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DISCRETE TIME ARBITRAGE

UNDER TRANSACTION COSTS

Abstract. Conditions for the absence of arbitrage in discrete time markets
with various kinds of transaction costs are shown.

1. Introduction. Let (Ω,F, Ft, P ) be a complete probability space
endowed with an increasing family {Ft : t = 0, 1, . . . , T} of sub-σ-fields of
F . Assume we are given a price of asset process (St)

T
t=0, which is adapted

to Ft, and satisfies the following equation:

St+1 = (1 + ξt)St

where (ξt)
T
t=0 is a sequence of square integrable, Ft+1-measurable random

variables representing a random rate of return at time t.
Furthermore, assume that there are two possible investments: in non-

risky assets (bank account with a deterministic rate of return r) and risky
assets with price St at time t. We are interested in characterizing the absence
of the so-called arbitrage opportunity which is equivalent to the possibility
of a nonrisky gain.

The problem has been intensively studied in the case without transaction
costs (see [1]–[2], [7], [9], [10]), where the equivalence of the absence of
arbitrage and the existence of a martingale measure was shown. The case
with proportional transaction costs was studied in [5], [6], [8].

In this paper conditions for the absence of arbitrage are given for four
kinds of transaction costs:

• proportional costs,
• proportional + fixed costs,
• concave costs,
• concave + fixed costs.

2000 Mathematics Subject Classification: Primary 90A12; Secondary 93E20.
Key words and phrases: arbitrage opportunity, martingale measure.

[419]



420 J. Piasecka

We first study the condition for the absence of arbitrage in one step and
then extend our result to the T -step horizon case.

The main result holds under the additional assumption that the random
rate of return (ξt) is a sequence of independent random variables.

In what follows we denote by (Xt, Yt) the amounts of money invested at
time t (before a possible transaction) in the bank account and in the risky
assets respectively.

2. Absence of arbitrage with proportional transaction costs.

Consider first the case with proportional transaction costs. Let λ be the
transaction cost rate for purchasing the asset and µ be the transaction cost
rate for selling the asset.

We say that our portfolio (X0, Y0) at time 0 is equal to zero if

(2.1)
X0 + (1 + λ0)Y0 = 0 whenever Y0 < 0,

X0 + (1 − µ0)Y0 = 0 whenever Y0 ≥ 0.

Similarly we can say that our portfolio (X0, Y0) is nonnegative when

X0 + (1 + λ0)Y0 ≥ 0 whenever Y0 < 0,

X0 + (1 − µ0)Y0 ≥ 0 whenever Y0 ≥ 0.

The set of nonnegative portfolios (X0, Y0) forms a cone denoted by Cp, and
illustrated below.

Fig. 1

Let mt be the stock value of assets sold at time t, and lt be the stock
value of assets purchased at time t. Our portfolio (Xt+1, Yt+1) at time t+ 1
can then be described as follows:

(2.2)
Xt+1 = Xt + (1 − µ)mt − (1 + λ)lt,

Yt+1 = (1 + ξt)(Yt −mt + lt).

The sequence of nonnegative, Ft-adapted, square integrable pairs (lt,mt)
will be called a trading strategy .
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We say that a trading strategy (lt,mt) is self-financing if possible pur-
chases are financed by sales. Moreover we say that a self-financing trading
strategy (lt,mt) admits an arbitrage opportunity if for (X0, Y0) ∈ ∂Cp we
have

(XT , YT ) ∈ Cp and P{(XT , YT ) ∈ intCp} > 0.

In other words we have the absence of arbitrage if for any (X0, Y0) ∈ ∂Cp

and self-financing strategy (lt,mt) the following implication holds:

(XT , YT ) ∈ Cp ⇒ (XT , YT ) ∈ ∂Cp P -a.s.

In what follows we shall use the following spaces of square integrable
random variables:

(2.3)
L0
+(Ft) = L2(Ω,Ft,K), L0

+(F ) = L2(Ω,F,K),

L0
i (Ft) = L2(Ω,Ft, ∂K)

where by K we denote the domain in which the portfolio is nonnegative ( in
the case of proportional transaction costs K = Cp). Moreover, let T (X,Y )
and Tl,m(X,Y ) be the operators defined by

(2.4)
T (X,Y ) = (X, (1 + ξ)Y ),

Tl,m(X,Y ) = (X − η2(l) + η1(m), Y + l −m),

where η1(m) is the amount of money obtained from selling assets of stock
value m, and η2(l) is the amount of money needed to purchase assets of
stock value l. For proportional transaction costs we have η1(m) = (1−µ)m
and η2(l) = (1 + λ)l. Let

K0
t =

⋃

lt,mt∈L2(Ω,Ft,R
2
+
)

⋃

(X,Y )∈L0
i
(Ft)

TTlt,mt
(X,Y ).

Denote by K0p
t the set K0

t corresponding to proportional transaction costs.
We are now in a position to define the arbitrage opportunity for one unit

of time.

Definition 2.1. A one-step arbitrage opportunity exists at time t if

∃(X,Y ) ∈ L0
i (Ft), ∃lt,mt ∈ L2(Ω,Ft,R

2
+), TTlt,mt

(X,Y ) ∈ L0
+(Ft+1)

and

P{ω : TTlt,mt
(X,Y )(ω) ∈ intCp} > 0.

We have:

Theorem 2.1. Assume that P [ξt = 0 |Ft] = 0 and ξt is independent of

Ft for a time t. If K0p
t ∩ L0

+(Ft) = {(0, 0)} then there exists an equivalent

measure Q ∼ P called a martingale measure such that

EQ[ξt |Ft] = 0.
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Without the assumption that ξt is independent of Ft, if there exists a mar-

tingale measure Q ∼ P such that

EQ[ξt |Ft] = 0,

then K0p
t ∩ L0

+(Ft) = {(0, 0)}.

In the proof we shall need the following auxiliary lemma.

Lemma 2.2. Assume that ξt is independent of Ft. Then EP [zξt |Ft] 6= 0
for each bounded z ∈ L1

+(P ) if and only if
{
ξt ≥ 0 and P [ξt > 0] > 0, or

ξt ≤ 0 and P [ξt < 0] > 0.

P r o o f. We show the implication ⇒ only.
Assume that EP [zξt |Ft] 6= 0 for any z ∈ L1

+(P ) and P [ξt < 0] > 0
and P [ξt > 0] > 0. Choosing z ∈ L1

+(P ) independent of Ft we see that
EP [zξt] 6= 0.

Put EP [ξ+t ] = m+ and EP [ξ−t ] = m−. Assume that m+,m− > 0. Let

z =





1/m+ for ξt > 0,
1 for ξt = 0,
1/m− for ξt < 0.

Then z is σ(ξt)-measurable and therefore independent of Ft. Moreover

EP [zξt] = EP [zξt1ξt>0 + zξt1ξt<0] =
1

m+
E[ξt1ξt>0] +

1

m−
E[ξt1ξt<0] = 0,

which contradicts the fact that EP [zξt] 6= 0.

Proof of Theorem 2.1. We first prove that the existence of a martingale
measure implies the absence of arbitrage. Namely we shall prove that if
(X,Y ) ∈ ∂Cp and (X1, Y1) ∈ K0p

1 ∩L0
+(F1), then (X1, Y1) = (0, 0). Suppose

that EQ[ξt |Ft] = 0 and P [ξt = 0 |Ft] = 0. For simplicity let t = 1. Consider
the pair (X,Y ) ∈ ∂Cp, that is, we have

{
(1 − µ)Y + X = 0 when Y ≥ 0,
(1 + λ)Y + X = 0 when Y < 0.

Assume that (X1, Y1) ∈ K0p
1 ∩ L0

+(F1), where

(X1, Y1) = (X + (1 − µ)m0 − (1 + λ)l0, (1 + ξ1)(Y −m0 + l0)).

To simplify notations put l0 = l and m0 = m. Notice first that it suffices to
consider the cases:

(l > 0 and m = 0) or (l = 0 and m > 0),

which correspond to the fact that there is no simultaneous buying and sell-
ing.

In fact, if m > 0 and l > 0 we obtain:



Discrete time arbitrage 423

1) For m < l, we put l′ = l −m and m′ = 0. Then

(X ′

1, Y
′

1) = (X − (1 + λ)(l −m), (1 + ξ1)(Y + l −m)).

It is clear that Y1 = Y ′

1 and X ′

1 ≥ X1. From this we have (X1, Y1) ∈ Cp ⇒
(X ′

1, Y
′

1) ∈ Cp.
2) For m > l, we put m′ = m− l and l′ = 0. Then

(X ′

1, Y
′

1) = (X + (1 − µ)(m− l), (1 + ξ1)(Y −m + l)).

It is easily seen that Y1 = Y ′

1 and X ′

1 ≥ X1. Hence (X1, Y1) ∈ Cp ⇒
(X ′

1, Y
′

1) ∈ Cp. Then we get (X ′

1, Y
′

1) ∈ ∂Cp ⇒ (X1, Y1) ∈ ∂Cp.

We continue the proof.
The proof falls naturally into 5 cases.

1. Assume that m > 0 and (1 − µ)Y + X = 0. Then

(X1, Y1) ∈ K0p
1 ∩ L0

+(F1)

⇔

{
(1 − µ)(1 + ξ1)(Y −m) + X + (1 − µ)m ≥ 0,
(1 + λ)(1 + ξ1)(Y −m) + X + (1 − µ)m ≥ 0.

To simplify notation we write

Z1 = (1 − µ)(1 + ξ1)(Y −m) + X + (1 − µ)m,

Z2 = (1 + λ)(1 + ξ1)(Y −m) + X + (1 − µ)m.

Since EQ[ξ1 |F1] = 0, taking the conditional expectation with respect to F1

we get

EQ[Z1 |F1] = (1 − µ)Y − (1 − µ)m + X + (1 − µ)m
(1−µ)Y +X=0

= 0.

As Z1 ≥ 0 and EQ[Z1 |F1] = 0 we get Z1 = 0. Since Z1 = (1−µ)ξ1(Y −m)
we conclude that either ξ1 = 0 or Y = m. In view of the assumption
P [ξ1 = 0 |F1] = 0 we have Y = m. Therefore Z2 = X + (1 − µ)Y = 0, and
finally (X1, Y1) = (0, 0).

2. Assume that m > 0 and (1 + λ)Y + X = 0. Then

(X1, Y1) ∈ K0p
1 ∩ L0

+(F1)

⇔

{
(1 − µ)(1 + ξ1)(Y −m) + X + (1 − µ)m ≥ 0,
(1 + λ)(1 + ξ1)(Y −m) + X + (1 − µ)m ≥ 0.

We define Z1 and Z2 as in case 1. Since EQ[ξ1 |F1] = 0, taking the expec-
tation with respect to F1 we get EQ[Z2 |F1] = −m(µ + λ). From Z2 ≥ 0 it
follows that −m(µ + λ) ≥ 0. Hence m ≤ 0, but m > 0 by assumption, a
contradiction.

3. Assume that l > 0 and (1 − µ)Y + X = 0. The same arguments as in
the proof of case 2 yield a contradiction.

4. Assume that l > 0 and (1 + λ)Y + X = 0. Similarly to the proof in
case 1 we obtain (Z1, Z2) = (0, 0), which implies that (X1, Y1) = (0, 0).
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5. Assume that m = l = 0. Then

(X1, Y1) ∈ K0p
1 ∩ L0

+(F1) ⇔

{
(1 − µ)(1 + ξ1)Y + X ≥ 0,
(1 + λ)(1 + ξ1)Y + X ≥ 0.

Taking the conditional expectation with respect to F1 we get
{
E[(1 − µ)(1 + ξ1)Y + X |F1] = (1 − µ)Y + X,
E[(1 + λ)(1 + ξ1)Y + X |F1] = (1 + λ)Y + X.

a) For (1 − µ)Y + X = 0 we obtain E[(1 − µ)(1 + ξ1)Y + X |F1] = 0.
This implies that (1 − µ)(1 + ξ1)Y + X = 0, thus Y = 0, and consequently
X = 0 and we get (1 + λ)(1 + ξ1)Y + X = 0. Finally, (X1, Y1) = (0, 0).

b) For (1+λ)Y +X = 0, similarly to case a), we deduce that (X1, Y1) =
(0, 0).

Now, we prove that the absence of arbitrage implies the existence of a
martingale measure. The proof is by contradiction. Assume that there are
no martingale measures, which means that

∀Q ∼ P EQ[ξt |Ft] 6= 0.

By Bayes’ formula we have

(2.6) EQ[ξt |Ft] =
EP [zξt |Ft]

EP [z |Ft]
for z =

dQ

dP
.

Lemma 2.2 shows that the fact that EP [zξt |Ft] 6= 0 for any bounded z ∈
L1
+(P ) can be written equivalently in the form

(2.7)
ξt ≥ 0 and P [ξt > 0] > 0, or

ξt ≤ 0 and P [ξt < 0] > 0.

Consequently,

• if ξt≥0 and P [ξt> 0]>0 we have an arbitrage opportunity for Y ≥0.

• if ξt≤0 and P [ξt< 0]>0 an arbitrage opportunity exists for Y ≤0.

In the case of proportional transaction costs we proved that the existence
of a martingale measure is equivalent to the absence of arbitrage in one unit
of time. Now, we formulate the theorem which shows the equivalence of
the existence of a martingale measure and the absence of arbitrage in any
time period [0, T ]. The transaction costs in the proof of this theorem will
be described using general functions η1(x) and η2(x). Let η1 : R+ ∪ {0} →
R

+ ∪ {0} and η2 : R+ ∪ {0} → R
+ ∪ {0} satisfy the following conditions:

1) η1(x) and η2(x) are increasing functions,

2) η1(0) = 0 and η2(0) = 0.
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The function η1(x) is the amount of money obtained for selling assets of
stock value x and η2(x) is the amount of money needed to purchase assets
of stock value x. Following the arguments of [9] we can show the following
theorem with general transaction costs.

Theorem 2.3. If the random variables ξt are i.i.d., the following condi-

tions are equivalent :

(i) there exists an arbitrage opportunity in T steps,
(ii) there exists an arbitrage opportunity in one step.

P r o o f. (ii)⇒(i). If an arbitrage opportunity exists in one step at a time
t, then we liquidate the stock account, put all money to the bank and do
nothing. We obtain an arbitrage in any time T .

(i)⇒(ii). Assume that an arbitrage opportunity exists in a period [0, T ].
We first show that there must exist a time t at which an arbitrage exists.
An arbitrage at time T means that

XT + η1(Y +
T ) − η2(Y −

T ) ≥ 0 a.s.,

P [XT + η1(Y +
T ) − η2(Y −

T ) > 0] > 0,

where Y +
T , Y −

T denote the positive and negative parts of the random variable
YT . Assume that our initial capital is 0. Let

t = inf{n : Xn + η1(Y +
n ) − η2(Y −

n ) ≥ 0 a.s. and

P [Xn + η1(Y +
n ) − η2(Y −

n ) > 0] > 0}.

Clearly t ≥ 1. Consider two cases:

1) Xt−1 + η1(Y +
t−1) − η2(Y −

t−1) = 0 a.s.

2) P [Xt−1 + η1(Y +
t−1) − η2(Y −

t−1) < 0] > 0.

If 1) holds, then

Xt + η1(Y +
t ) − η2(Y −

t ) − (Xt−1 + η1(Y +
t−1) − η2(Y −

t−1))

= Xt + η1(Y +
t ) − η2(Y −

t ) ≥ 0 a.s.

and

P [Xt + η1(Y +
t ) − η2(Y −

t ) − (Xt−1 + η1(Y +
t−1) − η2(Y −

t−1)) > 0]

= P [Xt + η1(Y +
t ) − η2(Y −

t ) > 0] > 0,

which means that an arbitrage exists at time t.
Consider now case 2). Let

A ≡ {Xt−1 + η1(Y +
t−1) − η2(Y −

t−1) < 0}

be such that P (A) > 0. On the set A we have

Xt + η1(Y +
t ) − η2(Y −

t ) − (Xt−1 + η1(Y +
t−1) − η2(Y −

t−1))

≥ −(Xt−1 + η1(Y +
t−1) − η2(Y −

t−1)) > 0 a.s.
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and

P [Xt + η1(Y +
t ) − η2(Y −

t ) − (Xt−1 + η1(Y +
t−1) − η2(Y −

t−1)) > 0] = P (A) > 0.

Therefore we also have an arbitrage at time t.
Consequently, if an arbitrage exists in the time interval [0, T ], there must

exist a time t defined as above. By Theorem 2.1 there is no martingale
measure at time t. Consequently, by Lemma 2.2 we have

(2.8)
ξt ≥ 0 and P [ξt > 0] > 0, or

ξt ≤ 0 and P [ξt < 0] > 0.

Since the random variables ξt are i.i.d., for any t = 1, . . . , T we have

(ξt ≥ 0 and P [ξt > 0] > 0) or (ξt ≤ 0 and P [ξt < 0] > 0)

and a martingale measure does not exist at any time t = 1, . . . , T . Therefore
we have an arbitrage at any time t = 1, . . . , T .

3. No arbitrage with concave transaction costs. We define two
functions: c : R+ ∪ {0} → R

+ ∪ {0} and d : R+ ∪ {0} → R
+ ∪ {0}, which

satisfy the following conditions:

1) c(x) is a convex increasing function,
2) c(0) = 0 and (1 − µ)x ≤ c(x) ≤ x,

3) limx→∞ c′(x) = 1, c′(x) < 1 and c′(0) = 1 − µ,

4) d(x) is a concave increasing function,
5) d(0) = 0 and x ≤ d(x) ≤ (1 + λ)x,

6) limx→∞ d′(x) = 1, d′(x) > 1 and d′(0) = 1 + λ.

The graphs of c and d are shown in Figure 2.

Fig. 2

The function c(x) characterizes the amount of money obtained by selling
assets of value x, and d(x) the amount of money needed to purchase assets
of value x. It will be convenient to introduce the inverse functions C(x) =
c−1(x) and D(x) = d−1(x). Consider two cases:
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1) For Yt ≥ 0 and Xt ≤ 0 we have Xt + c(Yt) ≥ 0. From this

(3.1) Yt ≥ C(−Xt).

2) For Yt ≤ 0 and Xt ≥ 0 we have Xt − d(−Yt) ≥ 0. Hence

(3.2) Yt ≥ −D(Xt).

This is illustrated in Figure 2.

Our portfolio evolves according to

(3.3)

{
Xt+1 = Xt + c(mt) − d(lt),
Yt+1 = (1 + ξt)(Yt −mt + lt).

Letting c(mt) = Mt and d(lt) = Lt we obtain

(3.4)

{
Xt+1 = Xt + Mt − Lt,
Yt+1 = (1 + ξt)(Yt − C(Mt) + D(Lt)).

Fig. 3

Denote by C0 the domain of nonnegative portfolios (see Figure 3), i.e.
the set of pairs (X,Y ) such that

(3.5)

{
Y + D(X) ≥ 0 for X ≥ 0,
Y − C(−X) ≥ 0 for X < 0.

A self-financing trading strategy (lt,mt) admits an arbitrage opportunity if
for (X0, Y0) ∈ ∂C0 we have

(XT , YT ) ∈ C0 and P{(XT , YT ) ∈ intC0} > 0.

From this we see that there exists no arbitrage opportunity if for any
(X0, Y0) ∈ ∂C0 and self-financing strategy (lt,mt) we have

(XT , YT ) ∈ C0 ⇒ (XT , YT ) ∈ ∂C0 P -a.s.
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Following the notations of Section 2 for K = C0 we define the operator
T 0
l,m(X,Y ) as Tl,m(X,Y ) with η1(m) = c(m) and η2(l) = d(l). Let

(3.6) K0c
t =

⋃

lt,mt∈L2(Ω,Ft,R
2
+)

⋃

(X,Y )∈L0
i
(Ft)

TT 0
lt,mt

(X,Y ).

Theorem 3.1. Assume that for any time t, ξt is independent of Ft. If
K0c

t ∩L0
+(Ft) = {(0, 0)}, then there exists a martingale measure Q ∼ P such

that EQ[ξt |Ft] = 0, and without the assumption that ξt is independent of

Ft, if there exists a martingale measure Q ∼ P such that EQ[ξt |Ft] = 0,
then K0c

t ∩ L0
+(Ft) = {(0, 0)}.

P r o o f. For simplicity we let t = 1. As in the proof of Theorem 2.1 we
need only consider the cases

(l > 0 and m = 0) or (l = 0 and m > 0).

In fact, for m > 0, l > 0, m < l we put l′ = l −m and m′ = 0. Then

(X ′

1, Y
′

1) = (X − d(l −m), (1 + ξ1)(Y −m + l)).

It is clear that Y ′

1 = Y1. Since by Lagrange’s theorem for any l > m there
exists θ ∈ (l −m, l) such that

(3.7) d(l) − d(l −m) = d′(θ)m > m > c(m)

(because d′(x) > 1), we obtain X ′

1 > X1, so that (X1, Y1) ∈ C0 ⇒ (X ′

1, Y
′

1)
∈ C0.

For m > 0, l > 0, l < m we put m′ = m− l and l′ = 0. Thus

(X ′

1, Y
′

1) = (X + c(m− l), (1 + ξ1)(Y −m + l)).

It is easily seen that Y ′

1 = Y1. Since by Lagrange’s theorem there exists
θ ∈ (m− l,m) such that

(3.8) c(m) − c(m− l) = c′(θ)l < l < d(l)

(because c′(x) < 1), we obtain X ′

1 > X1 and it follows that (X ′

1, Y
′

1) ∈
∂C0 ⇒ (X1, Y1) ∈ ∂C0.

We return to the proof of our theorem.

The proof that the absence of arbitrage implies the existence of a mar-
tingale measure is the same as in the proof of Theorem 2.1, because it does
not depend on the kind of transaction costs considered.

Now we prove that the existence of a martingale measure implies the
absence of arbitrage. Assume that EQ[ξt |Ft] = 0 and (X,Y ) ∈ ∂C0.

1) Let X ≥ 0 and Y + D(X) = 0.

a) We consider the case when 0 < L < X. By the assumption Y =
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−D(X) we have

(X1, Y1) = (X − L, (1 + ξ1)(Y + D(L)))

= (X − L, (1 + ξ1)(−D(X) + D(L))).

Notice first that

(3.9) D(X) −D(L) > D(X − L).

In fact, if L > X/2, then by Lagrange’s theorem there exist θ ∈ (L,X) and
θ′ ∈ (0,X − L), θ′ < θ, such that

D(X) −D(L) = D′(θ)(X − L) > D′(θ′)(X − L)

= D(X − L) −D(0) = D(X − L).

If L ≤ X/2 we consider the inequality

(3.10) D(L) < D(X) −D(X − L).

By Lagrange’s theorem there exist θ1 ∈ (0, L) and θ2 ∈ (X −L,L), θ1 < θ2,
such that

D(L) = D(L) −D(0) = D′(θ1)L < D′(θ2)L = D(X) −D(X − L).

Consequently, the inequality (3.9) holds for any L < X.
Since EQ[Y1 +D(X1) |F1] = −D(X) +D(L) +D(X −L) and −D(X) +

D(L) < −D(X − L) we get (X1, Y1) 6∈ intC0 with a positive probability.
b) Assume that L > X. Notice first that

(3.11) −D(X) + D(L) < L−X.

In fact by Lagrange’s theorem there exists θ ∈ (X,L) such that

D(L) −D(X) = D′(θ)(L−X) < L−X.

Since EQ[Y1 +C(−X1) |F1] = −D(X) +D(L) +C(−(X−L)) and L−X <
C(L − X) and −D(X) + D(L) < L − X we get (X1, Y1) 6∈ intC0 with a
positive probability.

c) For L = X we obtain (X1, Y1) = (0, 0).
d) For M > 0 we have

(X1, Y1) = (X + M, (1 + ξ1)(Y − C(M))).

Notice first that

(3.12) D(X + M) −D(X) < C(M).

In fact by Lagrange’s theorem there exists θ ∈ (X,X + M) such that

D(X + M) −D(X) = D′(θ)M < M < C(M).

Since EQ[Y1 + D(X1) |F1] = −D(X) − C(M) + D(X + M) and D(X) +
C(M) > D(X +M) we obtain (X1, Y1) 6∈ intC0 with a positive probability.

Summarizing, if we start from Y = −D(X) we have (X1, Y1) 6∈ intC0

with a positive probability.
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2) Let X ≤ 0 and Y = C(−X).

a) Consider 0 < m < Y . Then

(X1, Y1) = (X + c(m), (1 + ξ1)(Y −m)).

Notice first that

(3.13) C(−X) − C(−X − c(m)) < m.

We show that

(3.14) ∀X < Z ∈ R
− C(−(X − Z)) > C(−X) − C(−Z).

For Z < X/2, by Lagrange’s theorem, there exist θ ∈ (X − Z, 0) and θ′ ∈
(X,Z), θ > θ′, such that

C(−(X − Z)) = C ′(−θ) · (X − Z)

> C ′(−θ′) · (X − Z) = C(−X) − C(−Z).

For Z ≥ X/2 we show the equivalent inequality

(3.15) C(−Z) > C(−X) −C(−(X − Z)).

Again by Lagrange’s theorem there exist θ1 ∈ (Z, 0) and θ2 ∈ (X,X−Z),
θ1 > θ2, such that

C(−Z) = C(−Z) − C(0) = C ′(−θ1)Z > C ′(−θ2)Z

= C(−X) −C(−(X − Z)).

Thus, for any X < Z ∈ R
− the inequality (3.14) holds. Consequently,

C(−X) − C(−X − c(m)) = C(−X) − C(−(X + c(m)))

< C(−(X −X − c(m))) = C(c(m)) = m.

Since EQ[Y1−C(−X1) |F1] = C(−X)−m−C(−(X+c(m))) and C(−X)−
m < C(−(X + c(m))) we get (X1, Y1) 6∈ intC0 with a positive probability.

b) Let m > Y . Notice first that since the function y = c(x) increases
more slowly than y = x, and m > Y and Y = C(−X), we have

(3.16) m− Y > c(m) − c(C(−X)) = c(m) + X.

Therefore taking into account that D(x) + c(m)) < X + c(m) we obtain
EQ[Y1 + D(X1) |F1] = Y −m + D(X + c(m)) < 0 so that (X1, Y1) 6∈ intC0

with a positive probability.

c) For m = Y we have (X1, Y1) = (0, 0).

d) For l > 0 we get

(X1, Y1) = (X − d(l), (1 + ξ1)(Y + l)).

Notice that by Lagrange’s theorem there exists θ ∈ (X − d(l),X) such that

(3.17) C(X) − C(−(X − d(l))) = C ′(−θ)d(l) < −d(l) < −l.
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Since EQ[Y1 − C(−X1) |F1] = C(−X) + l − C(−(X − d(l))) we have
(X1, Y1) 6∈ intC0 with a positive probability.

Using Theorem 2.3 we now have the equivalence of the absence of arbi-
trage and the existence of a martingale measure Q at any time t.

4. No arbitrage with fixed + proportional transaction costs.

Let c be fixed costs of selling assets, d fixed costs of purchasing assets and
c, d > 0, d > c. Then Ccp is the domain where our nonnegative portfolio is
characterized by the system of inequalities:

(4.1)





without limits for X ≥ 0, Y ≥ 0,
X + (1 − µ)Y − c ≥ 0 for Y ≥ 0, X < 0,
X + (1 + λ)Y − d ≥ 0 for Y < 0, X ≥ 0.

Fig. 4

The boundary ∂Ccp, that is, the set of portfolios with zero value consists
of the point (0, 0) and halflines l1 : x + (1 − µ)y − c = 0 and l2 : x + (1 +
λ)y − d = 0. The portfolio evolves according to

(4.2)

{
Xt+1 = Xt + (1 − µ)mt − (1 + λ)lt − 1mt>0c− 1lt>0d,
Yt+1 = (1 + ξt)(Yt −mt + lt).

A self-financing trading strategy (lt,mt) admits an arbitrage opportunity if
for (X0, Y0) ∈ ∂Ccp we have

(XT , YT ) ∈ Ccp and P{(XT , YT ) ∈ intCcp} > 0.

Consequently, we have no arbitrage opportunity if for any (X0, Y0) ∈ ∂Ccp

and self-financing strategy (lt,mt) the following implication holds:

(XT , YT ) ∈ Ccp ⇒ (XT , YT ) ∈ ∂Ccp P -a.s.

Similarly to Section 2 define K0cp
t by the formula (2.5) with K = Ccp

and the operator Tl,m(X,Y ) defined with η1(m) = (1 − µ)m − 1m>0c and
η2(l) = (1 + λ)l + 1l>0d.
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Theorem 4.1. Assume that for any time t, the random variables ξt are

independent of Ft. If K
0cp
t ∩L0

+(Ft) = {(0, 0)}, then there exists a martingale

measure Q ∼ P such that EQ[ξt |Ft] = 0. Without the assumption that ξt
is independent of Ft, if there exists a martingale measure Q ∼ P such that

EQ[ξt |Ft] = 0, then K0cp
t ∩ L0

+(Ft) = {(0, 0)}.

P r o o f. The proof of the implication that the absence of arbitrage im-
plies the existence of a martingale measure is the same as in the proof of
Theorem 2.1.

Now we prove that the existence of a martingale measure implies the
absence of arbitrage. For simplicity we put t = 1. Similarly to the proof of
Theorem 2.1 we can show that it suffices to restrict ourselves to the cases

(l > 0 and m = 0) or (l = 0 and m > 0).

We want to prove that if (X,Y ) ∈ ∂Ccp and (X1, Y1) ∈ K0cp
1 ∩ L0

+(F1) and
EQ[ξ1 |F1] = 0, then (X1, Y1) ∈ ∂Ccp and moreover (X1, Y1) = (0, 0).

By considerations similar to those in the proof of Theorem 2.1 notice
that if (X,Y ) ∈ ∂Ccp and (1 − µ)Y + X − c = 0 the only situation when
(X1, Y1) ∈ Ccp is when m = Y and then (X1, Y1) = (0, 0). Similarly, if
(X,Y ) ∈ ∂Ccp and X−d+ (1+λ)Y = 0, we have (X1, Y1) ∈ Ccp only when
l = (X − d)/(1 + λ) and in this case (X1, Y1) = (0, 0).

Using Theorem 2.3 we have the equivalence between the absence of ar-
bitrage in T steps and the existence of a martingale measure Q.

5. No arbitrage with concave + fixed transaction costs. Let
functions c(x) and d(x) be defined as in Section 3. Let c̃ be fixed costs for

selling assets, d̃ be fixed costs for purchasing assets, and c̃, d̃ > 0 and c̃ < d̃.
Similarly to Section 3 we introduce the inverse functions C(x) = c−1(x) and
D(x) = d−1(x). The domain where our capital is nonnegative is described
by the inequalities

(5.1)





Xt + c(Yt) − c̃ ≥ 0 for Xt < 0, Yt > 0,

Xt − d(−Yt) − d̃ ≥ 0 for Xt > 0, Yt < 0,
no limits for Xt ≥ 0, Yt ≥ 0.

Using inverse functions we get

(5.2)





Yt ≥ C(−Xt + c̃ ) for Xt < 0, Yt > 0,

Yt ≥ −D(Xt − d̃) for Xt > 0, Yt < 0,
no limits for Xt ≥ 0, Yt ≥ 0.

The domain of the nonnegative portfolios will be denoted by Cc0.
Our portfolio evolves according to

(5.3)

{
Xt+1 = Xt + c(mt) − d(lt) − 1mt>0c̃− 1lt>0d̃,

Yt+1 = (1 + ξt)(Yt −mt + lt).
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Fig. 5

We put c(mt) = Mt and d(lt) = Lt. Then

(5.4)

{
Xt+1 = Xt + Mt − Lt − 1Mt>0c̃− 1Lt>0d̃,

Yt+1 = (1 + ξt)(Yt − C(Mt) + D(Lt)).

A self-financing trading strategy (lt,mt) admits an arbitrage opportunity if
for (X0, Y0) ∈ ∂Cc0, where as before the boundary is considered as the set
of portfolios with zero value, we have

(XT , YT ) ∈ Cc0 and P{(XT , YT ) ∈ intCc0} > 0.

From this we obtain the absence of arbitrage if for any (X0, Y0) ∈ ∂Cc0 and
self-financing strategy (lt,mt) we have

(XT , YT ) ∈ Cc0 ⇒ (XT , YT ) ∈ ∂Cc0 P -a.s.

Following the notations of Section 2 define K0cc
t as in (2.5) with K =

Cc0 and the operator Tl,m(X,Y ) with η1(m) = c(m) − 1m>0c̃ and η2(l) =

d(l) + 1l>0d̃. We have

Theorem 5.1. Assume that for any time t, the random variables ξt are

independent of Ft. If K0cc
t ∩L0

+(Ft) = {(0, 0)} then there exists a martingale

measure Q ∼ P such that EQ[ξt |Ft] = 0, and without the assumption that

ξt is independent of Ft, if there exists a martingale measure Q ∼ P such

that EQ[ξt |Ft] = 0, then K0cc
t ∩ L0

+(Ft) = {(0, 0)}.

P r o o f. The proof of the implication that the absence of arbitrage im-
plies the existence of a martingale measure is the same as in the proof of
Theorem 2.1.

We now show that the existence of a martingale measure implies the
absence of arbitrage. For simplicity we put t = 1. As in the proof of
Theorem 2.1 we can restrict ourselves to the cases

(l > 0 and m = 0) or (l = 0 and m > 0).
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We prove below that if (X,Y ) ∈ ∂Cc0 and (X1, Y1) ∈ K0cc
1 ∩ L0

+(F1) and
EQ[ξ1 |F1] = 0, then (X1, Y1) ∈ ∂Cc0, and moreover (X1, Y1) = (0, 0). We
consider the following two cases:

1. Assume that Y + D(X − d̃) = 0.

a) For 0 < L + d̃ < X we have

(X1, Y1) = (X − L− d̃, (1 + ξ1)(Y + D(L)))

= (X − L− d̃, (1 + ξ1)(−D(X − d̃) + D(L))).

Notice that from (3.9), taking into account that D is increasing we have

(5.5) D(X − L− 2d̃) < D(X − d̃) −D(L).

Since

EQ[Y1 + D(X1 − d̃) |F1] = −D(X − d̃) + D(L) + D(X − L− 2d̃) < 0

we obtain (X1, Y1) 6∈ ∂Cc0 with a positive probability.

b) Let L > X − d̃. Notice that from (3.11),

(5.6) D(L) −D(X − d̃) < −X + L + d̃ + c̃.

Since

EQ[Y1 − C(−(X1 + c̃)) |F1] = −D(X − d̃) + D(L) − C(−X + L + d̃ + c̃)

and C(−X + L + d̃ + c̃) > −X + L + d̃ + c̃, we have (X1, Y1) 6∈ ∂Cc0 with a
positive probability.

c) For L = X − d̃ we have (X1, Y1) = (0, 0).
d) For M > 0 we have

(X1, Y1) = (X + M − c̃, (1 + ξ1)(Y − C(M)))

= (X + M − c̃, (1 + ξ1)(−D(X − d̃) − C(M))).

Notice that

(5.7) D(X + M − d̃− c̃) −D(X − d̃) < C(M)

since when M < c̃ the left side is negative, and for M > c̃ we use (3.12)
together with the fact that C is nondecreasing.

Therefore

EQ[Y1 + D(X1 − d̃) |F1] = −D(X − d̃) − C(M) + D(X + M − d̃− c̃) < 0

and we get (X1, Y1) 6∈ ∂Cc0 with a positive probability.
2. Assume that Y = C(−X + c̃).
a) Consider 0 < m < Y . Then

(X1, Y1) = (X + c(m) − c̃, (1 + ξ1)(Y −m))

= (X + c(m) − c̃, (1 + ξ1)(C(−X + c̃) −m)).
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Notice that using (3.14) we obtain

(5.8) C(−X + c̃) − C(−X − c(m) + 2c̃) < m.

Since

EQ[Y1 − C(−X1 + c̃) |F1] = C(−X + c̃) −m− C(−X − c(m) + c̃ + c̃) < 0

we have (X1, Y1) 6∈ ∂Cc0 with a positive probability.
b) Let m > Y . Notice that from (3.16) we have

(5.9) C(−X + c̃) + X − c̃ < m− c(m) + d̃.

Since EQ[Y1 +D(X1 − d̃) |F1] = C(−X + c̃)−m+D(X + c(m)− c̃− d̃) and

D(X + c(m) − c̃− d̃) < X + c(m) − c̃ − d̃, we have (X1, Y1) 6∈ ∂Cc0 with a
positive probability.

c) For m = Y we have (X1, Y1) = (0, 0).
d) For l > 0 we get

(X1, Y1) = (X − d(l) − d̃, (1 + ξ1)(Y + l))

= (X − d(l) − d̃, (1 + ξ1)(C(−X + c̃) + l)).

Notice that by (3.17),

(5.10) C(−X + d(l) + d̃ + c̃) − C(−X + c̃) > l.

Therefore

EQ[Y1 − C(−X1 + c̃) |F1] = C(−X + c̃) + l − C(−X + d(l) + c̃ + d̃) < 0

and (X1, Y1) 6∈ ∂Cc0 with a positive probability.

By Theorem 2.3, as in the previous sections we have the equivalence
between the absence of arbitrage in T steps and the existence of a martingale
measure Q.
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