
COLLOQU IUM MATHEMAT I CUM
VOL. 83 2000 NO. 1

A GENERAL DIFFERENTIATION THEOREM

FOR SUPERADDITIVE PROCESSES

BY

RYOTARO SATO (OKAYAMA)

To the memory of my parents Hidetsugu and Shin Sato

Abstract. Let L be a Banach lattice of real-valued measurable functions on a σ-finite
measure space and T = {Tt : t > 0} be a strongly continuous semigroup of positive linear
operators on the Banach lattice L. Under some suitable norm conditions on L we prove
a general differentiation theorem for superadditive processes in L with respect to the
semigroup T .

Introduction. In this paper a differentiation theorem is proved for
superadditive processes in a Banach lattice of functions having an absolutely
continuous norm.

Let (Ω,Σ, µ) be a σ-finite measure space and L a vector lattice of real-
valued measurable functions on (Ω,Σ, µ) under pointwise operations. Thus
we understand that if f ∈ L then the function f+(ω) = max{f(ω), 0} is
also in L, and two functions f and g in L are not distinguished provided
that f(ω) = g(ω) for almost all ω ∈ Ω. We let |f |(ω) = max{f(ω),−f(ω)}.
Hereafter all statements and relations are assumed to hold modulo sets of
measure zero. We further assume that L becomes a Banach space under the
norm ‖ · ‖, and suppose the following properties:

(I) If f, g ∈ L and |f |(ω) ≤ |g|(ω) a.e. on Ω then ‖f‖ ≤ ‖g‖.
(II) If g is a real-valued measurable function on Ω such that |g|(ω) ≤

|f |(ω) a.e. on Ω for some f ∈ L then g ∈ L.
(III) If En ∈ Σ, En ⊃ En+1 for each n ≥ 1 and

⋂∞
n=1 En = ∅ then for

any f ∈ L we have

lim
n→∞

‖f · χEn
‖ = 0,

where χEn
denotes the characteristic function of En.
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An operator S : L → L is called positive if Sf(ω) ≥ 0 a.e. on Ω for
all f ∈ L+ = {f ∈ L : f(ω) ≥ 0 a.e. on Ω}. Let T = {Tt} = {Tt}t>0

be a strongly continuous semigroup of positive linear operators on L; thus
Tt+s = TtTs and limt→s ‖Ttf − Tsf‖ = 0 for all t, s > 0 and f ∈ L. T is
called locally strongly integrable if for each f ∈ L the vector-valued function
t 7→ Ttf is Bochner integrable on every finite interval with respect to the
Lebesgue measure. By a process in L we mean a family F = {Ft} = {Ft}t>0

of functions in L. A process F is called positive if Ft ∈ L+ for all t > 0,
increasing if Ft(ω) ≤ Fs(ω) a.e. on Ω for all s > t > 0, linearly bounded if

sup{‖Ft‖/t : 0 < t < s} < ∞

for some s > 0, and superadditive [resp. additive] (with respect to T = {Tt})
if

Ft+s(ω) ≥ Ft(ω) + TtFs(ω) a.e. [resp. Ft+s(ω) = Ft(ω) + TtFs(ω) a.e.]

on Ω for all t, s > 0.
By an easy computation, if T = {Tt} is locally strongly integrable and

if F = {Ft} is additive (with respect to T ) and such that the vector-valued
function t 7→ Ft is Bochner integrable on the unit interval (0, 1) with respect
to the Lebesgue measure, then we observe that

Ft = (I − Tt)

1\
0

Fs ds +

t\
0

TsF1 ds

for all t > 0. We note that the Bochner integrability of the function t 7→ Ft

on the interval (0, 1) follows from property (III) if F is positive.
If A ∈ Σ, then we let L(A) = {f ∈ L : f(ω) = 0 a.e. on Ω \ A} and

L+(A) = L(A) ∩ L+. It is easily seen (see e.g. [10]) that Ω decomposes
under a positive semigroup T = {Tt} into two sets P and N in Σ with the
following properties:

(i) if f ∈ L(N) then ‖Ttf‖ = 0 for all t > 0,
(ii) if 0 6= f ∈ L+(P ) then ‖Ttf‖ > 0 for some t > 0.

Since T = {Tt} is zero on L(N), it may be readily seen that there are
many positive superadditive processes in L(N) for which the limit
q-limt→0

1
t
Ft(ω) fails to exist a.e. on N , where q-limt→0 means that the

limit is taken as t approaches zero through a countable dense subset in the
interval (0, 1). However, the situation is different on P , and we shall prove
the following

Theorem. Let T = {Tt} be a strongly continuous semigroup of positive

linear operators on L. If F = {Ft} is a superadditive process in L (with
respect to T ) and satisfies

sup{‖F−
t ‖/t : 0 < t < s} < ∞
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for some s > 0, where F−
t (ω) = max{−Ft(ω), 0}, then the limit

q-lim
t→0

1

t
Ft(ω)

exists and is finite a.e. on P .

Various special cases of this theorem have already been proved; in partic-
ular, Wiener [12] has proved his local ergodic theorem for measure preserving
flows, and recently many authors have studied differentiation theorems in
the setting of strongly continuous semigroups T = {Tt}t>0 of positive linear
operators on Lp with 1≤p<∞ (cf. e.g. [2]–[7], [9]). For this subject we re-
fer the reader to Krengel’s book [8] (see especially Chapter 7). The present
theorem generalizes a differentiation theorem of [6], where superadditive
processes have been considered in Lp-spaces and semigroups T = {Tt} have
been assumed to be locally strongly integrable. But, besides Lp-spaces, there
are many interesting function spaces which satisfy properties (I)–(III). Ex-
amples are Lorentz spaces and Orlicz spaces, etc. The purpose of this paper
is to generalize the differentiation theorem to such function spaces.

Acknowledgments. The author thanks Professor Tsuyoshi Ando of
Hokusei Gakuen University for suggesting the existence of a strictly positive
measurable function w on Ω such that

T
Ω
|f |w dµ < ∞ for all f ∈ L (cf.

Lemma 5 below). This fact is important in the paper.

Preliminaries. In this section we provide some necessary lemmas and
propositions. For the sake of completeness we give proofs, although some
are standard. L will denote the Banach lattice of functions mentioned in the
Introduction.

Lemma 1. If fn ∈ L for n ≥ 1 and
∑∞

n=1 ‖fn‖ < ∞ then
∑∞

n=1 |fn(ω)|
< ∞ a.e. on Ω.

P r o o f. Let gn(ω) = |fn|(ω). Then gn ∈ L+ and ‖gn‖ = ‖fn‖ by prop-
erty (I). Since

∑∞
n=1 ‖gn‖ < ∞, there is an s ∈ L such that

lim
n→∞

∥∥∥s−
n∑

i=1

gi

∥∥∥ = 0.

Then the functions hn(ω) =
∑n

i=1 gi(ω) satisfy 0 ≤ hn(ω) ≤ hn+1(ω) a.e.
on Ω and limn→∞ ‖s−hn‖ = 0, so that we must have limn→∞ hn(ω) = s(ω)
a.e. on Ω. This completes the proof.

Lemma 2. Let f ∈ L and fn ∈ L for n ≥ 1. If limn→∞ ‖f − fn‖ =
0, then there exists a subsequence (n′) of (n) such that limn′→∞ fn′(ω) =
f(ω) a.e. on Ω.

P r o o f. Obvious from Lemma 1.
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Lemma 3. Let f ∈ L+ and fn ∈ L+ for n ≥ 1. If f(ω) ≥ fn(ω) ≥
fn+1(ω) a.e. on Ω for each n ≥ 1, and limn→∞ fn(ω) = 0 a.e. on Ω then

limn→∞ ‖fn‖ = 0.

P r o o f. Let ε > 0 be an arbitralily fixed number. Suppose f 6= 0, and
write

An = {ω : f(ω) ≥ 1/n} and Bn = {ω : 0 < f(ω) < 1/n} for n ≥ 1.

Since f(ω) ≥ 1
n
χAn

(ω) ≥ 0 on Ω, it follows from property (II) that χAn
∈ L.

Since An ↑ {ω : f(ω) > 0} as n → ∞, there exists an M ≥ 1 such that
µ(AM ) > 0. Then ‖χAM

‖ > 0, and so we can put

α =
ε

4‖χAM
‖
.

Since Bn ↓ ∅ as n → ∞, it follows from property (III) that

lim
n→∞

‖f · χBn
‖ = 0.

Therefore we may suppose without loss of generality that the above M is
such that

‖f · χBn
‖ ≤ ‖f · χBM

‖ < ε/2 for all n ≥ M.

Then, since fn = fn · χAM
+ fn · χBM

, we have

‖fn‖ ≤ ‖fn · χAM
‖+ ‖fn · χBM

‖

≤ ‖fn · χAM
‖+ ‖f · χBM

‖ < ‖fn · χAM
‖+ ε/2,

and

‖fn · χAM
‖ ≤ ‖fn · χAM∩{ω:fn(ω)>α}‖+ ‖fn · χAM\{ω:fn(ω)>α}‖

≤ ‖f · χAM∩{ω:fn(ω)>α}‖+ α‖χAM
‖

≤ ‖f · χAM∩{ω:fn(ω)>α}‖+ ε/4.

Since AM ∩ {ω : fn(ω) > α} ↓ ∅ as n → ∞, property (III) implies

lim
n→∞

‖f · χAM∩{ω:fn(ω)>α}‖ = 0;

consequently, we can find an n0 ≥ 1 such that if n ≥ n0 then

‖fn‖ <
ε

4
+

ε

4
+

ε

2
= ε.

This completes the proof.

Lemma 4. Let S : L → L be a positive linear operator. Then |Sf |(ω) ≤
S|f |(ω) a.e. on Ω for any f ∈ L, and ‖S‖ < ∞.

P r o o f. Since −|f |(ω) ≤ f(ω) ≤ |f |(ω) on Ω, the positivity of S implies
that −S|f |(ω) ≤ Sf(ω) ≤ S|f |(ω) a.e. on Ω. Next, to prove ‖S‖ < ∞,
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suppose the contrary: ‖S‖ = ∞. Then for each n ≥ 1 there exists fn ∈ L+

such that ‖fn‖ = 1 and ‖Sfn‖ > n3. Then the function

f =

∞∑

n=1

n−2fn (∈ L+)

satisfies Sf(ω) ≥
∑n

i=1 i
−2Sfi(ω) ≥ n−2Sfn(ω) ≥ 0 a.e. on Ω, so that we

apply property (I) to infer that ‖Sf‖ ≥ n−2‖Sfn‖ > n for each n ≥ 1. But
this is a contradiction, since Sf ∈ L.

Lemma 5. There exists a measurable function w on Ω, with w(ω) > 0
a.e. on Ω, such that \

Ω

fw dµ < ∞ for all f ∈ L+.

P r o o f. By an easy argument, it suffices to consider the case where
there exists an increasing sequence (fn) of functions in L+ such that fn(ω) ↑
∞ a.e. on Ω as n → ∞. Let An = {ω : fn(ω) ≥ 1}. Then we have

χAn
∈ L by property (II) and Ω =

∞⋃

n=1

An.

First, fix an n ≥ 1. If f ∈ L(An) and f 6= 0, take a continuous linear
functional ϕ on L by the Hahn–Banach theorem such that ϕ(f) 6= 0. Define

ν(E) = ϕ(χE) for E ∈ Σ(An),

where Σ(An) = {E ∈ Σ : E ⊂ An}. (We note that if E ∈ Σ(An) then
χE ∈ L by property (II).) If Ei ∈ Σ(An), Ei ⊃ Ei+1 for each i ≥ 1 and⋂∞

i=1Ei = ∅, then limi→∞ ‖χEi
‖ = 0 by property (III). It follows that ν is a

signed (countably additive) measure on (An, Σ(An)). Since ν is absolutely
continuous with respect to µ, we then apply the Radon–Nikodym theorem
to infer that there exists a real-valued measurable function h on Ω, with
{ω : h(ω) 6= 0} ⊂ An, such that for all E ∈ Σ(An),

ϕ(χE) = ν(E) =
\
E

hdµ.

If g ∈ L then by property (II) there exists a sequence (gi) of simple
functions in L such that |gi(ω)| ≤ |g(ω)| and |g(ω)− gi(ω)| ↓ 0 a.e. on Ω as
i → ∞. Hence limi→∞ ‖g − gi‖ = 0 by Lemma 3, and we have

ϕ(g · χAn
) = lim

i→∞

\
An

gihdµ.

Further, using Fatou’s lemma, we see that
T
An

|gh| dµ < ∞, and thus

ϕ(g · χAn
) =

\
An

gh dµ =
\
gh dµ.
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Since ϕ(f)=
T
An

fh dµ 6= 0, it follows that h 6≡ 0 on An. By this fact and the

σ-finiteness of µ it is standard from an exhaustion argument (cf. e.g. p. 17
of [8]) to see that there exists a sequence (hn) of real-valued measurable
functions on Ω such that

(i) for all g ∈ L and n ≥ 1,
T
Ω
|ghn| dµ < ∞,

(ii) the linear functionals ϕn on L defined by ϕn(g) =
T
Ω
ghn dµ for

g ∈ L are nonzero and continuous,
(iii) Ω =

⋃∞
n=1{ω : |hn(ω)| > 0}.

Since the positive linear functionals ηn on L defined by ηn(g) =
T
Ω
g|hn| dµ

for g ∈ L satisfy ‖ηn‖ = ‖ϕn‖ by property (I), the bounded linear functional

η =

∞∑

n=1

ηn
2n‖ηn‖

on L has the representation

η(g) =
\
Ω

g(ω)

( ∞∑

n=1

|hn(ω)|

2n‖ϕn‖

)
dµ for g ∈ L.

It follows that the function

w(ω) =
∞∑

n=1

|hn(ω)|

2n‖ϕn‖
for ω ∈ Ω

satisfies the desired properties of the lemma, and the proof is complete.

Lemma 6. Let S : L → L be a positive linear operator and w be a

nonnegative measurable function on Ω such that
T
Ω
|f |w dµ < ∞ for all

f ∈ L. Then there exists a nonnegative measurable function v on Ω, written
as v = S∗w, such that\

Ω

(Sf)w dµ =
\
Ω

fv dµ for all f ∈ L.

P r o o f. As in Lemma 5, we may assume that there exists a sequence
(An) of sets in Σ such that

(i) χAn
∈ L for each n ≥ 1,

(ii) An ∩Am = ∅ for n 6= m,
(iii) Ω =

⋃∞
n=1 An.

By Lemma 4, S is bounded. Similarly we observe that the positive linear
functional ϕ on L defined by ϕ(f) =

T
Ω
(Sf)w dµ is bounded. It follows

from the proof of Lemma 5 that for each n ≥ 1 there exists a nonnegative
measurable function vn on Ω, with {ω : vn(ω) 6= 0} ⊂ An, such that\

Ω

(Sf)w dµ =
\
Ω

fvn dµ for all f ∈ L(An).
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Letting v(ω) = vn(ω) for ω ∈ An, we have a nonnegative measurable func-
tion v on Ω, and letting Bn =

⋃n
i=1 Ai, we see from property (III) that for

any f ∈ L,\
Ω

(Sf)w dµ = lim
n→∞

\
Ω

[S(f · χBn
)]w dµ = lim

n→∞

\
Bn

fv dµ =
\
Ω

fv dµ,

which completes the proof.

Lemma 7. Let T = {Tt}t>0 be a strongly continuous semigroup of positive

linear operators on L. Then Ω decomposes under T into two sets C and D
in Σ with the properties that

(i) for some h ∈ L+, C =
⋃∞

n=1{ω : T1/nh(ω) > 0},
(ii) for any t > 0 and f ∈ L, Ttf(ω) = 0 a.e. on D.

P r o o f. As is easily seen, it suffices to consider the case where there
exists an h ∈ L+ with h(ω) > 0 on Ω. If g is another function in L+ with
g(ω) > 0 on Ω then, letting gk(ω) = min{kg(ω), h(ω)}, we see that gk ∈ L+

by property (II) and 0 ≤ gk(ω) ↑ h(ω) as k → ∞ for each ω ∈ Ω. Since
h − gk ∈ L+, it follows from Lemma 3 that limk→∞ ‖h − gk‖ = 0, and so
for any n ≥ 1 we have limk→∞ ‖T1/nh− T1/ngk‖ = 0. Thus by Lemma 2 it
follows that

{ω : T1/nh(ω) > 0} ⊂
∞⋃

k=1

{ω : T1/ngk(ω) > 0},

which together with the fact that T1/ngk ≤ kT1/ng on Ω implies {ω :
T1/nh(ω) > 0} ⊂ {ω : T1/ng(ω) > 0}; consequently,

∞⋃

n=1

{ω : T1/nh(ω) > 0} ⊂
∞⋃

n=1

{ω : T1/ng(ω) > 0}.

Since the argument is symmetric, the reverse inclusion also holds, and thus
we get

∞⋃

n=1

{ω : T1/nh(ω) > 0} =

∞⋃

n=1

{ω : T1/ng(ω) > 0},

from which it follows immediately that the sets C =
⋃∞

n=1{ω : T1/nh(ω)
> 0} and D = Ω \ C satisfy the desired properties, completing the proof.

We note that the two decompositions Ω = P+N and Ω = C+D have no
relation in general (cf. e.g. [11] and § 7.1 of [8]). But under some conditions
on the semigroup T = {Tt} and the norm ‖ · ‖ of L we have C ⊂ P .

Proposition 1. Let T = {Tt} be as in Lemma 7. If the strong limit T0 =
strong-limt→0 Tt exists, then C = {ω : T0h(ω) > 0} for some h ∈ L+. In

particular , if ‖T0‖ ≤ 1 and the norm ‖ · ‖ of L is such that 0 ≤ f(ω) ≤ g(ω)
a.e. on Ω and ‖f‖ = ‖g‖ imply f = g, then C ⊂ P .
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P r o o f. It suffices to consider the case where there exists an h ∈ L+ with
h(ω) > 0 on Ω. Since Tt = TtT0 = T0Tt for t ≥ 0, it follows from the proof
of Lemma 7 that

{ω : T1/nh(ω) > 0} = {ω : T0T1/nh(ω) > 0} ⊂ {ω : T0h(ω) > 0}.

Thus C ⊂ {ω : T0h(ω) > 0}. On the other hand, as limn→∞ ‖T0h− T1/nh‖
= 0, it also follows from Lemma 2 that

{ω : T0h(ω) > 0} ⊂
∞⋃

n=1

{ω : T1/nh(ω) > 0} = C.

To prove the remainder of the proposition, let ‖T0‖ ≤ 1. It is sufficient
to prove that if g ∈ L+(C) and g 6= 0 then ‖Ttg‖ > 0 for some t > 0. To do
so, suppose the contrary: Ttg = 0 for all t > 0. Then T0g = 0, and thus the
function g̃(ω) = min{g(ω), T0h(ω)} satisfies T0g̃ = 0. It follows that

0 ≤ T0h(ω)− g̃(ω) ≤ T0h(ω) a.e.

on Ω and

T0(T0h− g̃) = T0h− T0g̃ = T0h.

Since ‖T0‖ ≤ 1, we must have ‖T0h− g̃‖ = ‖T0h‖. Hence by the hypothesis
on the norm ‖ · ‖ of L, we get T0h− g̃ = T0h and therefore g̃ = 0. But this
is a contradiction, since T0h(ω) > 0 on C. The proof is complete.

Proposition 2. Let T = {Tt} be as in Lemma 7. If ‖Tt‖ ≤ 1 for all

t > 0, and the norm ‖ · ‖ of L is such that 0 ≤ f(ω) ≤ g(ω) a.e. on Ω and

‖f‖ = ‖g‖ imply f = g, then C ⊂ P and TtL(P ) ⊂ L(P ) for all t > 0.

P r o o f. As before, let h denote a function in L+ with h(ω) > 0 on Ω.

Then the function g =
T1
0
Tthdt ∈ L+ satisfies

‖Ttg − g‖ ≤ 2t‖h‖ → 0 as t → 0.

Since Ttg = Tt(g · χP ), it follows that limt→0 ‖Tt(g · χP ) − g‖ = 0. Since
‖Tt‖ ≤ 1 for all t > 0 by hypothesis, we have ‖g · χP ‖ = ‖g‖ and hence
g · χP = g as in the proof of Proposition 1. That is,

{ω : g(ω) > 0} ⊂ P.

On the other hand, by the strong continuity of T = {Tt},

lim
t→0

∥∥∥∥T1/nh−
1

t

t\
0

TuT1/nhdu

∥∥∥∥ = 0 for n ≥ 1.

Since
Tt
0
TuT1/nhdu ≤

T1
0
Tuhdu = g for t+1/n ≤ 1, we then apply Lemma 2

together with an approximation argument to see that

{ω : T1/nh(ω) > 0} ⊂ {ω : g(ω) > 0},
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so that C ⊂ {ω : g(ω) > 0} and consequently C ⊂ P . (Incidentally, we note
that C = {ω : g(ω) > 0}. In fact, by Lemma 2, g(ω) = 0 a.e. on D.)

Since TtL(P ) ⊂ L(C) by Lemma 7, we can use the above result C ⊂ P
to obtain TtL(P ) ⊂ L(P ). This completes the proof of the proposition.

Lemma 8. Let T = {Tt} be a strongly continuous semigroup of positive

linear operators on L. Then there exists a positive real number α and a

sequence (vn) of nonnegative measurable functions on Ω such that

(i) 0 ≤ v1(ω) ≤ v2(ω) ≤ . . . a.e. on Ω,

(ii) P = {ω : vn(ω) > 0 for some n ≥ 1},

(iii) for each f ∈ L+, t > 0 and n ≥ 1 we have\
Ω

(Ttf)vn dµ ≤ eαt
\
Ω

fvn dµ < ∞.

P r o o f. Let α > 0 be such that e−α‖T1‖ < 1. It follows that for any
f ∈ L the vector-valued function t 7→ e−αtTtf is Bochner integrable on
the interval (1/n,∞) with respect to the Lebesgue measure for each n ≥ 1.
Define the positive linear operator Sn : L → L by

Snf =

∞\
1/n

e−αtTtf dt for f ∈ L.

By Lemma 5 there exists a strictly positive measurable function w on Ω
such that

T
Ω
|f |w dµ < ∞ for all f ∈ L, and by Lemma 6 let

vn = S∗
nw for n ≥ 1.

Clearly, 0 ≤ v1(ω) ≤ v2(ω) ≤ . . . a.e. on Ω, and for f ∈ L+ we have

∞ >
\
Ω

fvn dµ =
\
Ω

f(S∗
nw) dµ =

\
Ω

(Snf)w dµ

=
\
Ω

( ∞\
1/n

e−αtTtf dt
)
w dµ =

∞\
1/n

(
e−αt

\
Ω

(Ttf)w dµ
)
dt

by Fubini’s theorem. Thus if f ∈ L+(N) then, since ‖Ttf‖ = 0 for all t > 0,
we get

T
Ω
fvn dµ = 0. It follows that vn(ω) = 0 a.e. on N .

On the other hand, if f ∈ L+(P ) and ‖f‖ > 0 then ‖Ttf‖ > 0 for some
t > 0, whence

T
Ω
(Ttf)w dµ > 0. It follows that

T
Ω
fvn dµ > 0 whenever

1/n < t. This proves (ii).

To prove (iii), let f ∈ L+. Then for any t > 0 and n ≥ 1 we have

0 ≤
\
Ω

(Ttf)vn dµ =
\
Ω

( ∞\
1/n

e−αsTt+sf ds
)
w dµ



134 R. SATO

≤
\
Ω

(
eαt

∞\
1/n

e−αsTsf ds
)
w dµ = eαt

\
Ω

fvn dµ < ∞,

whence (iii) follows.

Proof of Theorem. Let α and (vn) be as in Lemma 8. Put

Pn = {ω : vn(ω) > 0} and Nn = Ω \ Pn.

By Lemma 8 it follows that for each n ≥ 1 the process {Ft · χPn
}t>0 in L is

also superadditive with respect to the semigroup T = {Tt}. Further, since
P =

⋃∞
n=1 Pn, in order to prove the theorem we may assume without loss

of generality that Ω = Pn for some n ≥ 1. Then define

T̃t = e−αtTt,

so that \
Ω

(T̃tf)vn dµ ≤
\
Ω

fvn dµ < ∞

for f ∈L+(Ω), and vn(ω) > 0 a.e. on Ω = Pn. It follows that L ⊂ L1(vndµ),

and by an easy approximation argument, for each t > 0, T̃t can be regarded
as a positive linear contraction operator on L1(vndµ). Since the linear func-
tional ̺ on L defined by ̺(f) =

T
Ω
fvn dµ for f ∈ L is positive and hence

bounded, it follows that for every f ∈ L,\
Ω

|T̃tf − T̃sf |vn dµ ≤ ‖T̃tf − T̃sf‖ · ‖̺‖ < ∞

and hence

lim
t→s

\
Ω

|T̃tf − T̃sf |vn dµ = lim
t→s

‖T̃tf − T̃sf‖ = 0 for s > 0.

Thus, since L is a dense subspace of L1(vn dµ), T̃ = {T̃t} can be regarded
as a strongly continuous semigroup of positive linear contraction operators
on L1(vndµ). If the L1-norm of L1(vndµ) is written as ‖ · ‖1 then from the
linear boundedness hypothesis on {F−

t } we get

sup{‖F−
t ‖1/t : 0 < t < s} ≤ ‖̺‖ · sup{‖F−

t ‖/t : 0 < t < s} < ∞

for some s > 0. On the other hand, by the superadditivity of F = {Ft} with
respect to T = {Tt} we deduce that

e−α(t+s)F−
t+s(ω) ≤ e−αtF−

t (ω) + T̃t(e
−αsF−

s )(ω) a.e.

on Ω for all t, s > 0. It is now standard (cf. e.g. the proof of Theorem 2.1 of
[1]) to construct a positive process G = {Gt}t>0 in L1(vn dµ), additive with

respect to T̃ = {T̃t}, such that

(i) e−αtF−
t (ω) ≤ Gt(ω) a.e. on Ω for each t > 0,

(ii) sup{t−1‖Gt‖1 : t > 0} < ∞.
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Then we have

Ft(ω) + eαtGt(ω) ≥ 0 a.e.

and

eα(t+s)Gt+s(ω) = eα(t+s)Gt(ω) + eαsTtGs(ω) (by T̃t = e−αtTt)

≥ eαtGt(ω) + Tt(e
αsGs)(ω) ≥ 0 a.e. (by Gt(ω) ≥ 0)

on Ω, and thus if we set

F̃t(ω) = Ft(ω) + eαtGt(ω),

then F̃ = {F̃t} becomes a positive superadditive process in L1(vndµ) with

respect to the semigroup T = {Tt}, where each Tt = eαtT̃t is considered to
be a positive linear operator on L1(vndµ). If we define

Ht(ω) = eαtF̃t(ω),

then, using the facts that F̃ = {F̃t} is positive and eαtTt = e2αtT̃t ≥ T̃t ≥ 0
for t > 0, we obtain

Ht+s(ω) = eα(t+s)F̃t+s(ω) ≥ eα(t+s)[F̃t(ω) + TtF̃s(ω)]

≥ eαtF̃t(ω) + eαtTt(e
αsF̃s)(ω)

≥ Ht(ω) + T̃tHs(ω) ≥ 0 a.e.

on Ω, so that H = {Ht}t>0 is a positive superadditive process in L1(vndµ)

with respect to the positive contraction operator semigroup T̃ = {T̃t} on
L1(vndµ).

Since the decomposition Ω = P +N , mentioned in the Introduction, of
the space Ω = Pn with respect to the semigroup T̃ = {T̃t} on L1(vndµ) is
P = Ω = Pn and N = ∅ (cf. the proof of Lemma 8) and since H−

t = G−
t = 0

a.e. on Ω for all t > 0, it follows from the Proposition of [6] that the limits

q-lim
t→0

Ht(ω)

t
= q-lim

t→0

eαtF̃t(ω)

t

= q-lim
t→0

eαt(Ft(ω) + eαtGt(ω))

t
and q-lim

t→0

Gt(ω)

t

exist and are finite a.e. on Ω = Pn, which completes the proof of the theorem.
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