each time a random variable is sampled the sampler is informed only
whether it is greater than or less than the level he specified. Each of the
players can choose at most one observation. Neither recall nor uncertainty
of selection is allowed. When some player accepts an observation at time n,
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then the other one will investigate the sequence of future realizations having
an opportunity to accept one of them. The players cannot choose the same
state of the process at the same moment. When both want to accept such
an observation a random assignment mechanism is used. A zero-sum game
model is adopted. A class of suitable strategies and a gain function for
the problem is constructed. It is shown that the game has a solution in
pure strategies. In the random horizon case with a geometric number of
observations one player has a pure strategy and the other one has a mixed
strategy from two pure strategies. For the fixed horizon case the asymptotic
behaviour of the solution is also studied.

The results of the paper extend those obtained in the paper by Neumann,
Porosiński and Szajowski [12]. The games with priority for one player, in
other game versions of the best choice problem, have been considered for ex-
ample by Enns and Ferenstein [5]–[7], Majumdar [10], [11], Sakaguchi [21],
[23], [24]. A relation of the priority games in the best choice problem to
Dynkin’s game has been shown by Ravindran and Szajowski [18] and Sza-
jowski [25]. Random priority has been considered by Radzik and Szajowski
[17] and Szajowski [27]. Imperfect observation for one decision maker prob-
lem has been investigated by Enns [4], Porosiński [14], Sakaguchi [20], [22].
One decision maker problems with random horizon were treated by Pres-
man and Sonin [15], Cowan and Zabczyk [2] for the no-information case of
the best choice problem and by Porosiński [14] for the full-information best
choice problem with imperfect observation. An extensive review of general-
izations of the best choice problem can be found in Freeman [9], Rose [19]
and Ferguson [8].

A rigorous formulation of the problem, with the definition of strategies,
is the subject of Section 2. In Section 3, for each assignment mechanism and
fixed horizon it is shown that the problem is equivalent to a zero-sum game
on the unit square. The normal form of the game is derived and the optimal
pure strategies are pointed out. The asymptotic behaviour of the finite
horizon problem is investigated in Section 4. The random horizon case is
formulated and solved in Section 5 for N having the geometric distribution.

2. The priority game with imperfect observation. LetX1,. . .,XN ,
N ∈ N, be a sequence of i.i.d. random variables with a common known con-
tinuous distribution defined on a probability space (Ω,F ,P). The sequence
is sequentially sampled one by one by two decision makers (players). How-
ever the observations are imperfect and the exact realized values are not
known. Players specify only their levels of impressionability and they are
able to know whether the observed random variable is greater than or less
than the levels they chose. After Xn is observed the players are informed
whether Xn exceeds or not their sensitivity levels. If only one player decides
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to accept the state at time n, he gets it at once, the other player is informed
of this fact and continues the observation of the process. On the other hand,
if both decision makers decide to accept the state at the same moment, a
random mechanism chooses one of them to benefit and the other decision
maker can continue sequential observation of the process to choose the best
one. One can say that the players have random priority to accept a realiza-
tion. Neither recall nor uncertainty of selection is allowed. The aim of the
players is to choose the best observation (the maximal one).

In this paper we assume that the problem is modeled by a two-person
zero-sum game. Similar models for the no-information case have been con-
sidered in [27]. The structure of strategy sets and the form of the gain
functions are different in those problems.

Let Fn = σ{X1, . . . ,Xn}, n = 1, . . . , N , and let S be the set of stopping
times with respect to {Fn}

N
n=1. Since the observations are imperfect we take

S0 = {τ ∈ S : τ = inf{1 ≤ n ≤ N : Xn ≥ x}, x ∈ R}

as the class of strategies for the one-person decision problem. For the two-
person problem this class is not suitable. The proper class is the set of pairs

S = {(τ, {σn}
N−1
n=1 ) : τ ∈ S0, σn ∈ S0, σn > n}

(cf. [26]). The stopping time τi is the strategy of the first attempt of
acceptance for Player i. If the state is accepted by Player i at time n then
Player j, j 6= i, is using the strategy σj

n. Further we restrict ourselves to a
narrower class S0 of strategies based on one fixed level only. This means
that the stopping times τ and σn, n = 1, . . . , N −1, are defined by the same
constant x. Let S1

0 andS
2
0 be the sets of strategies for Player 1 and Player 2,

respectively. The random assignment mechanism is defined by the lottery
described by a random variable ξ with uniform distribution on [0, 1] and a
number π ∈ [0, 1]. If both players wish to select the state of the process at
the same moment then Player 1 benefits if ξ ≤ π; otherwise Player 2 gets
the observation.

Based on the above formulation the gain function can be described as
follows. Let Player 1 and Player 2 choose x ∈ R and y ∈ R, respectively.
This defines strategies x ∈ S

1
0 and y ∈ S

2
0.

Player 1 gets +1 when he accepts the first Xs ≥ x (if Xs < y or Xs ≥ y
and the lottery chooses Player 1) and all further observations are less than
Xs or when Player 2 accepts the first Xs ≥ y (if Xs < x or Xs ≥ x and the
lottery chooses Player 2) and the first, after Xs, observation Xt ≥ x is also
greater than Xs and there is no observation greater than Xt later. Since
this is a zero-sum game, Player 1 gets −1 when Player 2 gets +1 (and in
the description of the winning events for Player 1, x is interchanged with y
and “Player 1” with “Player 2”). In other cases Player 1 gets 0.
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Taking into account the above considerations we can assume without
loss of generality that the observed random variables have the standard
uniform distribution and the set S0 of strategies is equivalent to the interval
[0, 1]. This reduces the problem to a zero-sum game on the unit square.
The expected payoff function is the expected value of the described payoff
function of Player 1. The aims of the players are the same, but different
priorities for the players give them unequal opportunities. The value of the
game is the difference between the probability of success for Player 1 and
Player 2.

3. The finite horizon case. Let the horizon N of observation be fixed.
The expected payoff described in Section 2, which is the payoff function of
the auxiliary game, has the form

(1a) hN (x, y, π)

=

N
∑

s=1

P{X1 < x, . . . ,Xs−1 < x, x ≤ Xs < y, Xs+1 < Xs, . . . ,XN < Xs}

+

N
∑

s=1

P{X1 < x, . . . ,Xs−1 < x, Xs ≥ y, ξ ≤ π,

Xs+1 < Xs, . . . ,XN < Xs}

+
N−1
∑

s=1

N
∑

t=s+1

P{X1 < x, . . . ,Xs−1 < x, Xs ≥ y, ξ > π,

Xs+1 < x, . . . ,Xt−1 < x, Xt > Xs, Xt+1 < Xt, . . . ,XN < Xt}

−
N−1
∑

s=1

N
∑

t=s+1

P{X1 < x, . . . ,Xs−1 < x, x ≤ Xs < y,

Xs+1 < y, . . . ,Xt−1 < y, Xt > y, Xt+1 < Xt, . . . ,XN < Xt}

−
N−1
∑

s=1

N
∑

t=s+1

P{X1 < x, . . . ,Xs−1 < x, Xs ≥ y, ξ ≤ π,

Xs+1 < y, . . . ,Xt−1 < y, Xt > Xs, Xt+1 < Xt, . . . ,XN < Xt}

−
N
∑

s=1

P{X1 < x, . . . ,Xs−1 < x, Xs ≥ y, ξ > π,

Xs+1 < Xs, . . . ,XN < Xs}

for 0 ≤ x < y ≤ 1 and
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(1b) hN (x, y, π)

=
N
∑

s=1

P{X1 < y, . . . ,Xs−1 < y,Xs ≥ x, ξ ≤ π,Xs+1 < Xs, . . . ,XN < Xs}

+
N−1
∑

s=1

N
∑

t=s+1

P{X1 < y, . . . ,Xs−1 < y, y ≤ Xs < x,

Xs+1 < x, . . . ,Xt−1 < x, Xt ≥ x, Xt+1 < Xt, . . . ,XN < Xt}

+
N−1
∑

s=1

N
∑

t=s+1

P{X1 < y, . . . ,Xs−1 < y, Xs ≥ x, ξ > π,

Xs+1 < x, . . . ,Xt−1 < x, Xt ≥ Xs, Xt+1 < Xt, . . . ,XN < Xt}

−

N−1
∑

s=1

N
∑

t=s+1

P{X1 < y, . . . ,Xs−1 < y, Xs > x, ξ ≤ π,

Xs+1 < y, . . . ,Xt−1 < y, Xt > Xs, Xt+1 < Xt, . . . ,XN < Xt}

−

N
∑

s=1

P{X1 < y, . . . ,Xs−1 < y, Xs ≥ x, ξ > π,

Xs+1 < Xs, . . . ,XN < Xs}

−

N
∑

s=1

P{X1 < y, . . . ,Xs−1 < y, y ≤ Xs < x, Xs+1 < Xs, . . . ,XN < Xs}

for x ≥ y. By (1) the payoff of Player 1 for 0 ≤ x < y ≤ 1 has the form

(2a) hN (x, y, π)

=

N
∑

i=1

xN−i − xN

i
− (1− π)

(

2

N
∑

i=1

xN−i 1− yi

i

+

N
∑

j=2

N
∑

i=j−1

(xN−jyi−j−1 + xN−i−1)

(

1− y

j
−

1− yj+1

j(j + 1)

))

−

N−1
∑

j=1

N
∑

i=j+1

xN−iyi−j−1

j

(

1− x− (y − x)yj −
1− yj+1

1 + j

)

and, for x ≥ y,
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(2b) hN (x, y, π)

=
N
∑

i=1

yN−i

i
(1− 2xi + yi)− (1− π)

(

2
N
∑

j=1

yN−j 1− xj

j

+

N−1
∑

i=1

i
∑

j=1

yN−i(yi−j + xi−j)

(

1− x

j
−

1− xj

j(j + 1)

))

+
N−1
∑

j=1

N
∑

i=j+1

(

yN−ixi−j−1(x− y)
1− xj

j

−
yN−j−1

j

(

1− x−
1− xj+1

j + 1

))

.

In this way the game is transformed to a zero-sum game on the unit
square. Since the relation hN (x, y, π) + hN (y, x, 1 − π) = 0 follows, we
restrict our considerations to π ∈ [0.5, 1].

The existence and form of equilibrium for such a game can be found in
Parthasarathy and Raghavan [13], where a generalization of the well known
theorem of Bohnenblust, Karlin and Shapley [1] (see also Radzik [16], Dresh-
er [3]) is formulated and proved. Denote by Ia the probability distribution
function concentrated at a.

Theorem 1. Let F (x, y) be a continuous function on the unit square

I × I and let F (x, y) be concave in x for each y. Then the zero-sum game

Γ = (I, I, F (x, y)) has an equilibrium of the form

(Ia, βIc + (1− β)Id)

for some 0 ≤ a, c, d, β ≤ 1.

Proposition 1. The payoff function of Player 1 in the full-information

best choice problem for the two-person zero-sum game with imperfect infor-

mation, fixed horizon N and priority π ∈ [0, 1] for Player 1 is given by (2).
The game has a solution (x∗(π), y∗(π)) in pure strategies.

P r o o f. Fix π. The gain function hN (x, y) given by (2) is concave in x
for each y and continuous in both variables. It has two minima for each x
at points 0 < y1(x) ≤ x ≤ y2(x) ≤ 1 and hN (x, y1(x)) < hN (x, y2(x)) for
π 6= 0.5. For π = 0.5 and each x there is one minimum in y. From the proof
of Theorem 1 (see Dresher [3], pp. 119–122) and by the above facts we get
the assertion.

The probability of success for Player 1 when both players are using the
equilibrium strategy is
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(3) PN (π)

=
N
∑

s=1

P{X1 < y∗, . . . ,Xs−1 < y∗, Xs ≥ x∗, ξ ≤ π,

Xs+1 < Xs, . . . ,XN < Xs}

+

N−1
∑

s=1

N
∑

t=s+1

P{X1 < y∗, . . . ,Xs−1 < y∗, y∗ ≤ Xs < x∗,

Xs+1 < x∗, . . . ,Xt−1 < x∗,Xt ≥ x∗,Xt+1 < Xt, . . . ,XN < Xt}

+

N−1
∑

s=1

N
∑

t=s+1

P{X1 < y∗, . . . ,Xs−1 < y∗, Xs ≥ x∗, ξ > π,

Xs+1 < Xs, . . . ,Xt−1 < Xs, Xt ≥ Xs, Xt+1 < Xt, . . . ,XN < Xt}

= π
N
∑

s=1

y∗N−s 1− x∗s

s
+

N−1
∑

s=1

N
∑

t=s+1

y∗N−tx∗t−s−1(x∗ − y∗)
1− x∗s

s

+ (1− π)

N−1
∑

i=1

i
∑

j=1

y∗N−j−1x∗i−j

(

1− x∗

j
−

1− x∗j+1

j(j + 1)

)

.

An interesting problem is the asymptotic behaviour of the equilibria and of
the value of the game as N → ∞. This is investigated in the next section.

4. Asymptotic solution. As N → ∞, the optimal decision lev-
els x∗

N (π) and y∗N (π) tend to 1 and they are approximately linear in 1/N :
x∗
N (π) = 1 − a(π)/N + o(1/N), y∗N(π) = 1 − b(π)/N + o(1/N) (in other

words: N(1 − x∗
N(π)) → a(π) or x∗N

N (π) → e−a(π)) for some constants
0 < a(π) ≤ b(π) (and a(π) = b(π) for π = 0.5 only). The analysis of the
solution for π ∈ [0, 0.5] is analogous. It is enough to change the roles of the
players. The asymptotic behaviour of the payoff function can be investigated
based on approximation of x∗

N (π) and y∗N(π).
For example the third component in the payoff function in (26) for x =

x∗
N (π), y = y∗N (π) tends to some integral:

N−1
∑

j=1

N
∑

i=j+1

yN−ixi−j−1(x− y)
1− xj

j

→

1\
0

1\
t

(

e−b+bse−as+at(b− a)
1− e−at

t

)

ds dt

= e−aI(a)− e−bI(b) + e−bI(b− a),
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where a = a(π), b = b(π) and I(c) =
Tc
0
((et − 1)/t) dt. In this calculation we

use the identity
Tc
0
((et − t− 1)/t2) dt−

Tc
0
((et − 1)/t) dt = 1 + (1 − e−c)/c.

Applying these in (2) we find limN→∞ hN (x∗
N , y∗N , π) = h(a, b, π), where

h(a, b, π) =















































e−aI(a)− e−bI(b) + (1− π) b
b−a

(e−b − e−a)

+π(b− a)e−b(I(b)− I(b− a))
+π

(

e−b
(

a− a
b

)

+ e−a − 1 + a
b

)

for 0 ≤ a < b,

(2π − 1)ae−a for 0 ≤ a = b,

e−aI(a)− e−bI(b)− π b
a−b

(e−a − e−b)

−(1− π)(a− b)e−a(I(a)− I(a− b))

−(1− π)
(

e−a
(

b− b
a

)

+ e−b − 1 + b
a

)

for 0 ≤ b < a.

The function h(a, b, π) has a unique saddle point (a∗, b∗) = (a∗(π), b∗(π)).
Examples of saddle points and values, for some π ∈ [0.5, 1], are shown in
Table 1. The equilibria for π ∈ [0, 0.5] can be obtained from the relation
h(a, b, π) + h(b, a, 1 − π) = 0.

The asymptotic behaviour of the solution for finite N and given π can
be described as follows.

Proposition 2. For fixed N the decision levels xN = 1 − a∗/N, yN =
1 − b∗/N are asymptotically optimal. The asymptotic value of the game is

h(a∗, b∗, π).

The limit probability of success for Player 1 (remember π ∈ [0.5, 1]) is

P (π) = lim
N→∞

PN (π)

= πe−b∗(I(b∗)− I(b∗ − a∗)) + e−a∗

I(a∗)− e−b∗(I(b∗)− I(b∗ − a∗))

+ (1− π)

(

e−a∗

− e−b∗+ e−b∗(I(b∗)− I(b∗ − a∗)) + b∗
e−b∗− e−a∗

b∗ − a∗

)

.

Examples of limit equilibria, the value of the game and the probability
of success for Player 1 are given in Table 1.

T A B L E 1. Asymptotic behaviour of the solution
of the game with random priority

π a∗ b∗ Value of the game P (π)

0.5 1.3834 1.3834 0.0000 0.3424
0.6 1.4303 1.5183 0.0677 0.3858
0.7 1.4667 1.6649 0.1319 0.4251
0.8 1.4965 1.8226 0.1924 0.4602
0.9 1.5201 1.9941 0.2493 0.4908
1 1.5404 2.1812 0.3026 0.5172
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5. Geometric N . Let N be geometric with parameter p ∈ [0, 1], i.e.
pk = P (N = k) = pqk, p > 0, q = 1 − p, k ≥ 0. The payoff function
in this case is h(x, y, π) =

∑∞

k=0 pkhk(x, y, π), where hk(x, y, π) stands for
the gain function for N = k fixed given by (2). The function h(x, y, π) can
be written, after simplifications, as a function g(s, t, π) of new coordinate
variables s = p/(1− qx), t = p/(1− qy) on [p, 1]× [p, 1] (this transformation
preserves monotonicity)

g(s, t, π) =



















(1− π)
(

2t ln s+
(

t2

s
+ t

)

(s− 1− ln s)
)

+ t ln t− s ln s− t ln s+ t2

s
+ t2

s
ln s− t2 if p ≤ t ≤ s ≤ 1,

(1− π)
(

2s ln t+
(

s2

t
+ s

)

(t− 1− ln t)
)

+ t ln t− s ln s+ s− st if p ≤ s < t ≤ 1.

It is very interesting and important that the gain function g(s, t, π) de-
pends on p only via its domain. The game with the gain function g(s, t, π)
considered on the unit square has the following solution. Player 1 has an
optimal pure strategy s∗(π) and Player 2 has an optimal mixed strategy
Q∗(t) = α∗(π)It∗

1
(π)(t) + (1 − α∗(π))It∗

2
(π)(t). Examples of solutions for

different π are given in Table 2. Let

(4) v(p, π) = max
p≤s≤1

min
p≤t≤1

g(s, t, π)

denote the value of the game. The optimal strategy for Player 1 for given
π is obtained as the unique s∗ such that mint g(s

∗, t, π) = v(p, π). The
parameters α∗ = α∗(π), t∗1 = t∗1(π) ≤ s∗, t∗2 = t∗2(π) ≥ s∗ of the best
strategy for Player 2 are obtained from the conditions

g(s∗, t1, π) = g(s∗, t2, π) = v(p, π),

∂g(s∗, t1, π)

∂s
≤ 0 ≤

∂g(s∗, t2, π)

∂s
,(5)

α
∂g(s∗, t1, π)

∂s
+ (1− α)

∂g(s∗, t2, π)

∂s
= 0.

The solution obtained on [0, 1] × [0, 1] is also valid on [p, 1] × [p, 1] for p ≤
t∗1(π). For p > t∗1(π) the players have to modify their strategies according to
the above conditions applied on [p, 1]× [p, 1]. Player 1 changes his strategy
to some s∗(p, π) ≥ s∗(π). Player 2 uses a mixed strategy consisting of
t∗1(p, π) = p and t∗2(p, π) ≥ t∗2(π) for p up to some p1(π) when s∗(p, π) = p
and Player 2 uses the pure strategy t∗2(p, π) ≥ p. For some p2(π) > p1(π),
if p > p2(π) then both players use the pure strategy s∗(p, π) = t∗2(p, π) = p.
As a result of such considerations we obtain the following solution.

Proposition 3. Let π ∈ [0.5, 1]. For geometric N there exists a solution

of the game and it is of the following form depending on p and π:
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1. If p ≤ t∗1(π) then the optimal level for Player 1 is x∗ = x∗(π) =
(s∗(π)− p)/(qs∗(π)) and Player 2 uses the mixed strategy Q∗(y) = α∗

Iy∗

1
+

(1 − α∗)Iy∗

2
with α∗ = α∗(π), y∗1 = y∗1(π) = (t∗1(π) − p)/(qt∗1(π)) and y∗2 =

y∗2(π) = (t∗2(π)−p)/(qt∗2(π)), where s
∗(π), t∗1(π), t

∗
2(π), α

∗(π) are parameters

of the solution of the game on [0, 1] × [0, 1]. The value of the game (4) and

the strategies are independent of p,

v(p, π) = α∗(π)g(s∗(π), t∗1(π), π) + (1− α∗(π))g(s∗(π), t∗2(π), π)

and the probability of success for Player 1 when both players use the equilib-

rium strategy is

Pp = −s∗(π) ln s∗(π)− (1− π)(α∗(π)t∗1(π) + (1− α∗
2(π))t

∗
2(π))(1 − s∗(π)).

2. If t∗1(π) < p ≤ p1(π) then the optimal strategy for Player 1 is x∗(p, π)
= (s∗(p, π) − p)/(qs∗(p, π)), where s∗(p, π) is a solution of the equation

v(p, π) = mint∈[p,1] g(s
∗, t, π). The optimal strategy Q∗(y) for Player 2 is of

the form Q∗(y) = α∗
I0 + (1 − α∗)Iy∗

2
, where y∗2 = (t∗2(p, π) − p)/(qt∗2(p, π)),

α∗ = α∗(p, π) and the parameters α∗(p, π), t∗1(p, π) = p and t∗2(p, π) fulfil

(5) on [p, 1]× [p, 1],

v(p, π) = α∗(p, π)g(s∗(p, π), p, π) + (1− α∗(p, π))g(s∗(p, π), t∗2(p, π), π),

and

Pp = −s∗ ln s∗ − (1− π)(α∗(p, π)p + (1 − α∗(p, π))t∗2(p, π)(1 − s∗(p, π)).

3. If p1(π) < p ≤ p2(π) then the equilibrium is pure and has the form

(0, y∗(p, π)). The optimal strategy is y∗(p, π) = (t∗2(p, π) − p)/(qt∗2(p, π)),
where t∗2(p, π) satisfies g(p, t∗2(p, π)) = v(p, π) and ∂g(p, t∗2(p, π))/∂s ≤ 0.
The value of the game is g(p, t∗2(p, π), π), and

Pp = −p ln p− (1− π)p(1− p).

4. If p > p2(π) then (0, 0) is a pure equilibrium, v(p, π) = g(p, p, π), and

Pp = −p ln p− (1− π)p(1− p).

Numerical examples are given in Table 2 (the result for π = 1 was
obtained in [12]). Let us mention that g(s, t, π) + g(t, s, 1 − π) = 0 and
the solution for π ∈ [0, 0.5] can be constructed using this remark.

It is interesting and quite unexpected that in all natural situations (i.e.
when p is small, p ≤ t∗1(π), see Table 2 for examples of t∗1(π)) both the value
of the game and Pp are constant (independent of p). It is also surprising that
the probability of success Pp for the two-person model with π = 1 (Player 1
has priority) (≈ 0.3646) is only a little less than that for the one-person
model (= e−1 ≈ 0.3679, see Porosiński [14]).
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T A B L E 2. Solution of the game with horizon N having geometric distribution
distribution with parameter p and random priority π

Strategies

π p Player 1 Player 2 v(p, π) Pp

s∗(p, π) α∗(p, π) t∗1(p, π) t∗2(p, π)

0.5 p ≤ 0.4237 0.4237 0.4237 0 0.2418
0.5 0.5 0.5 0 0.2216
0.75 0.75 0.75 0 0.1220
1 1 1 0 0

0.6 p ≤ 0.3820 0.4104 0.5376 0.3820 0.4497 0.0477 0.2680
0.4 0.4130 0.5939 0.4 0.4499 0.0479 0.2666
0.5 0.5 0.5 0.0500 0.2466
0.75 0.75 0.75 0.0375 0.1408

0.75 p ≤ 0.3135 0.3951 0.4939 0.3135 0.4837 0.1138 0.3065
0.4 0.4180 0.4265 0.4 0.4859 0.1183 0.2992
0.5 0.5 0.5 0.1250 0.2841
0.75 0.75 0.75 0.0936 0.1689

0.9 p ≤ 0.2453 0.3805 0.4907 0.2453 0.5142 0.1717 0.3440
0.3 0.3863 0.5085 0.3 0.5163 0.1739 0.3425
0.4 0.4279 0.3149 0.4 0.5314 0.1863 0.3352
0.5 0.5048 0.5611 0.2349 0.3185
0.6 0.6 0.6011 0.1928 0.2825
0.7 0.7 0.7 0.1680 0.2287
0.8 0.8 0.8 0.1280 0.1625
0.9 0.9 0.9 0.0720 0.0858

1 p ≤ 0.2030 0.3702 0.7555 0.2030 0.5327 0.2030 0.3679
0.3 0.3872 0.7168 0.3 0.5418 0.2127 0.3674
0.4 0.4372 0.5197 0.4 0.5696 0.2293 0.3617
0.5 0.5139 0.1966 0.5 0.6150 0.2410 0.3421
0.5671 0.5671 0.0002 0.5671 0.6486 0.2401 0.3217
0.6 0.6 0.6704 0.2362 0.3065
0.7 0.7 0.7408 0.2088 0.2497
0.8 0.8 0.8187 0.1598 0.1785
0.9 0.9 0.9048 0.0900 0.0948
1 1 1 0 0
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