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PRICING POLISH THREE-YEAR BONDS

IN THE HJM FRAMEWORK

Abstract. We show how to use the Gaussian HJM model to price Polish
three-year bonds. A Polish Treasury bond is treated as a risk-free security.

1. Treasury bonds. Since 1994, a stable growth trend has been ob-
served for the number of Treasury bond series issued in Poland. Bonds
are perceived as a safe investment, in contrast to shares, and represent an
attractive alternative to bank deposits.

By 31 March 1998, the National Depository for Securities (KDPW SA)
had registered 50 Treasury bond series including 43 listed on Warsaw Stock
Exchange. Capitalisation of Treasury bonds registered at the National De-
pository was PLN 9.095 million. The following types of bonds were regis-
tered: one-year bonds with a variable interest rate and par value of PLN 100
(IR) and PLN 1,000 (RP); two-year bonds with a fixed interest rate and par
value PLN 1,000 (OS); three-year bonds with a variable interest rate and
par value PLN 100 (TZ) and PLN 1,000 (TP); five-year bonds with a fixed
interest rate and par value of PLN 1,000 (OS), and ten-year bonds with a
variable interest rate and par value of PLN 1,000 (DZ). Prices of bonds vary
depending on their type. Those with a variable interest rate have the most
stable prices, while bonds with a fixed interest rate seem to fluctuate most
strongly, sometimes even up to several percentage points. This is caused by
differing opinions among investors as to the future inflation rate in Poland.

First, we give some information from the prospectus of the three-year
bonds issue. This instrument pays coupons quarterly and after three years
the face value. These bonds can be purchased not only by Polish investors
but also by investors from abroad. According to Polish law the TZ bonds
are allowed to be traded in the secondary market.
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The coupons are paid in arrears, i.e. several days after the end of the
quarter (see Table 1.1). The nominal value is the base for computing the
coupon rate. The coupon is computed as follows: The basic rate is calcu-
lated separately for each interest period as the arithmetic mean of weighted
average rates of 13-week T-bills sold by the four consecutive Treasury bill
auctions, the last of which taking place not later than two weeks before the
beginning of the given interest period. The formula is

J =
r1 + r2 + r3 + r4

4
,

where J is the basic rate, and rk are the weighted average rates of 13-week
T-bills.

Each rk, k = 1, . . . , 4, is calculated as

(1.1) rk =
100 − pk

pk
·
360

91
,

where pk is the weighted average price of 13-week T-bills sold at the four
consecutive sales, k = 1, . . . , 4.

Finally, the coupon Ci corresponding to the interest period k with du-
ration of ni days is equal to

Ci = θ · Ji ·
ni

360
,

where θ = 1.05 and Ji denotes the basic rate for the ith interest period.

Table 1.1 presents the dates of beginning and end for each interest period
and interest payment dates for TZ bonds with maturity on 6 May, 2002.

T A B L E 1.1. The term structure of TZ bonds under study

Interest Length Acquiring of Interest
Beginning End

period nk [days] interest right payment date

TZ0502/1 04.05.1999 05.08.1999 93 30.07.1999 19.08.1999
TZ0502/2 05.08.1999 05.11.1999 92 25.10.1999 08.11.1999
TZ0502/3 05.11.1999 05.02.2000 92 25.01.2000 07.02.2000
TZ0502/4 05.02.2000 05.05.2000 90 20.04.2000 08.05.2000
TZ0502/5 05.05.2000 05.08.2000 92 25.07.2000 07.08.2000
TZ0502/6 05.08.2000 05.11.2000 92 23.10.2000 06.11.2000
TZ0502/7 05.11.2000 05.02.2001 92 24.01.2001 06.02.2001
TZ0502/8 05.02.2001 05.05.2001 89 20.04.2001 07.05.2001
TZ0502/9 05.05.2001 05.08.2001 92 24.07.2001 06.08.2001
TZ0502/10 05.08.2001 05.11.2001 92 23.10.2001 06.11.2001
TZ0502/11 05.11.2001 05.02.2002 92 24.01.2002 06.02.2002
TZ0502/12 05.02.2002 05.05.2002 89 19.04.2002 06.05.2002

2. The Gaussian HJM model. There is a relatively extensive the-
oretical and empirical literature on the Heath–Jarrow–Morton model for
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bond pricing and the term structure [1–6]. Below we concentrate on the
so-called Gaussian HJM model. Let [0, τ ], for τ > 0, be a trading in-
terval and (Ω, {Ft : t ∈ [0, τ ]},Q) be a probability space, where Ft is
the Q-augmentation of the natural filtration generated by an n-dimensional
Brownian motion W (t) = {W1(t), . . . ,Wn(t)}. Assume that there are zero-
coupon bonds in the market with all maturities and face value 1. For t ≤ T ,
let P (t, T ) denote the t time price of such a T maturity bond. Of course
P (T, T ) ≡ 1 must hold for all T . We require that ∂ log P (t, T )/∂T exists.
The instantaneous forward rate f(t, T ) for t < T is defined as

f(t, T ) = −
∂ log P (t, T )

∂T
;

then

P (t, T ) = exp
(

−

T\
t

f(t, s) ds
)

.

When t = T , the forward rate f(t, t) is called the spot rate and is denoted
by r(t). Similarly one can interpret r(t) as the rate of loan at moment t which
is returned an instant later. Assuming arbitrage-free market, we obtain the
following dynamics of the forward rate f(t, T ):

df(t, T ) = σ(t, T )∗
T\
t

σ(t, y) dy dt+ σ(t, T )∗dW (t),

where ∗ denotes transposition. In this paper we assume that the volatility
σ(t, T ) of the forward rate is a deterministic function. In the literature such
a case is referred to as the Gaussian HJM model (see [5]).

Let the price process of a savings account be given by

B(t) = exp
(

t\
0

r(s) ds
)

.

If we invest 1 unit in the cash market, we will get the amount B(t) after
time t.

In this framework each financial instrument with pay-off function X,
which is an FT -measurable random variable, can be priced at time t using
the formula

(2.2) EQ

(

B(t)

B(T )
X

∣

∣

∣

∣

Ft

)

.

3. Pricing three-year bonds

Theorem 3.1. A three-year bond is considered. There are n+1 available

coupons for an investor who is about to buy the bond in the secondary market

at time t. The coupons Ci are paid at Ti, i = 0, . . . , n. At time Tn the Face
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Value FV is also paid. Let ti1 ti2, t
i
3, t

i
4 denote the dates of Treasury bill

auctions related to coupon Ci, i = 1, . . . , n. Let t11 > t. Then the fair price

is given by the formula

TZt =
n
∑

i=0

P (t, Ti)
4

∑

k=1

(c(i, k)P (t, tik)/P (t, ti+1

k )− 1) + FVP (t, Tn)

where

c(i, k) =
θFVδi
4δ

exp(Cov(log P (tik, t
i
k + δ), log(P (tik, t

i
k + δ)/P (tik , Ti)) | Ft)

with δi = ni/360, δ = 91/360.

P r o o f. We need the following lemma:

Lemma 3.1. Define a new forward measure by setting , for all A ∈ FT ,

QT (A) =
\
A

(P (0, T )B(T ))−1 dQ.

Then for any FT -measurable random variable X such that E|X|p < ∞ for

some p > 1 we have

EQ

(

B(t)

B(T )
X

∣

∣

∣

∣

Ft

)

= P (t, T )EQT (X | Ft).

For the proof, see [5], p. 317.

We price this bond using the arbitrage-free pricing formula

(3.3) TZt = E

( n
∑

i=1

B(t)

B(Ti)
Ci · FV +

B(t)

B(Tn)
FV

∣

∣

∣

∣

Ft

)

.

According to the way of calculating coupons, described above, we have

TZt = E

( n
∑

i=1

B(t)

B(Ti)
FV

θδi
4

4
∑

k=1

rik +
B(t)

B(Tn)
FV

∣

∣

∣

∣

Ft

)

.

In our notation (see (1.1)),

rik =
1− P (tik, t

i
k + δ)

δP (tik, t
i
k + δ)

, i = 1, . . . , 12, k = 1, . . . , 4.

Therefore

TZt = E

( n
∑

i=1

B(t)

B(Ti)
FV

θδi
4δ

4
∑

k=1

(P (tik, t
i
k + δ)−1 − 1)

∣

∣

∣

∣

Ft

)

(3.4)

+ FV · E

(

B(t)

B(Tn)

∣

∣

∣

∣

Ft

)
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=

n
∑

i=1

FV
θδi
4δ

4
∑

k=1

(

cik − E

(

B(t)

B(Ti)

∣

∣

∣

∣

Ft

))

+ FV · E

(

B(t)

B(Tn)

∣

∣

∣

∣

Ft

)

,

where

cik = E

(

B(t)

B(Ti)
P (tik, t

i
k + δ)−1

∣

∣

∣

∣

Ft

)

(3.5)

= E

(

E

[

B(t)

B(Ti)
P (tik, t

i
k + δ)−1

∣

∣

∣

∣

Fti
k

] ∣

∣

∣

∣

Ft

)

= E

(

B(t)

B(tik)
P (tik, t

i
k + δ)−1E

[

B(tik)

B(Ti)

∣

∣

∣

∣

Fti
k

]
∣

∣

∣

∣

Ft

)

= E

(

B(t)

B(tik)
·

P (tik, Ti)

P (tik, t
i
k + δ)

∣

∣

∣

∣

Ft

)

.

Because (see [2]) for any t < T ,

P (t, T ) = P (0, T ) exp

( t\
0

r(s) ds−
1

2

t\
0

∣

∣

∣

T\
s

σ(s, u) du
∣

∣

∣

2

ds

−

t\
0

T\
s

σ(s, u)∗ du dW (s)

)

,

we can rewrite the expression (3.5) as

(3.6) cik = E

(

B(t)

B(tik)
·

P (t, Ti)

P (t, tik + δ)

×
exp

[

− 1

2

Tti
k

t
|
TTi

s
σ(s, u) du|2 ds−

Tti
k

t

TTi

s
σ(s, u)∗ du dW (s)

]

exp
[

− 1

2

Tti
k

t
|
Tti

k
+δ

s
σ(s, u) du|2 ds−

Tti
k

t

Tti
k
+δ

s
σ(s, u)∗ du dW (s)

]

∣

∣

∣

∣

Ft

)

.

Since P (t, T ) is Ft-measurable we have

cik =
P (t, Ti)

P (t, tik + δ)
E

(

B(t)

B(tik)
exp

[

−

ti
k\
t

Ti\
ti
k
+δ

σ(s, u)∗ du dW (s)

+
1

2

ti
k\
t

{∣

∣

∣

ti
k
+δ\
s

σ(s, u) du
∣

∣

∣

2

−
∣

∣

∣

Ti\
s

σ(s, u) du
∣

∣

∣

2}

ds

]
∣

∣

∣

∣

Ft

)

.

Using Lemma 3.1 we get

cik =
P (t, Ti)

P (t, tik + δ)
P (t, tik)Eti

k

(

exp

[

−

ti
k\
t

Ti\
ti
k
+δ

σ(s, u)∗ du dW (s)

+
1

2

ti
k\
t

{
∣

∣

∣

ti
k
+δ\
s

σ(s, u) du
∣

∣

∣

2

−
∣

∣

∣

Ti\
s

σ(s, u) du
∣

∣

∣

2}

ds

]
∣

∣

∣

∣

Ft

)

.
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Moreover, the Girsanov theorem shows that

W (t, tik) = W (t) +

t\
0

ti
k\
s

σ(s, u) ds du

is a Brownian motion with respect to Qti
k
. Hence

cik =
P (t, Ti)

P (t, tik + δ)
P (t, tik)Eti

k

(

exp

[

X +

ti
k\
t

Ti\
ti
k
+δ

σ(s, u)∗ du

ti
k\
s

σ(s, u) du ds

+
1

2

ti
k\
t

{
∣

∣

∣

ti
k
+δ\
s

σ(s, u) du
∣

∣

∣

2

−
∣

∣

∣

Ti\
s

σ(s, u) du
∣

∣

∣

2}

ds

]
∣

∣

∣

∣

Ft

)

,

where

X = −

ti
k\
t

Ti\
ti
k
+δ

σ(s, u)∗ du dW (s, tik).

The random variable X has normal N(0,
Tti

k

t
|
TTi

ti
k
+δ

σ(s, u) du|2 ds) distribu-

tion under the measure Qti
k
and is independent of Ft. Therefore we obtain

cik =
P (t, Ti)

P (t, tik + δ)
P (t, tik) exp

(

1

2

ti
k\
t

[
∣

∣

∣

Ti\
ti
k
+δ

σ(s, u) du
∣

∣

2
(3.7)

+ 2

Ti\
ti
k
+δ

σ(s, u)∗ du

ti
k\
s

σ(s, u) du

+
∣

∣

∣

ti
k
+δ\
s

σ(s, u) du
∣

∣

∣

2

−
∣

∣

∣

Ti\
s

σ(s, u) du
∣

∣

∣

2]

ds

)

.

Let a =
Tti

k

s
σ(s, u) du, b =

Tti
k
+δ

ti
k

σ(s, u) du and c =
TTi

ti
k
+δ

σ(s, u) du. Then

cik =
P (t, Ti)P (t, tik)

P (t, tik + δ)
(3.8)

× exp

(

1

2

ti
k\
t

[c2 + 2c∗a+ (a+ b)2 − (a+ b+ c)2] ds

)

=
P (t, Ti)P (t, tik)

P (t, tik + δ)
exp

(

1

2

ti
k\
t

[c2 + 2c∗a− 2(a+ b)∗c− c2] ds

)
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=
P (t, Ti)P (t, tik)

P (t, tik + δ)
exp

(

ti
k\
t

[−b∗c] ds
)

=
P (t, Ti)P (t, tik)

P (t, tik + δ)
exp

(

−

ti
k\
t

ti
k
+δ\
ti
k

σ(s, u)∗ du

Ti\
ti
k
+δ

σ(s, u) du ds
)

.

Because for any t < s < u < v,

Cov(log P (s, u), log P (s, v) | Ft) =

s\
t

u\
s

σ(x, y)∗ dy

v\
s

σ(x, y) dy dx

(see [2]), combining (3.4) and (3.8) proves the theorem.
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