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VARIANCE UPPER BOUNDS AND A PROBABILITY
INEQUALITY FOR DISCRETE α-UNIMODALITY

Abstract. Variance upper bounds for discrete α-unimodal distributions
defined on a finite support are established. These bounds depend on the
support and the unimodality index α. They increase as the unimodality in-
dex α increases. More information about the underlying distributions yields
tighter upper bounds for the variance. A parameter-free Bernstein-type up-
per bound is derived for the probability that the sum S of n independent
and identically distributed discrete α-unimodal random variables exceeds its
mean E(S) by a positive value nt. The bound for P{S − nµ ≥ nt} depends
on the range of the summands, the sample size n, the unimodality index α
and the positive number t.

1. Introduction. Unimodality concepts for distributions are well
known in the continuous case. Olshen and Savage (1970) generalized this
concept to α-unimodality. They defined a continuous random variable (r.v.)
X to be α-unimodal (about the origin), α ≥ 0, if and only if there exists
some r.v. Y such that X =d U1/αY , where U is a uniform r.v. on (0, 1) in-
dependent of Y . The α-unimodal distributions have been further studied by
many authors (see Abouammoh and Mashhour (1983), Alamatsaz (1985),
Dharmadhikari and Jogdeo (1986) and reference therein).

Upper bounds on variance represent an important target, since they
have applications in many areas of statistics such as variance estimation and
stochastic process; see Dharamaddhikari and Joag-Dev (1989) and references
therein. They proved that if X is a continuous r.v. having α-unimodal
distribution about M , 0 ≤ X ≤ 1 and µ = E(X), then

(1.1) (α + 2) Var(X) ≤ µ(α + 1 + 2M)− (α + 2)µ2 −M.
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Among other results they show that the upper bound for the variance of
an α-unimodal distribution on [0, 1] is (α + 1)2/(4(α + 2)2), which yields
Jacobson’s bound of 1

9 when α = 1 (see Jacobson (1969)).
For continuous independent and identically distributed (i.i.d) unimodal

r.v.’s X1, . . . , Xn with bounded support, Young et al. (1988) derived a
parameter-free Berstein upper bound for P{S − nµ ≥ nt}, where S =∑n

i=1 Xi.
Abouammoh et al. (1994) defined the discrete α-unimodality concept

for α ≥ 0 as follows:

Definition 1.1. A discrete r.v. X is called α-unimodal about a, a ∈ I,
I is the set of integers, if its probability mass function (p.m.f.) (pn)∞n=−∞
satisfies

(α− n + a)pn ≥ (1− n + a)pn−1, n ≤ a,

(α + n− a)pn ≥ (1 + n− a)pn+1, n ≥ a.

Note that if (pn)∞n=−∞ is α-unimodal about a and β > α then (pn)∞n=−∞
is β-unimodal about a. Consequently, all α-unimodal distributions with
α < 1 are unimodal distributions. For α ≥ 1, Abouammoh et al. (1994)
give the following characterization.

Theorem 1.1. The p.m.f. (pn)∞n=−∞ with characteristic function (ch.f.)
p(t) is α-unimodal about n = a iff

(1.2) q(t) =
{α + a(1− eit)}p(t) + i(1− eit)p′(t)

α

and

(1.3) r(t) =
{α + a(e−it − 1)}p(t) + i(e−it − 1)p′(t)

α

are ch.f.’s.

Also Abouammoh and Mashhour (1994) proved that if the r.v. X has dis-
crete α-unimodal distribution about a, defined on the support {0, 1, . . . , N},
with mean µ, then

(α + 2) Var(X) ≤ −(α + 2)µ2 + [(α + 1)N + 2a]µ(1.4)
−Na + α[min{µ,N − µ}].

This is a discrete version of (1.1).
For any discrete r.v. defined on the support {0, 1, . . . , N} with mean µ,

Muilwijk (1966) showed that Var(X) ≤ (N − µ)µ. The right side becomes
maximum when µ = N/2. Hence, if the end points of the support of any
discrete r.v. are known, an upper bound for its variance may be found as

(1.5) Var(X) ≤ N2/4.
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Note that equality holds when X assumes the values 0 or N each with prob-
ability 1/2. Thus, the value N2/4 represents the maximum upper bound
for the variance of any discrete r.v. on the support {0, 1, . . . , N}.

For a discussion of the practical relevance of variance bounds see Navard
et al. (1993) and the literature mentioned there. See also Rayner (1975)
and Seaman et al. (1985).

The purpose of the present article is twofold. First, in Section 2, we ex-
tend the result (1.4) due to Abouammoh and Mashhour (1994), to establish
upper bounds for the variance of discrete α-unimodal r.v.’s, sharper than
that given by (1.5). These upper bounds are discrete versions for their con-
tinuous counterpart due to Dharmadhikari and Joag-Dev (1989). The new
results, with α = 1, yield some interesting upper bounds for the variance
of discrete unimodal r.v.’s on finite supports. The latter case, with α = 1,
corresponds to results due to Young et al. (1988) in the continuous case.
Next, in Section 3, our results of Section 2 are applied to get an upper bound
for P{S − nµ ≥ nt} when the Xi’s are discrete i.i.d. α-unimodal r.v.’s.

2. Variance upper bounds. Let X be a discrete r.v. on the support
{0, 1, . . . , N}. If N = 1, then X is a strongly unimodal r.v. Furthermore,
it assumes only the values 0 or 1 with probabilities q and p respectively,
p + q = 1. One may easily deduce that Var(X) = pq ≤ 1/4, where equality
holds when p = q = 1/2. Therefore, our results henceforth will mainly
concern N ≥ 2. Assume that X has an α-unimodal, α ≥ 1, distribution
about the modal value a. By Theorem 1.1, let X1 and X2 be the discrete
r.v.’s whose ch.f.’s are q(t) and r(t) respectively. One can easily show that
X1 and X2 are defined on the supports S1 = {0, 1, . . . , N + 1} and S2 =
{−1, 0, . . . , N} respectively. Put µ1 = E(X1) and µ2 = E(X2). Then the
ch.f.’s q(t) and r(t) given by (1.2) and (1.3) yield

(2.1) µ1 = µ2 =
(α + 1)µ− a

α

(see Abouammoh and Mashhour (1994)). In view of the fact that S1 is
non-negative and the support {−N − 1,−N,−N + 1, . . . , 0} of X2 − N is
non-positive, one may deduce that µ1 > 0 and µ2 < N .

Hence the expectation µ = E(X) must satisfy

(2.2)
a

α + 1
< µ <

a + Nα

α + 1
.

On the other hand (1.4) implies

(2.3) (α + 2) Var(X) ≤ −(α + 2)µ2 + [(α + 1)N + 2a]µ−Na +
αN

2
,

since min{µ, N − µ} ≤ N/2.



406 M. I. Ageel

The right side of (2.3) attains its maximum when

(2.4) µ =
(α + 1)N + 2a

2(α + 2)
.

This value of µ satisfies the restriction (2.2) iff α2 + 2α > |2a/(N − 1)|.
Thus, obviously, the latter condition is satisfied for all α ≥ 1.

Based on the above discussion, one may substitute µ from (2.4) into (2.3)
to get

Theorem 2.1. If X is a discrete α-unimodal r.v. about a on the support
{0, 1, . . . , N}, then

(2.5) Var(X) ≤ N2(α + 1)2 − 4a(N − a)
4(α + 2)2

+
αN

2(α + 2)
.

Theorem 2.2. Let X be a discrete α-unimodal r.v. about a on the sup-
port {0, 1, . . . , N}.

(a) If a = 0 or a = N , then

(2.6) Var(X) ≤ N2(α + 1)2

4(α + 2)2
+

αN

2(α + 2)
.

(b) If N is even and a = N/2, then

(2.7) Var(X) ≤ αN(N + 2)
4(α + 2)

.

(c) If N is odd and a = (N ± 1)/2, then

(2.8) Var(X) ≤ αN(N + 2)
4(α + 2)

+
1

4(α + 2)2
.

P r o o f. Part (a) is immediate from Theorem 2.1; recall that the bound
(2.5) becomes maximum when a = 0 or N . Parts (b) and (c) follow by
setting a = N/2 and a = (N ± 1)/2 respectively in (2.5).

Also setting µ = N/2 in (2.3) yields the same upper bound (2.7), for any
modal value a.

Theorem 2.3. Let X be a discrete α-unimodal r.v. on the support {0, 1,
. . . , N}. If µ = E(X) = N/2, then

(2.9) Var(X) ≤ αN(N + 2)
4(α + 2)

.

For α = 1, the p.m.f. (pn) is unimodal on the support {0, 1, . . . , N}, and
one gets
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Corollary 2.4. Let the p.m.f. (pn) have mode a and variance σ2.

(a) If a = 0 or a = N , then

(2.10) σ2 ≤ N2

9
+

N

6
.

(b) If 1 ≤ a ≤ N − 1, then

(2.11) σ2 ≤ 1
9
[N2 − a(N − a)] +

N

6
.

(c) If N is even and a = N/2, then

(2.12) σ2 ≤ N2

12
+

N

6
= Var(U),

where U is the discrete r.v. uniformly distributed on the same support.
(d) If N is odd and a = (N + 1)/2, then

(2.13) σ2 ≤ (N + 1)2

12
.

Corollary 2.5. If the p.m.f. (pn) is unimodal with mean µ= N/2, then

(2.14) σ2 ≤ N2

12
+

N

6
.

Note that (2.10) represents the discrete version of Jacobson’s theorem
(1969). Moreover (2.12) is the discrete version of a result due to Seaman
et al. (1987). Abouammoh and Mashhour (1994) introduced some different
restrictions on the mean and mode which guarantee the upper bounds (2.12)
and (2.14).

Remark 1. For α = 1, the upper bounds (2.10)–(2.13) are at least as
sharp as the bound N2/4 given by (1.5). Thus, the unimodality property
of X yields lower upper bounds for its variance. As α gets larger than one,
the situation is quite different. Regarding that (2.6) is increasing in α, it
is not expected that the bound (2.6) will be less than N2/4 for all values
of α. Investigation of the bounds (2.6) and (2.7) shows that both are less
than N2/4 when α < N . Consequently, as N gets larger our results assign
to more α-unimodal r.v.’s on the support {0, 1, . . . , N} sharp upper bounds
for their variances. Practically, free-parameter upper bounds are established
based on the known information about X. For instance, if the only known
information about X is that it is α-unimodal about a specified mode and
α < N , our results yield sharper upper bounds than N2/4, as given by
(2.6)–(2.8). Otherwise, when α ≥ N , the only available upper bound is
N2/4 which describes the case of any discrete r.v. on the same support.

3. Probability inequality. Let X1,. . ., Xn be i.i.d. discrete α-unimodal
r.v.’s where Xi has the support {0, 1,. . ., N} with E(Xi) = µ and Var(Xi)
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= σ2. Let S = X1 + . . . + Xn and X = S/n. We derive a parameter-free
upper bound for the probability

(3.1) P{X − µ ≥ t} = P{S − E(S) ≥ nt},

where t > 0. One method is attributed to S. N. Bernstein (see Young et al.
(1989) and references therein). According to that method

P{S − nµ ≥ nt} ≤ E[exp{c(S − nµ− nt)}],

for any positive constant c. Since the Xi’s are independent,

E[exp{c(S − nµ− nt)}] = exp(−cnt)
n∏

i=1

E[exp{c(Xi − µ)}],

where c > 0. The new upper bound is derived by bounding

(3.2) E[exp{c(Xi − µ)}]

from above and then minimizing the resulting bound with respect to c. The
following lemma uses the results of Theorems 2.1 and 2.2 to establish an
upper bound on (3.2).

Lemma 3.1. Let X be a discrete α-unimodal r.v. about a, with mean µ
and variance σ2, on the support {0, 1, . . . , N}. Let Z = X − µ. Then

E[exp{cZ}] ≤ exp[θ{exp(cN)− cN − 1}],

where c is an arbitrary positive constant and θ = θ(α, a, N) represents an
upper bound for (σ/N)2.

P r o o f. We have

E[exp(cZ)] = 1 +
∑∞

r=2 crE(Zr)
r!

≤ 1 +
∑∞

r=2 crσ2Nr−2

r!

= 1 +
σ2

N2

∑∞
r=2(cN)r

r!
= 1 +

σ2

N2
[exp(cN)− cN − 1]

≤ 1 + θ[exp(cN)− cN − 1] ≤ exp [θ{exp(cN)− cN − 1}].

Now, we establish the main results for the case of i.i.d. discrete α-
unimodal r.v.’s with finite support.

Theorem 3.2. Let X1, . . . , Xn be i.i.d. discrete α-unimodal r.v.’s on the
support {0, 1, . . . , N}. Let E(Xi) = µ and S = X1 + . . . + Xn. Then

(3.3) P{S − nµ ≥ nt} ≤ exp
{

nt

N
−

(
nt

N
+ nθ

)
ln

(
1 +

t

Nθ

)}
,

where

(3.4) θ = θ(α, a, N) =
(α + 1)2 − 4a(N − a)

4(α + 2)2
+

α

2(α + 2)N
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when Xi is α-unimodal about the specified mode a, and

(3.5) θ = θ(α, N) =
(α + 2)2

4(α + 2)2
+

α

2(α + 2)N

when Xi is α-unimodal about some mode such that µ = N/2.

P r o o f. Let Zi = Xi − µ. Then for any positive constant c,

P{S − nµ ≥ nt} ≤ E[exp{c(S − nµ− nt)}]

≤ exp(−nct)
n∏

i=1

E[exp(cZi)]

≤ exp[(−nct) + nθ{exp(cN)− cN − 1}],
from Lemma 3.1.

Let g(c) = n[−ct + θ{exp(cN)− cN − 1}]. Then g(c) is minimum at
c = (1/N) ln(1 + t/(Nθ)). Hence the result.

Corollary 3.3. Let X be a discrete α-unimodal r.v. on the support
{0, 1, . . . , N}. Then for any t > 0,

(3.6) P{X − µ ≥ t} ≤ exp
{

t

N
−

(
t

N
+ θ

)
ln

(
1 +

t

Nθ

)}
,

where θ is given by (3.4) or (3.5) of Theorem 3.2.

Note that the upper bound in (3.6) does not depend on any parameter
of X other than the range N , the unimodality index α and the mode value
a. This feature makes (3.6) very applicable in real-data situation.

Remark 2. If X is a discrete r.v. on the support {0, 1, . . . , N}, then
(3.3) holds with n = 1 and θ = 1/4. That is,

(3.7) P{X − µ ≥ t} ≤ exp
{

t

N
−

(
t

N
+

1
4

)
ln

(
1 +

4t

N

)}
.

Finally, inequality (2.2) seems to be interesting in the following sense:

(i) It provides lower and upper bounds for the mean of any discrete
r.v. α-unimodal, α ≥ 1, about a modal value a on the support {0, 1, . . . , N}.
Also, it represents a discrete version for its most recent continuous counter-
part due to Dharmadhikari and Joag-Dev (1989).

(ii) As a consequence of (2.2),

X − a + Nα

α + 1
≥ t implies X − µ ≥ t.

Hence an upper bound for P{X−a ≥ t+α(N − a)/(α + 1)}may be obtained
by (3.6).
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