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CONVERGENCE RATES OF ORTHOGONAL SERIES

REGRESSION ESTIMATORS

Abstract. General conditions for convergence rates of nonparametric or-
thogonal series estimators of the regression function f(x) = E(Y |X = x)
are considered. The estimators are obtained by the least squares method
on the basis of a random observation sample (Yi,Xi), i = 1, . . . , n, where
Xi ∈ A ⊂ R

d have marginal distribution with density ̺ ∈ L1(A) and
Var(Y |X = x) is bounded on A. Convergence rates of the errors EX(f(X)−
f̂N(X))2 and ‖f − f̂N‖∞ for the estimator f̂N (x) =

∑N
k=1 ĉkek(x), con-

structed using an orthonormal system ek, k = 1, 2, . . . , in L2(A), are ob-
tained.

1. Introduction. Let (Yi,Xi), i = 1, . . . , n, be a random sample of size
n from the distribution of (X,Y ), where X represents a predictor variable
and Y a real-valued response variable. We assume that X ranges over a
compact subset A of some euclidean space R

d, d ≥ 1, and has absolutely
continuous distribution with density ̺ ∈ L1(A). Set f(x) = E(Y |X =
x), σ2(x) = Var(Y |X = x) and assume that σ2(x) ≤ C for x ∈ A and
the function f can be uniformly approximated on this set by finite linear
combinations of functions ek, k = 1, 2, . . . , forming a complete orthonormal
system in L2(A). We consider the problem of estimating the regression
function f using series estimators of the form

f̂N (x) =
N∑

k=1

ĉkNek(x),

where the vector of coefficient estimators ĉN = (ĉ1N , . . . , ĉNN )T is, for a
fixed N , obtained by the least squares method, i.e.
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ĉN = arg min
a∈RN

1

n

n∑

i=1

(Yi − 〈a, eN (Xi)〉)2,

where eN (x) = (e1(x), . . . , eN (x))T .
The vector ĉN can be obtained as a solution of the normal equations

(1) GnĉN = gn,

where

Gn =
1

n

n∑

i=1

eN (Xi)e
N (Xi)

T , gn =
1

n

n∑

i=1

Yie
N (Xi),

and when detGn 6= 0 it is uniquely determined. Set G(N) = EGn and
observe that for any vector v = (v1, . . . , vN )T ∈ R

N the following equality
is true:

〈G(N)v, v〉 = 〈EeN (X)eN (X)T v, v〉 =
N∑

k=1

N∑

l=1

vkvl
\
A

ek(x)el(x)̺(x) dx

=
\
A

( N∑

k=1

vkek(x)
)2

̺(x) dx.

If we assume that ̺ ≥ c > 0, then in view of orthogonality of the functions
ek, k = 1, 2, . . . , the above equality implies that λ(N) ≥ c, where λ(N)
denotes the minimal eigenvalue of the matrix G(N), and consequently G(N)
is nonsingular.

Let us also note that in the case when detGn 6= 0 the estimator f̂N
is invariant under nonsingular linear transformations of eN (x), i.e. it does
not change when we use the vector function hN (x) = BeN(x), where B
is a nonsingular matrix, instead of eN (x) for constructing it. In conse-
quence, in the case when ̺ ≥ c > 0 and detGn 6= 0 the series estima-
tor considered can be represented in the form f̂N (x) = 〈hN (x), b̂N 〉, where
hN (x) = G(N)−1/2eN (x) and the vector of coefficient estimators b̂N =
G(N)1/2ĉN is determined by the least squares method. Such a representa-

tion of f̂N is convenient, since then EhN (X)hN (X)T = IN and consequently
if hN (x) = (h1N (x), . . . , hNN (x))T , then the functions hkN (x), k = 1, . . . , N ,
are orthonormal with weight ̺, i.e.

T
A
hkN (x)hlN (x)̺(x) dx = δkl.

Moreover, if Hn = (1/n)
∑n

i=1 h
N (Xi)h

N (Xi)
T is the matrix of normal

equations corresponding to the vector function hN (x), then

E‖Hn − I‖2 =
N∑

k=1

N∑

l=1

E

(
1

n

n∑

i=1

hkN (Xi)hlN (Xi)− δkl

)2

≤
N∑

k=1

N∑

l=1

1

n
Eh2

kN (X)h2
lN (X) =

1

n
E‖hN (X)‖2‖hN (X)‖2
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≤ 1

n
‖hN‖2∞E‖hN (X)‖2 =

N

n
‖hN‖2∞,

where ‖hN‖∞ = sups∈A ‖hN (s)‖, and since hN (x) = G(N)−1/2eN (x) we
also have

(2) ‖hN‖2∞ ≤ λ(N)−1‖eN‖2∞ ≤ ‖eN‖2∞c−1,

so finally

E‖Hn − I‖2 ≤ N

cn
‖eN‖2∞.

If we putMN = ‖eN‖∞ and λn denotes the smallest eigenvalue of the matrix
Hn, then since |λn − 1| ≤ ‖Hn − I‖, we also have

(3) E|λn − 1|2 ≤ NM2
N

cn
,

which implies that λn → 1 in probability on condition that NM2
N/n → 0

as n → ∞. This fact will be used to prove the results presented below. Let
us also note that for ̺ ≥ c > 0, by (3) we have P (detGn = 0) = P (detHn

= 0) ≤ P (λn < 1/2) ≤ 4NM2
Nc−1/n . Thus, the conditions ̺ ≥ c > 0 and

NM2
N/n → 0 as n → ∞ assure that P (detGn = 0) → 0, i.e. the estimator

is uniquely determined with growing probability.
In this work we continue the investigations of [8]–[10] on asymptotic

properties of series regression estimators by considering convergence rates
of the errors EX(f(X)− f̂N(X))2 and ‖f − f̂N‖∞. We give sufficient condi-
tions for the convergence rates and extend the results of [9], [10] where only
convergence in probability of such errors for trigonometric and polynomial
estimators was investigated. Huang [4] has recently obtained general con-

ditions for convergence rates of EX(f(X)− f̂N (X))2 for the relevant series
estimators, under the assumption that D ≥ ̺ ≥ c > 0, but the estimator
measurability and uniqueness conditions are not discussed there. In the
present work it is shown that the boundedness condition imposed on the
density ̺ can be relaxed.

Asymptotic properties of other nonparametric series regression estima-
tors for similar observation models were investigated in the works of Lugosi
and Zeger [6] and Györfi and Walk [3] but the results obtained there concern
the universal consistency of their estimators and the problem of convergence
rates is only briefly discussed in [6]. The series estimator considered in [6]
is obtained via constrained empirical risk minimization (whereas our esti-
mators are obtained by unconstrained empirical risk minimization) and the
one considered in [3] is based on stochastic approximation procedure in a

function space. Convergence rates of EX(f(X) − f̃N (X))2 for estimators

f̃N constructed using radial basis functions and neural networks are investi-
gated in [7]. Properties of series estimators in the case of other observation
models are investigated in [13].
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2. Convergence rates of the L2-error. Let χn denote the indica-
tor function of {λn ≥ 1/2}. According to (3) we have P (λn < 1/2) ≤
4NM2

N c−1/n and the assumption NM2
N/n → 0 as n → ∞ implies that

P (χn 6= 1) → 0.
We need the following lemmas. Only the proof of the second lemma is

given since the first one is proved in [11].

Lemma 2.1. Let v = (v1, . . . , vn)
T ∈ R

n and

Hn =
1

n

n∑

i=1

hN (Xi)h
N (Xi)

T .

Then
1

n2

n∑

i=1

n∑

j=1

vivjh
N (Xi)

TH−1
n hN (Xj) ≤

1

n

n∑

i=1

v2i .

Lemma 2.2. Assume that ̺ ≥ c > 0 and for N > 0 there exist fN ∈
span{e1, . . . , eN} such that ‖f −fN‖∞ = O(N−α) as N → ∞, where α > 0.

If fN (x)= 〈hN (x), bN 〉 and b̂N =H−1
n hn, where hn=(1/n)

∑n
i=1 Yih

N (Xi),
then

Eχn‖b̂N − bN‖2 = O(N/n+N−2α).

P r o o f. Putting ηi = Yi−f(Xi), i = 1, . . . , n, and f(x) = fN (x)+rN (x),
we have

(4) b̂N = bN +H−1
n

(
1

n

n∑

i=1

rN (Xi)h
N (Xi)

)
+H−1

n

(
1

n

n∑

i=1

ηih
N (Xi)

)
.

Now, putting Dn = (X1, . . . ,Xn), since Var(Y |X = Xi) ≤ C, i = 1, . . . , n,
we easily obtain

E

[
χn

∥∥∥∥H
−1/2
n

1

n

n∑

i=1

ηih
N (Xi)

∥∥∥∥
2 ∣∣∣∣ Dn

]

= χnE

[
1

n2

n∑

i=1

n∑

j=1

ηiηjh
N (Xi)

TH−1
n hN (Xj)

∣∣∣∣ Dn

]

≤ χn
C

n2

n∑

i=1

hN (Xi)
TH−1

n hN (Xi)

= χn
C

n2
Tr

( n∑

i=1

hN (Xi)h
N (Xi)

TH−1
n

)
≤ CN

n
.

The last inequality implies

Eχn

∥∥∥∥H
−1/2
n

1

n

n∑

i=1

ηih
N (Xi)

∥∥∥∥
2

≤ CN/n,
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which further yields

Eχn

∥∥∥∥H
−1
n

1

n

n∑

i=1

ηih
N (Xi)

∥∥∥∥
2

= Eχn

(
1

n2

n∑

i=1

ηih
N (Xi)

TH−1/2
n H−1

n H−1/2
n

n∑

j=1

ηjh
N (Xj)

)

≤ Eχnλ
−1
n

∥∥∥∥H
−1/2
n

1

n

n∑

i=1

ηih
N (Xi)

∥∥∥∥
2

≤ 2CN/n,

since χnλ
−1
n ≤ 2. In view of Lemma 2.1 it is also easy to see that

Eχn

∥∥∥∥H
−1
n

1

n

n∑

i=1

rN (Xi)h
N (Xi)

∥∥∥∥
2

= Eχn

(
1

n2

n∑

i=1

rN (Xi)h
N (Xi)

TH−1/2
n H−1

n H−1/2
n

n∑

j=1

rN (Xj)h
N (Xj)

)

≤ Eχnλ
−1
n

(
1

n2

n∑

i=1

rN (Xi)h
N (Xi)

TH−1
n

n∑

j=1

rN (Xj)h
N (Xj)

)

≤ Eχnλ
−1
n

(
1

n

n∑

i=1

r2N (Xi)

)
≤ Eχnλ

−1
n max

1≤i≤n
|r2N (Xi)| = O(N−2α).

The above bounds together with (4) imply the assertion of the lemma.

In the case when the regression function f is square-integrable and the
density ̺ satisfies the additional condition D ≥ ̺ ≥ c > 0 we also have the
following lemma.

Lemma 2.3. Assume that D ≥ ̺ ≥ c > 0, f ∈ L2(A) and fN(x) =

〈hN (x), bN 〉 is its orthogonal projection on span{e1, . . . , eN}. If b̂N =
H−1

n hn, then

Eχn‖b̂N − bN‖2 = O(N/n + ‖f − fN‖2).

P r o o f. First observe that for rN = f − fN ,

E

(
1

n

n∑

i=1

r2N (Xi)

)
= Er2N (X) ≤ D‖f − fN‖2,

and then follow the proof of Lemma 2.2.

Now, we can prove the following theorem on convergence rates of the
estimators considered.
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Theorem 2.1. Assume that ̺ ≥ c > 0, the sequence of natural numbers

N(n), n = 1, 2, . . . , satisfies

lim
n→∞

N(n) = ∞, lim
n→∞

N(n)M2
N(n)

n
= 0,

and for N > 0 there exist fN ∈ span{e1, . . . , eN} such that ‖f − fN‖∞ =
O(N−α) as N → ∞, where α > 0. Then the orthogonal series estimator

f̂N(n) satisfies \
A

(f − f̂N(n))
2̺ = Op(N(n)/n +N(n)−2α).

P r o o f. Putting fN(x) = 〈hN (x), bN 〉, we easily obtain, by the triangle
inequality and the equality EhN (X)hN (X)T = IN ,

χn

\
A

(f − f̂N )2̺ = χn

\
A

(f(x)− fN(x) + 〈hN (x), bN − b̂N 〉)2̺(x) dx

≤ 2χn

\
A

(f(x)− fN (x))2̺(x) dx+ 2χn‖bN − b̂N‖2

≤ O(N−2α) + 2χn‖bN − b̂N‖2.
As remarked earlier, the assumption N(n)M2

N(n)/n → 0 assures that

P (χn 6= 1) → 0 so the assertion follows by applying Lemma 2.2.

In the case when the regression function can be approximated in the
mean-square sense the following theorem holds.

Theorem 2.2. Assume that D ≥ ̺ ≥ c > 0, the sequence of natural

numbers N(n), n = 1, 2, . . . , satisfies

lim
n→∞

N(n) = ∞, lim
n→∞

N(n)M2
N(n)

n
= 0,

and fN is the orthogonal projection of the regression function f ∈ L2(A) on

span{e1, . . . , eN}. Then the orthogonal series estimator f̂N(n) satisfies\
A

(f − f̂N(n))
2̺ = Op(N(n)/n + ‖f − fN(n)‖2).

P r o o f. Observe that
T
A
(f − fN)2̺ ≤ D‖f − fN‖2 and follow the proof

of Theorem 2.1 using Lemma 2.3 instead of Lemma 2.2. In fact we can even
prove that Eχn

T
A
(f − f̂N(n))

2̺ = O(N(n)/n + ‖f − fN(n)‖2).
Since for f ∈ L2(A) we have ‖f − fN‖2 → 0 as N → ∞, under the

assumptions of Theorem 2.2, EX(f(X) − f̂N(n)(X))2 = op(1) and conse-

quently also ‖f − f̂N(n)‖2 = op(1). Moreover, if ‖f − fN‖ = O(N−α), where
α > 0, Theorem 2.2 allows one to obtain convergence rates of the error
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EX(f(X) − f̂N(n)(X))2. The term N/n in the above formulae for conver-
gence rates essentially corresponds to a variance term, and N−2α to a bias
term. When N(n) is chosen so that these two terms go to zero at the same
rate, which occurs when N(n) ∼ n1/(1+2α) (i.e. r1 ≥ N(n)n−1/(1+2α) ≥ r2,
r1, r2 > 0), the convergence rate of the estimators will be n−2α/(1+2α). Thus,
Stone’s [12] bound on the best obtainable rate is attained.

Let us also remark that the error EX(f(X) − f̂N (X))2, for which con-
vergence rates were obtained above, is related to the prediction error E(Y −
f̂N(X))2 = EX(f(X)− f̂N (X))2 + Eσ2(X).

It is easy to see that for the estimator f̃N defined by the formula

f̃N(x) =

{
f̂N (x) if λn ≥ 1/2,
0 otherwise,

Theorems 2.1 and 2.2 are true, but we also have the following result con-
cerning its IMSE.

Theorem 2.3. Assume that D ≥ ̺ ≥ c > 0, the sequence of natural

numbers N(n), n = 1, 2, . . . , satisfies

lim
n→∞

N(n) = ∞, lim
n→∞

N(n)M2
N(n)

n
= 0,

and fN is the orthogonal projection of the regression function f ∈ L2(A) on

span{e1, . . . , eN}. Then the orthogonal series estimator f̃N(n) satisfies

E
\
A

(f − f̃N(n))
2 = O(N(n)/n + ‖f − fN(n)‖2 +N(n)M2

N(n)/n).

P r o o f. According to the definition of f̃N , we have

E
\
A

(f − f̃N)2 = Eχn

\
A

(f − f̂N )2 + E(1− χn)
\
A

f2

≤ c−1Eχn

\
A

(f − f̂N)2̺+ P (λn < 1/2)‖f‖2.

As remarked in the proof of Theorem 2.2, the first term on the right hand
side is O(N(n)/n + ‖f − fN(n)‖2) and the second term is bounded by
4‖f‖2NM2

N c−1/n, which completes the proof.

Since λn is the minimal eigenvalue of the matrix Hn which is not used in
computations we cannot verify directly whether the condition λn ≥ 1/2 is
satisfied. However, Theorem 2.3 allows us to learn about IMSE convergence
rates of the estimator. Namely, for many orthonormal systems it is possible
to obtain a bound of the form

(5) M2
N = ‖eN‖2∞ = sup

x∈A

N∑

k=1

e2k(x) ≤ KN,
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where K is a constant [1]. This clearly holds for uniformly bounded sys-
tems (e.g. the trigonometric system in L2([0, 2π]d)) but also for strongly
localized systems (e.g. the splines, piecewise polynomials) and leveled local-
ized systems (e.g. compactly supported wavelets in L2[0, 1]) [1], [13]. For
such systems the condition N(n)M2

N(n)/n → 0 is satisfied if N(n)2/n → 0 as

n → ∞ and under the assumptions of Theorem 2.3 we have E‖f−f̃N(n)‖2 =
O(‖f −fN(n)‖2+N(n)2/n). Assuming further that ‖f −fN‖ = O(N−α) we

see that for N(n) ∼ n1/(2+2α) the IMSE convergence rate of f̃N is n−α/(α+1).

3. Uniform convergence rates. In this section a result on uniform
convergence rates of orthogonal series estimators is proved. It extends the
results of [9] where only uniform pointwise consistency of trigonometric and
polynomial estimators was examined.

Theorem 3.1. Assume that ̺ ≥ c > 0, the sequence of natural numbers

N(n), n = 1, 2, . . . , satisfies

lim
n→∞

N(n) = ∞, lim
n→∞

N(n)M2
N(n)

n
= 0,

and for N > 0 there exist fN ∈ span{e1, . . . , eN} such that ‖f − fN‖∞ =
O(N−α) as N → ∞, where α > 0. Then the orthogonal series estimator

f̂N(n) satisfies

‖f − f̂N(n)‖∞ = Op(MN(n)(N(n)1/2/n1/2 +N(n)−α)).

P r o o f. Putting fN(x) = 〈hN (x), bN 〉, by the triangle and Cauchy in-
equalities we have

χn|f(x)− f̂N (x)| ≤ χn|f(x)− fN(x)|+ χn|〈hN (x), bN − b̂N 〉|
≤ O(N−α) + χn‖hN (x)‖ · ‖bN − b̂N‖

for x ∈ A, and according to (2) we further obtain

χn‖f − f̂N‖∞ ≤ O(N−α) + χn‖bN − b̂N‖MNc−1/2.

Since the condition N(n)M2
N(n)/n → 0 as n → ∞ implies P (χn 6= 1) → 0

we get the assertion by Lemma 2.2.

The uniform convergence rates for the above series estimators do not
attain Stone’s [12] bound on the best obtainable rate for the uniform error
but they improve on some rates obtained earlier, e.g. on those of Cox [2].

4. Conclusions. As proved in [8], if we use orthogonal systems of ana-
lytic functions to construct estimators of regression functions (e.g. trigono-
metric functions or multivariate polynomials), the normal equations matrix
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Gn is almost surely positive definite for N ≤ n for any density ̺. Thus, in
that case the estimators are uniquely defined with probability one.

Let β = (β1, . . . , βd) be a vector of nonnegative integers, and |β| =∑d
k=1 βk. For a vector function f(x) = (f1(x), . . . , fN (x))T define the vec-

tor of partial derivatives ∂|β|f(x) = ∂|β|f(x)/∂xβ1

1 . . . ∂xβd

d and for any non-
negative integer r let ‖f‖r = max|β|≤r supx∈A ‖∂|β|f(x)‖.

Now put Pr(N) = max|β|≤r supx∈A ‖∂|β|eN (x)‖ and assume that ̺ ∈
L1(A), ̺ ≥ c > 0, and for N > 0 there exists a vector bN such that
‖f− bTNeN‖ri=O(N−α), where α > 0. Under the above assumptions, us-
ing the same technique as in the proof of Theorem 3.1 we can prove that
‖f−f̂N(n)‖r=Op(Pr(N(n))(N(n)1/2/n1/2+N(n)−α)) if the natural numbers
N(n) satisfy limn→∞ N(n)=∞ and limn→∞ N(n)P 2

0 (N(n))/n=0.

The exponent α defining the decrease rate of the uniform approximation
error of the regression function and its derivatives up to order r is related not
only to the smoothness of the regression function but also to the dimension-
ality of X and the size of r. For example, if f is continuously differentiable
of order s on [−1, 1]d, then in the case of polynomial approximation and
r = 0 we have α = s/d according to Lorentz [5]. It is much more difficult to
find in the literature a corresponding result for the case when r > 0, except
in two cases. Namely, when X is univariate it is well known that α = s− r
(see [5]), and when f is analytic it is known that for any r the assumption
of uniform approximation rate in the norm ‖ ∗ ‖r will hold with α equal to
an arbitrarily large positive number.

Now consider the observation model Yi = f(Xi)+ηi, i = 1, . . . , n, where
the ηi are realizations of some strictly stationary β mixing process, centered
in expectation, with β mixing sequence (βk)k≥0 satisfying the condition∑

k≥0 βk < ∞ (see [13]). In that case in view of the inequalities χnλ
−1
n ≤ 2

and ‖hN‖∞ ≤ MN/
√
c we have

Eχn

∥∥∥∥H
−1
n

1

n

n∑

i=1

ηih
N (Xi)

∥∥∥∥
2

≤ EXEηχnλ
−2
n

∥∥∥∥
1

n

n∑

i=1

ηih
N (Xi)

∥∥∥∥
2

≤ 4EXχn
1

n2

n∑

i=1

n∑

j=1

Eηηiηj〈hN (Xi), h
N (Xj)〉

≤ 4EXχn
1

n2

n∑

i=1

n∑

j=1

|cov(ηi, ηj)| · ‖hN (Xi)‖ · ‖hN (Xj)‖

≤ 4M2
N

n2c

n∑

i=1

n∑

j=1

|cov(ηi, ηj)| ≤
8M2

N

nc

n∑

i=1

|cov(ηi, η1)| = O

(
M2

N

n

)
,

since for β mixing processes satisfying the imposed conditions the sums
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∑n
i=1 |cov(ηi, η1)| are bounded by a constant (see Theorem 2.2 in [13] for

details). Thus, for such observation models we obtain, as in Lemma 2.2,

the bound Eχn‖b̂N − bN‖2 = O(M2
N/n + N−2α), which implies that for

orthogonal systems satisfying (5) the convergence rates of the relevant errors
are the same as in the case of independent observations.
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