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Abstract. We prove a series of “going-up” theorems contrasting the structure of
semiprime algebras and their subalgebras of invariants under the actions of Lie color
algebras.

1. Introduction and terminology. Over the last 25 years, there have
been many papers analyzing the invariants and actions of groups and Lie
algebras. Actions of groups and Lie algebras correspond, respectively, to
actions of group algebras and enveloping algebras, both of which are co-
commutative Hopf algebras. However, recent work on quantum groups has
increased the interest in Hopf algebras which are neither commutative nor
cocommutative.

In a recent paper [BG1], we examined Lie superalgebras L and their
actions on associative algebras R and proved a series of “going-up” theorems
relating the structure of the subalgebra of invariants RL to the original
algebra R. Actions of Lie superalgebras L on Z2-graded algebras correspond
to actions of Hopf algebras H = U(L) ∗ G, where U(L) is the enveloping
algebra of L and G is a group of order two. Hopf algebras of this form are of
particular interest as they provide a large class of examples of Hopf algebras
which are neither commutative nor cocommutative.

Lie superalgebras can be considered as part of a larger class of nonasso-
ciative algebras known as Lie color algebras. Lie color algebras L are graded
by abelian groups G and the homogeneous elements of L act on G-graded
algebras as skew derivations. Lie color algebras L also have an enveloping
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algebra U(L) on which the group G acts. Actions of L then correspond to
actions of H = U(L) ∗ G and H is once again a noncommutative, nonco-
commutative Hopf algebra. Therefore, in an attempt to better understand
the actions of noncommutative, noncocommutative Hopf algebras, it is rea-
sonable to look at the actions of Lie color algebras.

In [Sc], Scheunert shows that if L is a Lie color algebra and G is finitely
generated, then the multiplication in L can be twisted by a 2-cocycle to
obtain a new algebra L̃ which is actually a Lie superalgebra. Motivated by
Scheunert’s work, we show in Theorem 3 that whenever a Lie color algebra L
acts on a G-graded algebra A, then A can be twisted to obtain a new algebra
Ã on which the Lie superalgebra L̃ acts. By contrasting the structure of the
algebras A and Ã and their subalgebras of invariants, we are in a position
to extend our results of [BG1] from Lie superalgebras to Lie color algebras.

Our main result in this direction, which we prove in Section 4, is

Theorem 16. Let R =
⊕

g∈GRg be a semiprime K-algebra graded
by a finitely generated abelian group G and suppose R is acted on by a
finite-dimensional nilpotent Lie color algebra L =

⊕
g∈G Lg such that if

charK=p (the characteristic of K) then L is restricted and if charK = 0
then L acts by algebraic transformations.

(i) If RL is right Noetherian, then R is a Noetherian right RL-module.
In particular , R is Noetherian and finitely generated as a right RL-module.

(ii) If RL is right Artinian, then R is an Artinian right RL-module. In
particular , R is Artinian and finitely generated as a right RL-module.

(iii) If RL is finite-dimensional over K, then R is finite-dimensional
over K.

(iv) If RL has finite Goldie dimension as a right RL-module, then R
has finite Goldie dimension as a right R-module.

(v) If RL has Krull dimension α as a right RL-module, then R has
Krull dimension α as a right RL-module. Thus R has Krull dimension at
most α as a right R-module.

We begin by defining many of the terms we will use throughout this pa-
per. L will be a vector space over a field K of characteristic different from 2.
G will be an abelian group and we call a map ε : G × G → K∗ a bichar-
acter if ε(g, hk) = ε(g, h)ε(g, k) and ε(g, h) = ε(h, g)−1 for all g, h, k ∈ G.
L is said to be a G-graded algebra if there exist K-subspaces Lg such that
L =

⊕
g∈G Lg and L has a K-linear multiplication [ , ] such that [Lg, Lh] ⊆

Lgh for all g, h ∈ G.

L is a Lie color algebra over the field K if L is a G-graded algebra and
there exists a bicharacter ε : G×G→ K∗ such that

[x, y] = −ε(g, h)[y, x] and [[x, y], z] = [x, [y, z]]− ε(g, h)[y, [x, z]]
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for all x ∈ Lg, y ∈ Lh, and z ∈ L. Observe that if G = Z2 and ε0 is the
bicharacter given by ε0(i, j) = (−1)ij then L = L0 ⊕ L1 is an ordinary Lie
superalgebra.

The elements of
⋃
g∈G Lg are known as the homogeneous elements of L.

If g ∈ G, then it is easy to check that either ε(g, g) = 1 or −1. If we let
G+ = {g ∈ G | ε(g, g) = 1} and G− = {g ∈ G | ε(g, g) = −1}, then we can
let L+ =

⋃
g∈G+

Lg and L− =
⋃
g∈G− Lg. In addition, if charK = 3, then

we also require that [x, [x, x]] = 0 for all x ∈ L−.

If charK = p > 2, there is one additional structure we can add. We say
that L is a restricted Lie color algebra over a field K of characteristic p > 2
if L is a Lie color algebra with a pth power map L+ → L+, denoted by [p],
satisfying

(i) (αx)[p] = αpx[p] for all α ∈ K and x ∈ L+;

(ii) [x[p], y] = (adx)p(y) for all x ∈ L+ and y ∈ L;

(iii) (x+ y)[p] = x[p] + y[p] +
∑p−1
i=1 si(x, y) for all x, y ∈ L+;

where adx(y) = [x, y] and isi(x, y) is the coefficient of ti−1 in (adtx+y)p−1(x).

We now give several important examples of Lie color algebras.

1. Let R =
⊕

g∈GRg be an associative G-graded algebra and let ε :
G×G→ K∗ be a bicharacter. Putting

[x, y] = xy − ε(g, h)yx

for all x ∈ Rg, y ∈ Rh, we obtain a Lie color algebra R(ε) and call it the
adjoint Lie color algebra.

2. Let V =
⊕

g∈G Vg be a G-graded vector space over a field K. For
any g ∈ G, consider a subspace Eg ⊆ EndK(V ) consisting of all linear
endomorphisms of degree g (i.e., endomorphisms mapping every Vh into
Vgh). Then

⊕
g∈GEg has a natural structure of an associative G-graded

algebra. If ε is a bicharacter on G, then we call the adjoint Lie color algebra
(
⊕

g∈GEg)
(ε) the general Lie color algebra and denote it by gl(V,G, ε).

3. Let A =
⊕

g∈GAg be an arbitrary G-graded algebra over K (not

necessarily associative), and let ε be a bicharacter. It is easy to see that
ε induces an action Φ : G → AutK(A) as K-linear automorphisms of A.
Indeed, the mapping Φ(g) : A → A given by Φ(g)(xh) = ε(g, h)xh, for all
xh ∈ Ah, is an automorphism of A and it is easy to verify that Φ is a group
homomorphism. Consider the subspace Der(A, ε) =

⊕
g∈GDg in gl(A,G, ε),

where Dg ⊂ Eg is the set of all Φ(g)-derivations of A of degree g. Recall
that if σ is an automorphism of A, then a K-linear endomorphism δ is said
to be a σ-derivation if δ(xy) = δ(x)y + xσδ(y) for all x, y ∈ A. It is easy to
check that Der(A, ε) is a Lie color subalgebra of gl(A,G, ε). Furthermore, if
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K has a positive characteristic p > 2, then the pth power map

p : Der(A, ε)+ → Der(A, ε)+

gives Der(A, ε) the structure of a restricted Lie color algebra.
Now we are able to define the action of a Lie color algebra on a graded

algebra. If L =
⊕

g∈G Lg is a Lie color algebra, we say that L acts on
A =

⊕
g∈GAg if there is a homomorphism of Lie color algebras Ψ : L →

Der(A, ε). In the characteristic p > 2 case, we additionally assume that L is
restricted and that Ψ also satisfies Ψ(l[p]) = Ψ(l)p, where [p] is the pth power
map and l ∈ L+. When L acts on A, we define the subalgebra of invariants
AL to be {a ∈ A | δ(a) = 0 for all δ ∈ Ψ(L)}.

Note that if L =
⊕

g∈G Lg acts on A =
⊕

g∈GAg , then we can assume
that L is faithfully graded by G, i.e., the subgroup H = {g ∈ G | ε(g,G) = 1}
is trivial. Indeed, the grading of L and A by G induces a grading by the quo-
tient group G/H and no information about the structure of L and Der(A, ε)
is lost when we consider L and A as G/H-graded algebras. Moreover, if the
characteristic of K is p > 0 and L is faithfully G-graded, then the group
G has no elements of order p. Indeed, if gp = 1, then for any x ∈ G we
have ε(g, x)p = ε(gp, x) = ε(1, x) = 1, so ε(g, x) = 1. Consequently, we can
always assume that when the characteristic of K is positive, then the orders
of all the elements of G are relatively prime to the characteristic.

2. Twisted algebras. Let G be an abelian group and let A =
⊕

g∈GAg
be a G-graded algebra over a field K. Let f ∈ Z2(G,K∗) be a 2-cocycle
with respect to the trivial action of G on K∗, that is, f : G × G → K∗

is a function such that f(xy, z)f(x, y) = f(x, yz)f(y, z) for all x, y, z ∈ G.

From A we obtain a new algebra Ã which is identical to A as a K-vector
space but whose multiplication ∗ is defined as

x ∗ y = f(g, h)xy,

where x ∈ Ag, y ∈ Ah. If δ : A → A is a linear endomorphism of degree g,

we define δ̃ to be the endomorphism

δ̃(x) = f(g, h)δ(x)

where x ∈ Ah.
For any g ∈ G and n ≥ 1, let

λ(g, n) =
n−1∏
j=1

f(g, gj).

Next, we define the function µ : G×G→ K∗ by

µ(g, h) =
f(g, h)

f(h, g)
.
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Lemma 1. Under the above notation,

(i) For any g, h ∈ G and n ≥ 1,
∏n−1
j=0 f(g, gjh) = λ(g, n)f(gn, h).

(ii) The function µ is a bicharacter on G.

P r o o f. (i) If j ≥ 1, we have

f(g, gjh) =
f(gj+1, h)f(g, gj)

f(gj , h)

and it therefore follows that
n−1∏
j=0

f(g, gjh) =

n−1∏
j=0

f(gj+1, h)f(g, gj)

f(gj , h)

= f(gn, h)

n−1∏
j=1

f(g, gj) = λ(g, n)f(gn, h),

as required.

(ii) Since G is abelian, for a, b, c ∈ G,

µ(ab, c) =
f(ab, c)

f(c, ab)
=
f(a, bc)f(b, c)

f(a, b)
· f(a, b)

f(ca, b)f(c, a)
=
f(ab, c)

f(ac, b)
· f(b, c)

f(c, a)

=
f(a, bc)f(a, c)f(b, c)

f(a, cb)f(c, b)f(c, a)
= µ(a, c)µ(b, c).

Clearly, µ(a, b) = µ(b, a)−1, thus µ is a bicharacter.

Now we will examine properties of the functor ˜ for a large class of
algebras including associative, alternative, Lie and Lie color algebras. Fol-
lowing [BG2], recall that an algebra A over a field K is said to be a left
(α, β, γ)-algebra if there exists a multiplicatively closed set S = S(A) which
generates A as a vector space and there exist functions α, β, γ : S × S → k
such that

x(yz) = α(x, y)y(xz) + β(x, y)(xy)z + γ(x, y)(yx)z

for all x, y ∈ S and z ∈ A.

Analogously, A is a right (α, β, γ)-algebra if it satisfies the identity

(zx)y = α(x, y)(zy)x+ β(x, y)z(xy) + γ(x, y)z(yx)

for all x, y ∈ S and z ∈ A.

Algebras which are both left and right (α, β, γ)-algebras are simply called
(α, β, γ)-algebras.

We will say that an (α, β, γ)-algebra A is G-graded if A =
⊕

g∈GAg
is graded in the ordinary sense and additionally S(A) =

⋃
g∈G Sg, where

Sg = S(A) ∩Ag.
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Observe that:

1. Associative algebras are (α, β, γ)-algebras with S = A and α ≡ 0,
β ≡ 1, γ ≡ 0.

2. Antiassociative algebras are (α, β, γ)-algebras with S = A and α ≡ 0,
β ≡ −1, γ ≡ 0.

3. Left alternative algebras are left (α, β, γ)-algebras with S = A and
α ≡ −1, β ≡ 1, γ ≡ 1. Analogously, right alternative algebras are right
(α, β, γ)-algebras with S = A and α ≡ −1, β ≡ 1, γ ≡ 1.

4. Lie algebras are (α, β, γ)-algebras with S = A and α ≡ 1, β ≡ 1,
γ ≡ 0.

5. Lie color algebras are (α, β, γ)-algebras with S =
⋃
g∈G Lg and α = ε,

β ≡ 1, γ ≡ 0.

Proposition 2. Let A =
⊕

g∈GAg be a G-graded K-algebra and let

f ∈ Z2(G,K∗) be a 2-cocycle. Then

(i) If A is a G-graded (α, β, γ)-algebra, then Ã is a G-graded (α̃, β, γ̃)-
algebra, where α̃(x, y) = µ(g, h)α(x, y) and γ̃(x, y) = µ(g, h)γ(x, y) for all
x ∈ Sg, y ∈ Sh. In particular , if L =

⊕
g∈G Lg is an ε-Lie color algebra,

then L̃ is an ε̃-Lie color algebra, where ε̃ = µε. If charK = p > 2 and
L is restricted , then L̃ is also restricted with respect to the pth power map
[p]∗ : L̃+ → L̃+ given by x[p]∗ = λ(g, p)x[p], where x ∈ Lg.

(ii) If δa, δb : A → A are K-linear endomorphisms of degrees a and b
respectively , then

δ̃aδb =
1

f(a, b)
δ̃aδ̃b, hence δ̃na =

1

λ(a, n)
δ̃na .

(iii) If δ : A→ A is a K-linear algebraic endomorphism of degree g, then

δ̃ is also an algebraic endomorphism of degree g.

(iv) Let σ be an automorphism of A such that σ(Ah) ⊆ Ah for all h ∈ G
and let δ be a σ-derivation of A of degree g. Then δ̃ is a σ̂-derivation of Ã
of degree g, where σ̂(x) = µ(g, h)σ(x) for all x ∈ Ah and h ∈ G.

P r o o f. (i) Let a, b, c ∈ G, x ∈ Sa, y ∈ Sb, z ∈ Sc and let α = α(x, y),
β = β(x, y), γ = γ(x, y). Note that

f(b, c)f(a, bc) = f(a, b)f(ab, c) =
f(a, b)

f(b, a)
f(ba, c)f(b, a)

= µ(a, b)f(b, ac)f(a, c) = µ(a, b)f(ba, c)f(b, a).

Hence
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x ∗ (y ∗ z) = f(b, c)f(a, bc) · x(yz)

= f(b, c)f(a, bc)(α · y(xz) + β · (xy)z + γ · (yx)z)

=
f(b, c)f(a, bc)

f(a, c)f(b, ac)
α · y ∗ (x ∗ z) +

f(b, c)f(a, bc)

f(a, b)f(ab, c)
β · (x ∗ y) ∗ z

+
f(b, c)f(a, bc)

f(b, a)f(ba, c)
γ · (y ∗ x) ∗ z

=
f(a, b)

f(b, a)
α · y ∗ (x ∗ z) + β · (x ∗ y) ∗ z +

f(a, b)

f(b, a)
γ · (y ∗ x) ∗ z

= µ(a, b)α · y ∗ (x ∗ z) + β · (x ∗ y) ∗ z + µ(a, b)γ · (y ∗ x) ∗ z.

Consequently, Ã is a left (α̃, β, γ̃)-algebra, with the same spanning set S as
A. Analogously one can check the right condition.

We will prove that if charK = p > 2 and L is a restricted Lie color
algebra, then L̃ is also restricted. Let [ , ]∗ denote the Lie color bracket in L̃
and let x, y ∈ Lg, z ∈ Lh, where g ∈ G+, h ∈ G. It is also easy to check that
(·)[p]∗ satisfies the first axiom of a restricted Lie color algebra.

Since x[p]∗ ∈ Lgp , it follows from Lemma 1 that

[x[p]∗ , z]∗ = f(gp, h)λ(g, p)[x[p], z] = f(gp, h)λ(g, p)(adx)p(z)

=
f(gp, h)λ(g, p)∏p−1
j=0 f(g, gjh)

(ãdx)p(z) = (ãdx)p(z).

Next note that

( ˜adtx+y)p−1(x) =

p−1∏
j=1

f(g, gj)(adtx+y)p−1(x) = λ(g, p)(adtx+y)p−1(x).

Therefore the coefficient is̃i(x, y) of ti−1 in (adtx+y)p−1(x) is equal to
λ(g, p)isi(x, y) and consequently

(x+ y)[p]∗ = λ(g, p)(x+ y)[p] = λ(g, p)
(
x[p] + y[p] +

p−1∑
i=1

si(x, y)
)

= x[p]∗ + y[p]∗ +

p−1∑
i=1

s̃i(x, y).

Thus L̃ is indeed a restricted Lie color algebra.
(ii) Let x ∈ Lc, c ∈ G; since δaδb is of degree ab, we have

δ̃aδb(x) = f(ab, c)δaδb(x) =
f(ab, c)

f(b, c)f(a, bc)
δ̃aδ̃b(x)

=
f(ab, c)

f(ab, c)f(a, b)
δ̃aδ̃b(x) =

1

f(a, b)
δ̃aδ̃b(x),

as required.
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(iii) We will consider separately the cases where g is of finite and infinite
order. If gn = 1 then, for any x ∈ Ah, h ∈ G,

δ̃n(x) =

n−1∏
j=0

f(g, gjh)δn(x) = λ(g, n)f(gn, h)δn(x)

= λ(g, n)f(1, h)δn(x) = λ(g, n)f(1, 1)δn(x).

This means that there exists a scalar θ ∈ K such that, for any x ∈ A, δ̃n(x) =

θδn(x). Thus δ̃ is an algebraic endomorphism, provided δ is algebraic.
Now suppose that g is of infinite order and δ satisfies an identity

α0 + α1δ + . . .+ αm−1δ
m−1 + δm = 0.

For any x ∈ Ah, h ∈ G, and j ≥ 0, we have δj(x) ∈ Agjh, so δm(x) ∈
Agmh∩(Ag⊕ . . .⊕Agm−1h) = 0. Hence δ must be a nilpotent transformation

and clearly δ̃ must also be nilpotent.

Note that in both cases, δ̃ is algebraic provided δ is algebraic.
(iv) Let x ∈ Aa, y ∈ Ab, a, b ∈ G; then x ∗ y ∈ Aab and

δ̃(x ∗ y) = f(g, ab)f(a, b)δ(xy) = f(g, ab)f(a, b)(δ(x)y + σ(x)δ(y))

=
f(g, ab)f(a, b)

f(g, a)f(ga, b)
δ̃(x) ∗ y +

f(g, ab)f(a, b)

f(a, gb)f(g, b)
σ(x) ∗ δ̃(y)

= δ̃(x) ∗ y + σ̂(x) ∗ δ̃(y).

Hence δ̃ is a σ̂-derivation of Ã.

We can summarize our above considerations in the following

Theorem 3. Let A =
⊕

g∈GAg be a G-graded algebra acted on by a

Lie color algebra L =
⊕

g∈G Lg and let f ∈ Z2(G,K∗). Then the action

Ψ : L→ Der(A, ε) induces a unique action Ψ̃ : L̃→ Der(Ã, ε̃) such that the
diagram

L Der(A, ε)

L̃ Der(Ã, ε̃)

Ψ //

id

��
˜

��
Ψ̃ //

is commutative. In this situation, the subalgebras of invariants ÃL̃ and AL

are equal as sets. More precisely , AL =
⊕

g∈GA
L
g is G-graded and ÃL̃ can

be obtained from AL by deformation using f , i.e. ÃL̃ = ÃL. Furthermore,
if L acts by algebraic transformations, then L̃ also acts on Ã by algebraic
transformations. In the positive characteristic case, if L acts as a restricted

Lie color algebra, then L̃ also acts as a restricted Lie color algebra.
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P r o o f. It suffices to put Ψ̃(x) = Ψ̃(x). Indeed, if x ∈ La, y ∈ Lb where
a, b ∈ G then

Ψ̃([x, y]∗) = f(a, b) ˜Ψ([x, y]) = f(a, b)( ˜Ψ(x)Ψ(y)− ε(a, b) ˜Ψ(y)Ψ(x))

= f(a, b)

(
1

f(a, b)
Ψ̃(x)Ψ̃(y)

ε(a, b)

f(b, a)
Ψ̃(y)Ψ̃(x)

)
= Ψ̃(x)Ψ̃(y)− ε̃(a, b)Ψ̃(y)Ψ̃(x) = [Ψ̃(x), Ψ̃(y)]∗.

If L is restricted then, by Proposition 2,

Ψ̃(x[p]∗) = λ(a, p)Ψ̃(x[p]) = λ(a, p) ˜Ψ(x)p = (Ψ̃(x))p = Ψ̃(x)
p
.

The equalities ÃL̃ = AL (as sets) and ÃL̃ = ÃL (as algebras) follow immedi-

ately since both AL and ÃL̃ can be computed as invariants of homogeneous
elements from Ψ(L) and Ψ̃(L̃), respectively.

Now assume that the group G is finitely generated. We can then consider
the bicharacter ε̃ : G×G→ K∗ such that ε̃(g, h) = (−1)igih , where ig = 0 if
g ∈ G+ and ig = 1 if g ∈ G−. By [Sc] there exists a 2-cocycle f ∈ Z2(G,K∗)

such that ε̃ = µε. Then L̃ = L̃0⊕ L̃1 becomes an ordinary Lie superalgebra,
where L̃0 =

⊕
g∈G+

Lg, L̃1 =
⊕

g∈G− Lg. We now have

Corollary 4. Let A =
⊕

g∈GAg be a G-graded algebra acted on by
a Lie color algebra L =

⊕
g∈G Lg, where G is finitely generated , and let

A0 =
⊕

g∈G+
Ag, A1 =

⊕
g∈G− Ag. Then there exists a 2-cocycle f ∈

Z2(G,K∗) such that L̃ is a Lie superalgebra acting on the Z2-graded algebra

Ã=Ã0 ⊕ Ã1. Moreover , the subalgebras of invariants ÃL̃ and AL are equal
as sets. If L acts by algebraic transformations, then L̃ also acts on Ã by
algebraic transformations. In the positive characteristic case, if L acts as
a restricted Lie color algebra, then L̃ acts as a restricted Lie superalgebra.

3. Actions of nilpotent Lie color algebras. In this section we
begin our investigation of the invariants of the actions of nilpotent Lie color
algebras on algebras which are not necessarily associative.

Proposition 5. Let L = L0 ⊕ L1 be a finite-dimensional nilpotent Lie
superalgebra acting on an algebra A = A0⊕A1. Then AL 6= 0 if and only if
AL0 6= 0.

P r o o f. It is clear that if AL 6= 0, then AL0 6= 0. Suppose that AL0 6= 0;
since L is nilpotent we can choose a chain of subalgebras L(0) ⊆ L(1) ⊆ . . .
. . . ⊆ L(m) = L such that L(0) = L0, dimL(j + 1) = dimL(j) + 1, and
[L(j), L(j)] ⊆ L(j−1). We will prove, by induction on j, that AL(j) 6= 0. To
this end, let x ∈ L1 be homogeneous such that L(j) = L(j−1)⊕Kx, and let
δ = Ψ(x). Thus δ2 = 1

2Ψ([x, x]) ∈ Ψ(L0) and δ(δ(AL(j−1))) = δ2(AL(j−1)) ⊆
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Ψ(L0)(AL(j−1)) = 0. This means that δ(AL(j−1)) ⊆ AKx. However, for any
∂ ∈ Ψ(L(j − 1)), we have [∂, δ] ∈ L(j − 1) and

∂δ(AL(j−1)) = δ∂(AL(j−1)) + [∂, δ](AL(j−1)) = 0,

hence δ(AL(j−1)) ⊆ AL(j).
On the other hand, if δ(AL(j−1)) = 0 then clearly AL(j) = AL(j−1).

We now extend Proposition 5 from Lie superalgebras to Lie color alge-
bras.

Corollary 6. Let L =
⊕

g∈G Lg be a finite-dimensional nilpotent Lie

color algebra acting on an algebra A =
⊕

g∈GAg . Then AL 6= 0 if and only

if AL+ 6= 0.

P r o o f. Since L is finite-dimensional, the subgroup ofG generated by the
support of L is finitely generated. Therefore there exists a finitely generated
subgroup H of G which contains the support of L and AL+ ∩

⊕
h∈H Ah 6= 0.

Consequently, we may assume that G is finitely generated. By Corollary
4, we may assume without loss of generality that L is a nilpotent Lie su-
peralgebra acting on the Z2-graded algebra A = A0 ⊕ A1. The result now
immediately follows from Proposition 5.

In [J], Jacobson showed that if D is a nilpotent Lie algebra of derivations
of a finite-dimensional Lie algebra of characteristic 0 such that LD = 0,
then L is nilpotent. In [BG2, Corollary 3.3], we generalized this result to
Lie color algebras of arbitrary dimension. More precisely, we proved that
if L =

⊕
g∈G Lg is a Lie color algebra over a field K of characteristic 0

acted on by a finite-dimensional nilpotent Lie algebra D of homogeneous
derivations of L which are algebraic as K-linear transformations of L such
that LD = 0, then L is nilpotent with the index of nilpotency depending
only on the dimension of the action. We can now extend that result.

Theorem 7. Let L =
⊕

g∈G Lg be a Lie color algebra over a field K of
characteristic zero and let D ⊆ Der(L, ε) be a finite-dimensional nilpotent
Lie color algebra of skew derivations of L which are algebraic as K-linear
transformations of L. If LD = 0, then L is nilpotent.

P r o o f. Let GD denote the subgroup of G generated by the support
of D. Clearly, GD is finitely generated. Let H be any finitely generated
subgroup of G containing GD and let LH =

⊕
h∈H Lh. Clearly, LH is a

Lie color subalgebra of L (with the same bicharacter) and D can be viewed
as a subalgebra of Der(LH , ε). By Corollary 4, there exists a 2-cocycle f ∈
Z2(H,K∗) such that D̃ = D̃0 ⊕ D̃1 becomes an ordinary Lie superalgebra,

where D̃0 =
⊕

h∈H+
Dh, D̃1 =

⊕
h∈H− Dh. Furthermore, D̃ acts on L̃H by

algebraic transformations. From Proposition 5 it follows that L̃D̃0

H =0. Hence,
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by Corollary 3.3 from [BG2], the algebra L̃H is nilpotent and the index of

nilpotency of L̃H is bounded by some integerN which does not depend onH.
Note that LH must also be nilpotent with the same index of nilpotency ≤ N .
If x1, . . . , xN are homogeneous elements of L then there exits a finitely
generated subgroup H which contains GD such that {x1, . . . , xN} ⊆ LH .
This implies that

[x1, [x2, [. . . [xN−1, xN ] . . .]]] = 0.

Thus L is nilpotent.

If L if finite-dimensional, we can prove a characteristic p version of the
previous result.

Proposition 8. Let L =
⊕

g∈G Lg be a restricted Lie color algebra
finite-dimensional over a field K of characteristic p > 0 and let D ⊆
Der(L, ε) be a nilpotent restricted Lie color algebra of skew derivations of
L. If LD = 0, then L is nilpotent.

P r o o f. Since L is finite-dimensional, we may assume that G is finitely
generated. Using Corollaries 4 and 6 we can reduce the problem to the case
when L is a restricted Lie superalgebra acted on by a restricted nilpotent
Lie algebra D of homogeneous derivations. As in the proof of Lemma 3.2
in [BG1], for any n ≥ 0, let Z(n) denote the K-linear span of the set

{z[pn] | z ∈ D and [z[p
n], D] = 0}. If we take N such that Z(N) = Z(N+1),

then clearly I = Z(N) is an abelian restricted ideal of D. Moreover, it is easy

to see that if {z1, . . . , zm} is a basis of I, then {z[p]1 , . . . , z
[p]
m } is also a basis

of I. Therefore, by Hochschild’s theorem (see [M, Theorem 2.3.3]) on the
semisimplicity of restricted enveloping algebras, the restricted enveloping
algebra u(I) is semisimple. By [M, Corollary 2.3.5], there exists a finite sep-
arable extension E ⊇ K such that u(I)⊗KE is isomorphic to the dual of the
group algebra E[(Zp)n]. Let L′ = L⊗K E, D′ = D⊗K E and I ′ = I ⊗K E.
The K-linear action of D on L extends to an E-linear action of D′ on L′ with
(L′)D

′
=LD⊗KE. By the construction of I, the restriction of any derivation

of D to LI is nilpotent. Indeed, since D is nilpotent, there exists a k ≥ 1 such

that z[p
k] is central for all z ∈ D. Therefore z[p

k] is in I, for all z ∈ D, and
D acts nilpotently on LI . Now it is easy to see that LI = 0. Consequently,
we may assume that D = I, and L can be viewed as a (Zp)n-graded algebra
with zero identity component. Now if x ∈ L0 is a homogeneous element
with respect to the (Zp)n-grading, then (adx)p is a mapping preserving the
(Zp)n-grading of L and from the identity (adx)p = adx[p] it follows that
x[p] belongs to the center of L. Thus (adx)p = 0. On the other hand, if x
is a homogeneous element of L1, then from the Jacobi identity it follows
that (adx)2 = 1

2ad[x,x] and clearly [x, x] ∈ L0. Consequently, in this case
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(adx)2p = 0. Applying the Engel–Jacobson theorem on weakly nil sets, we
deduce that L must be nilpotent.

In light of Theorem 7 and Proposition 8, it is natural to ask:

Question. Does the conclusion of Proposition 8 still hold if we no longer
assume that L is finite-dimensional?

4.Actions on associative algebras. Let R =
⊕

g∈GRg be an associa-
tive G-graded K-algebra, where G is a finitely generated abelian group (de-
noted multiplicatively), and let f : G×G→ K∗ be a 2-cocycle. In addition,
suppose that G acts on R by K-linear homogeneous automorphisms, that is,

we have a group homomorphism σ : G→ Aut(R) such that R
σ(g)
h ⊆ Rh for

all g, h ∈ G. We let R(G, σ, f) denote the G-graded ring which is identical
to R as a K-vector space but whose multiplication ◦ is defined as

xg ◦ xh = f(g, h)xσ(h)g xh,

where xg ∈ Rg, xh ∈ Rh. In particular, R̃ = R(G, 1, f). We let R ∗(σ,f) G
denote the crossed product of G over R, i.e. each element r ∈ R ∗(σ,f) G
is uniquely expressed as the finite sum r =

∑
g∈G grg where the elements

{g | g ∈ G} are generators of R ∗(σ,f) G as a free left and right R-module
satisfying the conditions

gh = ghf(g, h), rg = grσ(g)

for all g, h ∈ G and r ∈ R.

Since G is abelian, it can be easily checked that we have a homogeneous
action σ̂ : G→ Aut(R(G, σ, f)) given by

r
σ̂(g)
h =

f(h, g)

f(g, h)
r
σ(g)
h .

Thus we can form a skew group ring R(G, σ, f) ∗ G with respect to the
action σ̂.

Proposition 9. The crossed product R ∗(σ,f)G and the skew group ring
R(G, σ, f) ∗G are isomorphic.

P r o o f. The mapping
∑
g∈G rg 7→

∑
g∈G grg provides an embedding

of R(G, σ, f) into R ∗(σ,f) G. Thus we can identify R(G, σ, f) with R =⊕
g∈G gRg ⊆ R∗(σ,f)G. In order to show that R∗(σ,f)G is a free right (left)

R-module, suppose that
∑
g∈G g r̃g = 0, where r̃g =

∑
x∈G xr

(g)
x ∈ R and

r
(g)
x ∈ Rx. Then

0 =
∑
g∈G

g
(∑
x∈G

xr(g)x

)
=
∑
g,x∈G

gxf(g, x)r(g)x =
∑
h∈G

h
(∑
g∈G

f(g, g−1h)r
(g)
g−1h

)
.
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Hence
∑
g∈G f(g, g−1h)r

(g)
g−1h = 0 for all h ∈ G. As a result, r

(g)
x = 0 for all

x, g ∈ G, and consequently r̃g = 0.
Now let r =

∑
x∈G rx ∈ R; therefore if g ∈ G, we have

gr =
∑
x∈G

gx−1xrxf(gx−1, x)−1 ∈
⊕
x∈G

xR.

Thus R ∗(σ,f) G =
⊕

g∈G gR as a right R-module. Furthermore, for any
g, x ∈ G and rx ∈ Rx (G is abelian),

(xrx)g = x · grσ(g)x = xgf(x, g)rσ(g)x = g · xf(x, g)

f(g, x)
rσ(g)x = g(xrx)σ̂(g).

If G is finite, then the above proposition shows that for the rings R and
R(G, σ, f), there exists a common overring S which can be viewed as a free
finite normalizing extension of both R and R(G, σ, f). Thus we have

Corollary 10. Let R =
⊕

g∈GRg be a G-graded K-algebra, where G

is a finite abelian group. Let f ∈ Z2(G,K∗) and suppose there is a homo-
geneous action σ : G→ Aut(R). Then

(i) R is right Artinian if and only if R(G, σ, f) is right Artinian.
(ii) R is right Noetherian if and only if R(G, σ, f) is right Noetherian.

(iii) R has finite Goldie dimension if and only if R(G, σ, f) has finite
Goldie dimension.

(iv) R has right Krull dimension α if and only if R(G, σ, f) has right
Krull dimension α.

The next proposition will allow us to consider separately the cases where
our groups are finite and torsion free. First, note that if G = A ⊕ B then
R has a natural structure as an A-graded ring (and clearly as a B-graded
ring). To this end, it suffices to let Sa =

⊕
b∈B Rab and R =

⊕
a∈A Sa.

If we let fA, fB , σA, σB denote the restrictions of f and σ to A and B
respectively, then we can form the ring R(A, σA, fA). On the other hand,
the ring R(A, σA, fA) is both G-graded and B-graded, therefore we can form
the ring R(A, σA, fA)(B, σB , fB), where

r
σB(x)
ab =

f(a, x)

f(x, a)
r
σB(x)
ab .

We have the following

Proposition 11. The rings R(G, σ, f) and R(A, σA, fA)(B, σB , fB) are
isomorphic.

P r o o f. First note that if the 2-cocycles f, f ′ determine the same element
in the second cohomology group H2(G,K∗), then the rings R(G, σ, f) and
R(G, σ, f ′) are isomorphic. Indeed, we have a 2-coboundary β : G×G→ K∗

such that f ′ = βf . In this case β(g, h) = φ(g)φ(h)/φ(gh) for some
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φ : G→ K∗. Consider the K-linear mapping α : R(G, σ, f) → R(G, σ, f ′)
given by α(rg) = (1/φ(g))rg. Therefore

α(rg ◦ rh) =
f(g, h)

φ(gh)
rσ(h)g rh =

φ(g)φ(h)

φ(gh)
f(g, h)α(rσ(h)g )α(rh)

= α(rg)
σ(h) ◦ α(rh)

and α is a ring isomorphism.

Now let a1, a2 ∈ A and b1, b2 ∈ B. Applying the 2-cocycle rule we have

f(a1b1, a2b2) =
f(a1b1b2, a2)f(a1b1, b2)

f(b2, a2)

=
f(b1b2, a1a2)f(a1, a2)

f(b1b2, a1)
· f(a1, b1b2)f(b1, b2)

f(a1, b1)f(b2, a2)

=
f(b1b2, a1a2)f(a1, a2)f(b1, b2)

f(a1, b1)f(b2, a2)
· f(a1, b1)f(a1, b2)

f(b1, a1)f(b2, a1)

= f(a1, a2)f(b1, b2)
f(b1b2, a1a2)

f(b1, a1)f(b2, a2)
· f(a1, b2)

f(b2, a1)
.

Letting φ(ab) = f(b, a), we have a 2-coboundary β connected with φ such
that

f(a1b1, a2b2) = β(a1b1, a2b2)fA(a1, a2)fB(b1, b2)
f(a1, b2)

f(b2, a1)
.

By the foregoing we have an isomorphism of rings R(G, σ, f) ≈ R(G, σ, f),
where

f(a1b1, a2b2) = fA(a1, a2)fB(b1, b2)
f(a1, b2)

f(b2, a1)
.

Next we need to prove that

R(G, σ, f) = R(A, σA, fA)(B, σB , fB).

To this end, let ◦G, ◦A, ◦B denote the multiplications in R(G, σ, f),
R(A, σA, fA) and R(A, σA, fA)(B, σB , fB), respectively. If ra1b1 , ra2b2 ∈ R,
we have

ra1b1 ◦B ra2b2 = fB(b1, b2)r
σ(b2)
a1b1

◦A ra2b2

= fB(b1, b2)
f(a1, b2)

f(b2, a1)
r
σ(b2)
a1b1

◦A ra2b2

= fB(b1, b2)fA(a1, a2)
f(a1, b2)

f(b2, a1)
(r
σ(b2)
a1b1

)σ(a2)ra2b2

= f(a1b1, a2b2)r
σ(a2b2)
a1b1

ra2b2 = ra1b1 ◦G ra2b2 .

We now contrast the structure of our algebras R to their twisted coun-
terparts R̃.
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Corollary 12. Let R =
⊕

g∈GRg be a G-graded K-algebra, where G

is a finitely generated abelian group, and let f ∈ Z2(G,K∗). Then

(i) If the orders of all the elements of G are either infinite or invertible

in K and R is semiprime, then R̃ is semiprime.
(ii) R is right Noetherian if and only if R̃ is right Noetherian.

(iii) R has finite right Goldie dimension if and only if R̃ has finite right
Goldie dimension.

P r o o f. Since G is finitely generated, G = T ⊕F , where T is the torsion
part of G and F is a torsion-free finitely generated subgroup of G. By Propo-
sition 11, the ring R̃ = R(G, 1, f) is isomorphic to R(T, 1, fT )(F, σF , fF ). To
prove part (i), note that the order |T | is invertible in K, hence the crossed
product R∗(1,fT )T is semiprime. Proposition 9 now implies that R(T, 1, fT )
is semiprime. Therefore we can continue the proof with the same arguments
for a torsion-free group F .

For parts (ii) and (iii), we note that Corollary 10 implies that if R
either is right Noetherian or has finite right Goldie dimension, then the
same properties hold for the ring R(T, 1, fT ). The result now follows by
the Hilbert basis theorem and the well known fact that a skew polynomial
ring of automorphism type has the same Goldie dimension as the ring of
coefficients.

Remark. It is not true that if R is prime then R̃ is prime. Clearly,
the field C of complex numbers is Z2-graded, where C0 = R and C1 = Ri.
Consider the 2-cocycle f given by f(k, l) = (−1)kl for k, l ∈ Z2. It is

easy to see that C̃ is isomorphic to the group algebra R[Z2], which is not
prime.

For a subset X of G, let LX =
⊕

x∈X Lx. Clearly, if H is a subgroup
of G, then LH can be viewed as a H-graded Lie color algebra with respect to
the bicharacter εH , the restriction of ε to H×H. We will need the following

Lemma 13. Let L =
⊕

g∈G Lg be a nilpotent G-graded Lie color algebra
and H a subgroup of G such that LG\H 6= 0. Then L contains an ideal
M containing LH and a homogeneous element x ∈ LG\H such that L =
M ⊕Kx.

P r o o f. We claim that if LG\H ⊆ [L,L], then LG\H = 0. To see this,
note that L = LH +LG\H , [LH , LH ] ⊆ LH and [LH , LG\H ] ⊆ LG\H . Hence
if LG\H ⊆ [L,L], then

LG\H ⊆ [LG\H , LH ] + [LG\H , LG\H ] ⊆ [LG\H , L].

By iterating the above formula, we see that

LG\H ⊆ [. . . [[LG\H , L], L], . . . , L] = 0,
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as claimed. Since L/[L,L] is abelian, any graded subspace is automatically
an ideal, thus we can find a subspace N of codimension one containing LH+
[L,L]/[L,L] and complementary to a homogeneous element x ∈ LG\H +
[L,L]/[L,L]. Therefore if we let M be the inverse image of N , then M is an
ideal with the desired property.

In the main result of this section, we will generalize the following result,
which was proved in [BG1].

Theorem 14. Let R be a semiprime K-algebra acted on by a finite-
dimensional nilpotent Lie superalgebra L such that if charK = p then L is
restricted and if charK = 0 then L acts on R as algebraic derivations and
algebraic superderivations.

(i) If RL is right Noetherian, then R is a Noetherian right RL-module.
In particular , R is right Noetherian and is a finitely generated right
RL-module.

(ii) If RL is right Artinian, then R is an Artinian right RL-module. In
particular , R is right Artinian and is a finitely generated right RL-module.

(iii) If RL is finite-dimensional over K then R is also finite-dimensional
over K.

(iv) If RL has finite Goldie dimension as a right RL-module, then R
has finite Goldie dimension as a right R-module.

(v) If RL has Krull dimension α as a right RL-module, then R has
Krull dimension α as a right RL-module. Thus R has Krull dimension at
most α as a right R-module.

Before proving our main result, we first need a lemma which is actually
part of Proposition 2.2 from [BG1].

Lemma 15. Suppose δ is a nilpotent skew derivation of a K-algebra R
and let R(δ) = {r ∈ R | δ(r) = 0}.

(i) If R(δ) is right Artinian, then R is an Artinian right R(δ)-module. In
particular , R is right Artinian and is a finitely generated right R(δ)-module.

(ii) If A is a subring of R(δ) such that R(δ) has Krull dimension α as a
right A-module, then R has Krull dimension α as a right A-module.

We can now prove the main result of this section.

Theorem 16. Let R =
⊕

g∈GRg be a semiprime K-algebra graded
by a finitely generated abelian group G and suppose R is acted on by a
finite-dimensional nilpotent Lie color algebra L =

⊕
g∈G Lg such that if

charK = p then L is restricted and if charK = 0 then L acts by algebraic
transformations.

(i) If RL is right Noetherian, then R is a Noetherian right RL-module.
In particular , R is Noetherian and finitely generated as a right RL-module.
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(ii) If RL is right Artinian, then R is an Artinian right RL-module. In
particular , R is Artinian and finitely generated as a right RL-module.

(iii) If RL is finite-dimensional over K, then R is finite-dimensional
over K.

(iv) If RL has finite Goldie dimension as a right RL-module, then R
has finite Goldie dimension as a right R-module.

(v) If RL has Krull dimension α as a right RL-module, then R has
Krull dimension α as a right RL-module. Thus R has Krull dimension at
most α as a right R-module.

P r o o f. In light of Corollary 12, we can immediately generalize parts (i),
(iii), and (iv) of Theorem 14 from the action of Lie superalgebras to Lie color
algebras. Therefore it remains to prove parts (ii) and (v). To this end, we
have a decomposition G = T ⊕F , where T is the torsion part of G and F a
torsion-free subgroup of G. If n is the order of T , let Fn = {gn | g ∈ F} and
H = T ⊕ Fn. Clearly, H is a subgroup of G of finite index, therefore G/H
is finite. Now we consider the action of LH on RH . By Lemmas 13 and 15,
it follows that if RL is Artinian (or has Krull dimension), then RLH has the
same property. (Recall that every homogeneous x∈LG\H acts as a nilpotent

skew derivation.) Note that RLH is G-graded and RLH

H = RH ∩ RLH , thus

RLH

H is also Artinian (or has Krull dimension). We now claim that RH has
the same property. Observe that the subgroups T and Fn are orthogonal
with respect to ε, that is, ε(T, Fn) = 1. This implies that LT acts on RH
viewed as a T -graded algebra. Moreover, we can again apply Lemmas 13
and 15 to see that RLT

H is Artinian (or has Krull dimension). By Theorem 14
and Corollary 15, we deduce that RH is semiprime Artinian (or with Krull
dimension). On the other hand, R can be viewed as a semiprime G/H-
graded algebra with identity component RH . Therefore, by the result of
Cohen–Rowen [CR, Theorem 1.7], R is a finitely generated RH -module, and
so R is Artinian (or has Krull dimension).
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