W. POPIŃSKI (Warszawa)

CONVERGENCE RATES OF ORTHOGONAL SERIES REGRESSION ESTIMATORS

Abstract. General conditions for convergence rates of nonparametric orthogonal series estimators of the regression function f(x) = E(Y | X = x)are considered. The estimators are obtained by the least squares method on the basis of a random observation sample (Y_i, X_i) , i = 1, ..., n, where $X_i \in A \subset \mathbb{R}^d$ have marginal distribution with density $\varrho \in L^1(A)$ and $\operatorname{Var}(Y | X = x)$ is bounded on A. Convergence rates of the errors $E_X(f(X) - \widehat{f}_N(X))^2$ and $||f - \widehat{f}_N||_{\infty}$ for the estimator $\widehat{f}_N(x) = \sum_{k=1}^N \widehat{c}_k e_k(x)$, constructed using an orthonormal system e_k , k = 1, 2, ..., in $L^2(A)$, are obtained.

1. Introduction. Let (Y_i, X_i) , i = 1, ..., n, be a random sample of size n from the distribution of (X, Y), where X represents a predictor variable and Y a real-valued response variable. We assume that X ranges over a compact subset A of some euclidean space \mathbb{R}^d , $d \ge 1$, and has absolutely continuous distribution with density $\varrho \in L^1(A)$. Set f(x) = E(Y | X = x), $\sigma^2(x) = \operatorname{Var}(Y | X = x)$ and assume that $\sigma^2(x) \le C$ for $x \in A$ and the function f can be uniformly approximated on this set by finite linear combinations of functions e_k , k = 1, 2, ..., forming a complete orthonormal system in $L^2(A)$. We consider the problem of estimating the regression function f using series estimators of the form

$$\widehat{f}_N(x) = \sum_{k=1}^N \widehat{c}_{kN} e_k(x),$$

where the vector of coefficient estimators $\hat{c}_N = (\hat{c}_{1N}, \dots, \hat{c}_{NN})^T$ is, for a fixed N, obtained by the least squares method, i.e.

²⁰⁰⁰ Mathematics Subject Classification: 62G08, 62G20.

 $Key\ words\ and\ phrases:$ nonparametric series regression, least squares method, orthonormal system, convergence rate.

$$\widehat{c}_N = \arg\min_{a \in \mathbb{R}^N} \frac{1}{n} \sum_{i=1}^n (Y_i - \langle a, e^N(X_i) \rangle)^2,$$

where $e^{N}(x) = (e_{1}(x), \dots, e_{N}(x))^{T}$.

The vector \hat{c}_N can be obtained as a solution of the normal equations

(1)
$$G_n \hat{c}_N = g_n$$

where

$$G_n = \frac{1}{n} \sum_{i=1}^n e^N (X_i) e^N (X_i)^T, \quad g_n = \frac{1}{n} \sum_{i=1}^n Y_i e^N (X_i),$$

and when det $G_n \neq 0$ it is uniquely determined. Set $G(N) = EG_n$ and observe that for any vector $v = (v_1, \ldots, v_N)^T \in \mathbb{R}^N$ the following equality is true:

$$\langle G(N)v,v\rangle = \langle Ee^N(X)e^N(X)^Tv,v\rangle = \sum_{k=1}^N \sum_{l=1}^N v_k v_l \int_A e_k(x)e_l(x)\varrho(x) \, dx$$
$$= \int_A \left(\sum_{k=1}^N v_k e_k(x)\right)^2 \varrho(x) \, dx.$$

If we assume that $\rho \ge c > 0$, then in view of orthogonality of the functions $e_k, k = 1, 2, \ldots$, the above equality implies that $\lambda(N) \geq c$, where $\lambda(N)$ denotes the minimal eigenvalue of the matrix G(N), and consequently G(N)is nonsingular.

Let us also note that in the case when det $G_n \neq 0$ the estimator \widehat{f}_N is invariant under nonsingular linear transformations of $e^{N}(x)$, i.e. it does not change when we use the vector function $h^N(x) = Be^N(x)$, where B is a nonsingular matrix, instead of $e^{N}(x)$ for constructing it. In consequence, in the case when $\varrho \geq c > 0$ and $\det G_n \neq 0$ the series estimator considered can be represented in the form $\widehat{f}_N(x) = \langle h^N(x), \widehat{b}_N \rangle$, where $h^N(x) = G(N)^{-1/2} e^N(x)$ and the vector of coefficient estimators $\hat{b}_N =$ $G(N)^{1/2}\widehat{c}_N$ is determined by the least squares method. Such a representation of \widehat{f}_N is convenient, since then $Eh^N(X)h^N(X)^T = I_N$ and consequently if $h^N(x) = (h_{1N}(x), \ldots, h_{NN}(x))^T$, then the functions $h_{kN}(x), k = 1, \ldots, N$, are orthonormal with weight ϱ , i.e. $\int_A h_{kN}(x)h_{lN}(x)\varrho(x) dx = \delta_{kl}$. Moreover, if $H_n = (1/n)\sum_{i=1}^n h^N(X_i)h^N(X_i)^T$ is the matrix of normal equations corresponding to the vector function $h^N(x)$, then

$$E||H_n - I||^2 = \sum_{k=1}^N \sum_{l=1}^N E\left(\frac{1}{n} \sum_{i=1}^n h_{kN}(X_i)h_{lN}(X_i) - \delta_{kl}\right)^2$$

$$\leq \sum_{k=1}^N \sum_{l=1}^N \frac{1}{n} Eh_{kN}^2(X)h_{lN}^2(X) = \frac{1}{n} E||h^N(X)||^2 ||h^N(X)||^2$$

Convergence rates of regression estimators

$$\leq \frac{1}{n} \|h^N\|_{\infty}^2 E \|h^N(X)\|^2 = \frac{N}{n} \|h^N\|_{\infty}^2,$$

where $\|h^N\|_\infty = \sup_{s\in A} \|h^N(s)\|,$ and since $h^N(x) = G(N)^{-1/2} e^N(x)$ we also have

$$\|h^N\|_{\infty}^2 \le \lambda(N)^{-1} \|e^N\|_{\infty}^2 \le \|e^N\|_{\infty}^2 c^{-1},$$

so finally

(2)

$$E ||H_n - I||^2 \le \frac{N}{cn} ||e^N||_{\infty}^2.$$

If we put $M_N = ||e^N||_{\infty}$ and λ_n denotes the smallest eigenvalue of the matrix H_n , then since $|\lambda_n - 1| \leq ||H_n - I||$, we also have

(3)
$$E|\lambda_n - 1|^2 \le \frac{NM_N^2}{cn}$$

which implies that $\lambda_n \to 1$ in probability on condition that $NM_N^2/n \to 0$ as $n \to \infty$. This fact will be used to prove the results presented below. Let us also note that for $\varrho \ge c > 0$, by (3) we have $P(\det G_n = 0) = P(\det H_n = 0) \le P(\lambda_n < 1/2) \le 4NM_N^2c^{-1}/n$. Thus, the conditions $\varrho \ge c > 0$ and $NM_N^2/n \to 0$ as $n \to \infty$ assure that $P(\det G_n = 0) \to 0$, i.e. the estimator is uniquely determined with growing probability.

In this work we continue the investigations of [8]-[10] on asymptotic properties of series regression estimators by considering convergence rates of the errors $E_X(f(X) - \hat{f}_N(X))^2$ and $||f - \hat{f}_N||_{\infty}$. We give sufficient conditions for the convergence rates and extend the results of [9], [10] where only convergence in probability of such errors for trigonometric and polynomial estimators was investigated. Huang [4] has recently obtained general conditions for convergence rates of $E_X(f(X) - \hat{f}_N(X))^2$ for the relevant series estimators, under the assumption that $D \ge \varrho \ge c > 0$, but the estimator measurability and uniqueness conditions are not discussed there. In the present work it is shown that the boundedness condition imposed on the density ϱ can be relaxed.

Asymptotic properties of other nonparametric series regression estimators for similar observation models were investigated in the works of Lugosi and Zeger [6] and Györfi and Walk [3] but the results obtained there concern the universal consistency of their estimators and the problem of convergence rates is only briefly discussed in [6]. The series estimator considered in [6] is obtained via constrained empirical risk minimization (whereas our estimators are obtained by unconstrained empirical risk minimization) and the one considered in [3] is based on stochastic approximation procedure in a function space. Convergence rates of $E_X(f(X) - \tilde{f}_N(X))^2$ for estimators \tilde{f}_N constructed using radial basis functions and neural networks are investigated in [7]. Properties of series estimators in the case of other observation models are investigated in [13].

2. Convergence rates of the L^2 -error. Let χ_n denote the indicator function of $\{\lambda_n \geq 1/2\}$. According to (3) we have $P(\lambda_n < 1/2) \leq 4NM_N^2c^{-1}/n$ and the assumption $NM_N^2/n \to 0$ as $n \to \infty$ implies that $P(\chi_n \neq 1) \to 0$.

We need the following lemmas. Only the proof of the second lemma is given since the first one is proved in [11].

LEMMA 2.1. Let $v = (v_1, \ldots, v_n)^T \in \mathbb{R}^n$ and

$$H_n = \frac{1}{n} \sum_{i=1}^n h^N(X_i) h^N(X_i)^T.$$

Then

$$\frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n v_i v_j h^N(X_i)^T H_n^{-1} h^N(X_j) \le \frac{1}{n} \sum_{i=1}^n v_i^2$$

LEMMA 2.2. Assume that $\varrho \geq c > 0$ and for N > 0 there exist $f_N \in$ span $\{e_1, \ldots, e_N\}$ such that $||f - f_N||_{\infty} = O(N^{-\alpha})$ as $N \to \infty$, where $\alpha > 0$. If $f_N(x) = \langle h^N(x), b_N \rangle$ and $\hat{b}_N = H_n^{-1}h_n$, where $h_n = (1/n) \sum_{i=1}^n Y_i h^N(X_i)$, then

$$E\chi_n \|\widehat{b}_N - b_N\|^2 = O(N/n + N^{-2\alpha}).$$

Proof. Putting $\eta_i = Y_i - f(X_i), i = 1, ..., n$, and $f(x) = f_N(x) + r_N(x)$, we have

(4)
$$\widehat{b}_N = b_N + H_n^{-1} \left(\frac{1}{n} \sum_{i=1}^n r_N(X_i) h^N(X_i) \right) + H_n^{-1} \left(\frac{1}{n} \sum_{i=1}^n \eta_i h^N(X_i) \right).$$

Now, putting $D_n = (X_1, \ldots, X_n)$, since $Var(Y | X = X_i) \leq C$, $i = 1, \ldots, n$, we easily obtain

$$E\left[\chi_{n} \left\| H_{n}^{-1/2} \frac{1}{n} \sum_{i=1}^{n} \eta_{i} h^{N}(X_{i}) \right\|^{2} \left\| D_{n} \right]$$

$$= \chi_{n} E\left[\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} \eta_{i} \eta_{j} h^{N}(X_{i})^{T} H_{n}^{-1} h^{N}(X_{j}) \left\| D_{n} \right]$$

$$\leq \chi_{n} \frac{C}{n^{2}} \sum_{i=1}^{n} h^{N}(X_{i})^{T} H_{n}^{-1} h^{N}(X_{i})$$

$$= \chi_{n} \frac{C}{n^{2}} \operatorname{Tr}\left(\sum_{i=1}^{n} h^{N}(X_{i}) h^{N}(X_{i})^{T} H_{n}^{-1} \right) \leq \frac{CN}{n}.$$

The last inequality implies

$$E\chi_n \left\| H_n^{-1/2} \frac{1}{n} \sum_{i=1}^n \eta_i h^N(X_i) \right\|^2 \le CN/n,$$

which further yields

$$E\chi_{n} \left\| H_{n}^{-1} \frac{1}{n} \sum_{i=1}^{n} \eta_{i} h^{N}(X_{i}) \right\|^{2}$$

$$= E\chi_{n} \left(\frac{1}{n^{2}} \sum_{i=1}^{n} \eta_{i} h^{N}(X_{i})^{T} H_{n}^{-1/2} H_{n}^{-1} H_{n}^{-1/2} \sum_{j=1}^{n} \eta_{j} h^{N}(X_{j}) \right)$$

$$\leq E\chi_{n} \lambda_{n}^{-1} \left\| H_{n}^{-1/2} \frac{1}{n} \sum_{i=1}^{n} \eta_{i} h^{N}(X_{i}) \right\|^{2} \leq 2CN/n,$$

since $\chi_n \lambda_n^{-1} \leq 2$. In view of Lemma 2.1 it is also easy to see that

$$\begin{split} E\chi_n \left\| H_n^{-1} \frac{1}{n} \sum_{i=1}^n r_N(X_i) h^N(X_i) \right\|^2 \\ &= E\chi_n \left(\frac{1}{n^2} \sum_{i=1}^n r_N(X_i) h^N(X_i)^T H_n^{-1/2} H_n^{-1} H_n^{-1/2} \sum_{j=1}^n r_N(X_j) h^N(X_j) \right) \\ &\leq E\chi_n \lambda_n^{-1} \left(\frac{1}{n^2} \sum_{i=1}^n r_N(X_i) h^N(X_i)^T H_n^{-1} \sum_{j=1}^n r_N(X_j) h^N(X_j) \right) \\ &\leq E\chi_n \lambda_n^{-1} \left(\frac{1}{n} \sum_{i=1}^n r_N^2(X_i) \right) \leq E\chi_n \lambda_n^{-1} \max_{1 \le i \le n} |r_N^2(X_i)| = O(N^{-2\alpha}). \end{split}$$

The above bounds together with (4) imply the assertion of the lemma. \blacksquare

In the case when the regression function f is square-integrable and the density ρ satisfies the additional condition $D \ge \rho \ge c > 0$ we also have the following lemma.

LEMMA 2.3. Assume that $D \ge \varrho \ge c > 0$, $f \in L^2(A)$ and $f_N(x) = \langle h^N(x), b_N \rangle$ is its orthogonal projection on span $\{e_1, \ldots, e_N\}$. If $\hat{b}_N = H_n^{-1}h_n$, then

$$E\chi_n \|\widehat{b}_N - b_N\|^2 = O(N/n + \|f - f_N\|^2).$$

Proof. First observe that for $r_N = f - f_N$,

$$E\left(\frac{1}{n}\sum_{i=1}^{n}r_{N}^{2}(X_{i})\right) = Er_{N}^{2}(X) \le D\|f - f_{N}\|^{2},$$

and then follow the proof of Lemma 2.2. \blacksquare

Now, we can prove the following theorem on convergence rates of the estimators considered.

THEOREM 2.1. Assume that $\rho \ge c > 0$, the sequence of natural numbers $N(n), n = 1, 2, \ldots$, satisfies

$$\lim_{n \to \infty} N(n) = \infty, \quad \lim_{n \to \infty} \frac{N(n)M_{N(n)}^2}{n} = 0,$$

and for N > 0 there exist $f_N \in \text{span}\{e_1, \ldots, e_N\}$ such that $||f - f_N||_{\infty} = O(N^{-\alpha})$ as $N \to \infty$, where $\alpha > 0$. Then the orthogonal series estimator $\widehat{f}_{N(n)}$ satisfies

$$\int_{A} (f - \hat{f}_{N(n)})^2 \varrho = O_p(N(n)/n + N(n)^{-2\alpha}).$$

Proof. Putting $f_N(x) = \langle h^N(x), b_N \rangle$, we easily obtain, by the triangle inequality and the equality $Eh^N(X)h^N(X)^T = I_N$,

$$\chi_n \int_A (f - \hat{f}_N)^2 \varrho = \chi_n \int_A (f(x) - f_N(x) + \langle h^N(x), b_N - \hat{b}_N \rangle)^2 \varrho(x) \, dx$$

$$\leq 2\chi_n \int_A (f(x) - f_N(x))^2 \varrho(x) \, dx + 2\chi_n \|b_N - \hat{b}_N\|^2$$

$$\leq O(N^{-2\alpha}) + 2\chi_n \|b_N - \hat{b}_N\|^2.$$

As remarked earlier, the assumption $N(n)M_{N(n)}^2/n \to 0$ assures that $P(\chi_n \neq 1) \to 0$ so the assertion follows by applying Lemma 2.2.

In the case when the regression function can be approximated in the mean-square sense the following theorem holds.

THEOREM 2.2. Assume that $D \ge \rho \ge c > 0$, the sequence of natural numbers N(n), n = 1, 2, ..., satisfies

$$\lim_{n \to \infty} N(n) = \infty, \quad \lim_{n \to \infty} \frac{N(n)M_{N(n)}^2}{n} = 0,$$

and f_N is the orthogonal projection of the regression function $f \in L^2(A)$ on span $\{e_1, \ldots, e_N\}$. Then the orthogonal series estimator $\hat{f}_{N(n)}$ satisfies

$$\int_{A} (f - \hat{f}_{N(n)})^2 \varrho = O_p(N(n)/n + ||f - f_{N(n)}||^2).$$

Proof. Observe that $\int_A (f - f_N)^2 \rho \leq D \|f - f_N\|^2$ and follow the proof of Theorem 2.1 using Lemma 2.3 instead of Lemma 2.2. In fact we can even prove that $E\chi_n \int_A (f - \widehat{f}_{N(n)})^2 \rho = O(N(n)/n + \|f - f_{N(n)}\|^2)$.

Since for $f \in L^2(A)$ we have $||f - f_N||^2 \to 0$ as $N \to \infty$, under the assumptions of Theorem 2.2, $E_X(f(X) - \widehat{f}_{N(n)}(X))^2 = o_p(1)$ and consequently also $||f - \widehat{f}_{N(n)}||^2 = o_p(1)$. Moreover, if $||f - f_N|| = O(N^{-\alpha})$, where $\alpha > 0$, Theorem 2.2 allows one to obtain convergence rates of the error

 $E_X(f(X) - \hat{f}_{N(n)}(X))^2$. The term N/n in the above formulae for convergence rates essentially corresponds to a variance term, and $N^{-2\alpha}$ to a bias term. When N(n) is chosen so that these two terms go to zero at the same rate, which occurs when $N(n) \sim n^{1/(1+2\alpha)}$ (i.e. $r_1 \geq N(n)n^{-1/(1+2\alpha)} \geq r_2$, $r_1, r_2 > 0$), the convergence rate of the estimators will be $n^{-2\alpha/(1+2\alpha)}$. Thus, Stone's [12] bound on the best obtainable rate is attained.

Let us also remark that the error $E_X(f(X) - \hat{f}_N(X))^2$, for which convergence rates were obtained above, is related to the prediction error $E(Y - \hat{f}_N(X))^2 = E_X(f(X) - \hat{f}_N(X))^2 + E\sigma^2(X)$.

It is easy to see that for the estimator \widetilde{f}_N defined by the formula

$$\widetilde{f}_N(x) = \begin{cases} \widehat{f}_N(x) & \text{if } \lambda_n \ge 1/2, \\ 0 & \text{otherwise,} \end{cases}$$

Theorems 2.1 and 2.2 are true, but we also have the following result concerning its IMSE.

THEOREM 2.3. Assume that $D \ge \rho \ge c > 0$, the sequence of natural numbers N(n), $n = 1, 2, \ldots$, satisfies

$$\lim_{n \to \infty} N(n) = \infty, \quad \lim_{n \to \infty} \frac{N(n)M_{N(n)}^2}{n} = 0$$

and f_N is the orthogonal projection of the regression function $f \in L^2(A)$ on span $\{e_1, \ldots, e_N\}$. Then the orthogonal series estimator $\tilde{f}_{N(n)}$ satisfies

$$E \int_{A} (f - \tilde{f}_{N(n)})^2 = O(N(n)/n + ||f - f_{N(n)}||^2 + N(n)M_{N(n)}^2/n).$$

Proof. According to the definition of \widetilde{f}_N , we have

$$E \int_{A} (f - \tilde{f}_N)^2 = E \chi_n \int_{A} (f - \hat{f}_N)^2 + E(1 - \chi_n) \int_{A} f^2$$

$$\leq c^{-1} E \chi_n \int_{A} (f - \hat{f}_N)^2 \varrho + P(\lambda_n < 1/2) ||f||^2.$$

As remarked in the proof of Theorem 2.2, the first term on the right hand side is $O(N(n)/n + ||f - f_{N(n)}||^2)$ and the second term is bounded by $4||f||^2 N M_N^2 c^{-1}/n$, which completes the proof.

Since λ_n is the minimal eigenvalue of the matrix H_n which is not used in computations we cannot verify directly whether the condition $\lambda_n \geq 1/2$ is satisfied. However, Theorem 2.3 allows us to learn about IMSE convergence rates of the estimator. Namely, for many orthonormal systems it is possible to obtain a bound of the form

(5)
$$M_N^2 = \|e^N\|_{\infty}^2 = \sup_{x \in A} \sum_{k=1}^N e_k^2(x) \le KN,$$

where K is a constant [1]. This clearly holds for uniformly bounded systems (e.g. the trigonometric system in $L^2([0, 2\pi]^d)$) but also for strongly localized systems (e.g. the splines, piecewise polynomials) and leveled localized systems (e.g. compactly supported wavelets in $L^2[0,1]$) [1], [13]. For such systems the condition $N(n)M_{N(n)}^2/n \to 0$ is satisfied if $N(n)^2/n \to 0$ as $n \to \infty$ and under the assumptions of Theorem 2.3 we have $E ||f - \tilde{f}_{N(n)}||^2 = O(||f - f_{N(n)}||^2 + N(n)^2/n)$. Assuming further that $||f - f_N|| = O(N^{-\alpha})$ we see that for $N(n) \sim n^{1/(2+2\alpha)}$ the IMSE convergence rate of \tilde{f}_N is $n^{-\alpha/(\alpha+1)}$.

3. Uniform convergence rates. In this section a result on uniform convergence rates of orthogonal series estimators is proved. It extends the results of [9] where only uniform pointwise consistency of trigonometric and polynomial estimators was examined.

THEOREM 3.1. Assume that $\varrho \ge c > 0$, the sequence of natural numbers $N(n), n = 1, 2, \ldots$, satisfies

$$\lim_{n \to \infty} N(n) = \infty, \quad \lim_{n \to \infty} \frac{N(n)M_{N(n)}^2}{n} = 0,$$

and for N > 0 there exist $f_N \in \text{span}\{e_1, \ldots, e_N\}$ such that $||f - f_N||_{\infty} = O(N^{-\alpha})$ as $N \to \infty$, where $\alpha > 0$. Then the orthogonal series estimator $\widehat{f}_{N(n)}$ satisfies

$$||f - \hat{f}_{N(n)}||_{\infty} = O_p(M_{N(n)}(N(n)^{1/2} + N(n)^{-\alpha})).$$

Proof. Putting $f_N(x) = \langle h^N(x), b_N \rangle$, by the triangle and Cauchy inequalities we have

$$\begin{aligned} \chi_n |f(x) - \widehat{f}_N(x)| &\leq \chi_n |f(x) - f_N(x)| + \chi_n |\langle h^N(x), b_N - \widehat{b}_N \rangle| \\ &\leq O(N^{-\alpha}) + \chi_n ||h^N(x)|| \cdot ||b_N - \widehat{b}_N|| \end{aligned}$$

for $x \in A$, and according to (2) we further obtain

$$\chi_n \| f - \hat{f}_N \|_{\infty} \le O(N^{-\alpha}) + \chi_n \| b_N - \hat{b}_N \| M_N c^{-1/2}.$$

Since the condition $N(n)M_{N(n)}^2/n \to 0$ as $n \to \infty$ implies $P(\chi_n \neq 1) \to 0$ we get the assertion by Lemma 2.2.

The uniform convergence rates for the above series estimators do not attain Stone's [12] bound on the best obtainable rate for the uniform error but they improve on some rates obtained earlier, e.g. on those of Cox [2].

4. Conclusions. As proved in [8], if we use orthogonal systems of analytic functions to construct estimators of regression functions (e.g. trigonometric functions or multivariate polynomials), the normal equations matrix

 G_n is almost surely positive definite for $N \leq n$ for any density ρ . Thus, in that case the estimators are uniquely defined with probability one.

Let $\beta = (\beta_1, \ldots, \beta_d)$ be a vector of nonnegative integers, and $|\beta| = \sum_{k=1}^d \beta_k$. For a vector function $f(x) = (f_1(x), \ldots, f_N(x))^T$ define the vector of partial derivatives $\partial^{|\beta|} f(x) = \partial^{|\beta|} f(x) / \partial x_1^{\beta_1} \ldots \partial x_d^{\beta_d}$ and for any nonnegative integer r let $||f||_r = \max_{|\beta| \le r} \sup_{x \in A} ||\partial^{|\beta|} f(x)||$. Now put $P_r(N) = \max_{|\beta| \le r} \sup_{x \in A} ||\partial^{|\beta|} e^N(x)||$ and assume that $\varrho \in L^1(A), \ \varrho \ge c > 0$, and for N > 0 there exists a vector b_N such that

Now put $P_r(N) = \max_{|\beta| \le r} \sup_{x \in A} \|\partial^{|\beta|} e^N(x)\|$ and assume that $\varrho \in L^1(A)$, $\varrho \ge c > 0$, and for N > 0 there exists a vector b_N such that $\|f - b_N^T e^N\|_r i = O(N^{-\alpha})$, where $\alpha > 0$. Under the above assumptions, using the same technique as in the proof of Theorem 3.1 we can prove that $\|f - \widehat{f}_{N(n)}\|_r = O_p(P_r(N(n))(N(n)^{1/2}/n^{1/2} + N(n)^{-\alpha}))$ if the natural numbers N(n) satisfy $\lim_{n\to\infty} N(n) = \infty$ and $\lim_{n\to\infty} N(n)P_0^2(N(n))/n = 0$.

The exponent α defining the decrease rate of the uniform approximation error of the regression function and its derivatives up to order r is related not only to the smoothness of the regression function but also to the dimensionality of X and the size of r. For example, if f is continuously differentiable of order s on $[-1,1]^d$, then in the case of polynomial approximation and r = 0 we have $\alpha = s/d$ according to Lorentz [5]. It is much more difficult to find in the literature a corresponding result for the case when r > 0, except in two cases. Namely, when X is univariate it is well known that $\alpha = s - r$ (see [5]), and when f is analytic it is known that for any r the assumption of uniform approximation rate in the norm $|| * ||_r$ will hold with α equal to an arbitrarily large positive number.

Now consider the observation model $Y_i = f(X_i) + \eta_i$, i = 1, ..., n, where the η_i are realizations of some strictly stationary β mixing process, centered in expectation, with β mixing sequence $(\beta_k)_{k\geq 0}$ satisfying the condition $\sum_{k\geq 0} \beta_k < \infty$ (see [13]). In that case in view of the inequalities $\chi_n \lambda_n^{-1} \leq 2$ and $\|h_N\|_{\infty} \leq M_N / \sqrt{c}$ we have

$$E\chi_{n} \left\| H_{n}^{-1} \frac{1}{n} \sum_{i=1}^{n} \eta_{i} h^{N}(X_{i}) \right\|^{2} \leq E_{X} E_{\eta} \chi_{n} \lambda_{n}^{-2} \left\| \frac{1}{n} \sum_{i=1}^{n} \eta_{i} h^{N}(X_{i}) \right\|^{2}$$

$$\leq 4E_{X} \chi_{n} \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} E_{\eta} \eta_{i} \eta_{j} \langle h^{N}(X_{i}), h^{N}(X_{j}) \rangle$$

$$\leq 4E_{X} \chi_{n} \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} |\operatorname{cov}(\eta_{i}, \eta_{j})| \cdot \| h^{N}(X_{i}) \| \cdot \| h^{N}(X_{j}) \|$$

$$\leq \frac{4M_{N}^{2}}{n^{2}c} \sum_{i=1}^{n} \sum_{j=1}^{n} |\operatorname{cov}(\eta_{i}, \eta_{j})| \leq \frac{8M_{N}^{2}}{nc} \sum_{i=1}^{n} |\operatorname{cov}(\eta_{i}, \eta_{1})| = O\left(\frac{M_{N}^{2}}{n}\right).$$

since for β mixing processes satisfying the imposed conditions the sums

 $\sum_{i=1}^{n} |\operatorname{cov}(\eta_i, \eta_1)|$ are bounded by a constant (see Theorem 2.2 in [13] for details). Thus, for such observation models we obtain, as in Lemma 2.2, the bound $E\chi_n \|\hat{b}_N - b_N\|^2 = O(M_N^2/n + N^{-2\alpha})$, which implies that for orthogonal systems satisfying (5) the convergence rates of the relevant errors are the same as in the case of independent observations.

References

- L. Birgé and P. Massart, Minimum contrast estimators on sieves: exponential bounds and rates of convergence, J. Bernoulli Soc. 4 (1998), 329–375.
- D. D. Cox, Approximation of least squares regression on nested subspaces, Ann. Statist. 16 (1988), 713–732.
- [3] L. Györfi and H. Walk, On the strong universal consistency of a series type regression estimate, Math. Methods Statist. 5 (1996), 332–342.
- [4] J. Z. Huang, Projection estimation in multiple regression with application to functional ANOVA models, Ann. Statist. 26 (1998), 242–272.
- [5] G. G. Lorentz, Approximation of Functions, Holt, Reinehart & Winston, New York, 1966.
- G. Lugosi and K. Zeger, Nonparametric estimation via empirical risk minimization, IEEE Trans. Inform. Theory IT-41 (3) (1995), 677–687.
- [7] P. Niyogi and F. Girosi, Generalization bounds for function approximation from scattered noisy data, Adv. Comput. Math. 10 (1999), 51–80.
- [8] W. Popiński, On least squares estimation of Fourier coefficients, and of the regression function, Appl. Math. (Warsaw) 22 (1993), 91–102.
- [9] —, Consistency of trigonometric and polynomial regression estimators, ibid. 25 (1998), 73–83.
- [10] —, A note on orthogonal series regression function estimators, ibid. 26 (1999), 281–291.
- [11] E. Rafajłowicz, Nonparametric least-squares estimation of a regression function, Statistics 19 (1988), 349–358.
- C. J. Stone, Optimal global rates of convergence for nonparametric regression, Ann. Statist. 10 (1982), 1040–1053.
- G. Viennet, Least-square estimation for regression on random design for absolutely regular observations, Statist. Probab. Lett. 43 (1999), 13-23.

Waldemar Popiński Department of Survey Organization Central Statistical Office Al. Niepodległości 208 00-925 Warszawa, Poland E-mail: w.popinski@stat.gov.pl

> Received on 23.12.1999; revised version on 31.7.2000