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Abstract. Let L be a Banach lattice of real-valued measurable functions on a o-finite
measure space and T' = {1} : t > 0} be a strongly continuous semigroup of positive linear
operators on the Banach lattice L. Under some suitable norm conditions on L we prove
a general differentiation theorem for superadditive processes in L with respect to the
semigroup 7.

Introduction. In this paper a differentiation theorem is proved for
superadditive processes in a Banach lattice of functions having an absolutely
continuous norm.

Let (£2, X, 1) be a o-finite measure space and L a vector lattice of real-
valued measurable functions on (£2, X, 1) under pointwise operations. Thus
we understand that if f € L then the function f*(w) = max{f(w),0} is
also in L, and two functions f and g in L are not distinguished provided
that f(w) = g(w) for almost all w € 2. We let |f|(w) = max{f(w), —f(w)}.
Hereafter all statements and relations are assumed to hold modulo sets of
measure zero. We further assume that L becomes a Banach space under the
norm || - ||, and suppose the following properties:

(D If f,g € L and | f|(w) < |g|(w) a.e. on £ then ||f]| <|g]|
(IT) If g is a real-valued measurable function on {2 such that |g|(w) <
|f|(w) a.e. on §2 for some f € L then g € L.
() If E, € X, E,, D E, 4y for each n > 1 and (), E,, = 0 then for
any f € L we have
T 1 x| = .

where x g, denotes the characteristic function of E,,.
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An operator S : L — L is called positive if Sf(w) > 0 a.e. on {2 for
all f e LT ={f €L : f(w) >0ae on N} Let T = {T}} = {Ti}t>0
be a strongly continuous semigroup of positive linear operators on L; thus
Tivs = TiTs and limy ¢ || T3 f — Tsf|| = 0 for all t,s > 0 and f € L. T is
called locally strongly integrable if for each f € L the vector-valued function
t — T;f is Bochner integrable on every finite interval with respect to the
Lebesgue measure. By a process in L we mean a family F' = {F;} = {F} }1>0
of functions in L. A process F is called positive if F, € LT for all ¢t > 0,
increasing if Fi(w) < Fs(w) a.e. on {2 for all s > ¢ > 0, linearly bounded if

sup{||F:||/t : 0 <t < s} < o0
for some s > 0, and superadditive [resp. additive] (with respect to T' = {T}})
if
Fiis(w) > Fy(w) + T3 Fs(w) a.e.  [resp. Fiig(w) = Fi(w) + T Fs(w) a.e.]
on {2 for all t,s > 0.
By an easy computation, if 7' = {T;} is locally strongly integrable and
if F'={F;} is additive (with respect to T") and such that the vector-valued

function t — F; is Bochner integrable on the unit interval (0, 1) with respect
to the Lebesgue measure, then we observe that

1 t
Fy=(I-T)\Fods+\T.F ds
0 0

for all £ > 0. We note that the Bochner integrability of the function t — F;
on the interval (0,1) follows from property (III) if F' is positive.

If A e X, then we let L(A) = {f € L : f(w) = 0a.e. on 2\ A} and
LT(A) = L(A) N LT. It is easily seen (see e.g. [10]) that 2 decomposes
under a positive semigroup 7' = {7;} into two sets P and N in X' with the
following properties:

(i) if f € L(N) then ||T;f|| = 0 for all ¢ > 0,
(ii) if 0 # f € L™ (P) then || Ty f|| > 0 for some ¢ > 0.

Since T' = {T}} is zero on L(N), it may be readily seen that there are
many positive superadditive processes in L(IN) for which the limit
q-lim;_,g %Ft(w) fails to exist a.e. on NN, where g-lim;_,o means that the
limit is taken as ¢t approaches zero through a countable dense subset in the
interval (0,1). However, the situation is different on P, and we shall prove
the following

THEOREM. Let T = {T;} be a strongly continuous semigroup of positive
linear operators on L. If F = {F;} is a superadditive process in L (with
respect to T') and satisfies

sup{||F; ||/t: 0 <t < s} <oo
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for some s > 0, where F; (w) = max{—F}(w),0}, then the limit
o1
Q'tlg% ZFt (w)
exists and is finite a.e. on P.

Various special cases of this theorem have already been proved; in partic-
ular, Wiener [12] has proved his local ergodic theorem for measure preserving
flows, and recently many authors have studied differentiation theorems in
the setting of strongly continuous semigroups T' = {7 };~¢ of positive linear
operators on L, with 1<p<oo (cf. e.g. [2]-[7], [9]). For this subject we re-
fer the reader to Krengel’s book [8] (see especially Chapter 7). The present
theorem generalizes a differentiation theorem of [6], where superadditive
processes have been considered in L,-spaces and semigroups T' = {7} } have
been assumed to be locally strongly integrable. But, besides L,,-spaces, there
are many interesting function spaces which satisfy properties (I)—(III). Ex-
amples are Lorentz spaces and Orlicz spaces, etc. The purpose of this paper
is to generalize the differentiation theorem to such function spaces.

Acknowledgments. The author thanks Professor Tsuyoshi Ando of
Hokusei Gakuen University for suggesting the existence of a strictly positive
measurable function w on 2 such that {, |flwdy < oo for all f € L (cf.
Lemma 5 below). This fact is important in the paper.

Preliminaries. In this section we provide some necessary lemmas and
propositions. For the sake of completeness we give proofs, although some
are standard. L will denote the Banach lattice of functions mentioned in the
Introduction.

LEMMA 1. If f, € L forn>1 and 30", || ol < oo then Y00 | | fn(w)]
< 00 a.e. on 2.

Proof. Let g,(w) = |fu|(w). Then g, € LT and ||g,|| = ||fx]| by prop-
erty (I). Since > >, [lgn|| < oo, there is an s € L such that

n
Jm =2

Then the functions h,(w) = Y1, gi(w) satisfy 0 < hy,(w) < hpy1(w) ae.
on (2 and lim,,_, ||s — k|| = 0, so that we must have lim,,_, o0 hp(w) = s(w)
a.e. on §2. This completes the proof.

LEMMA 2. Let f € L and f, € L forn > 1. If lim,, ||f — ful =
0, then there exists a subsequence (n') of (n) such that lim, o frn(w) =
f(w) a.e. on £2.

Proof. Obvious from Lemma 1.

=0.
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LEMMA 3. Let f € LT and f, € LT forn > 1. If f(w) > fa(w) >
frt1(w) a.e. on 2 for each n > 1, and lim, o fr(w) = 0 a.e. on §2 then
lim,, o || fn] = 0.

Proof. Let € > 0 be an arbitralily fixed number. Suppose f # 0, and
write

A, ={w: f(w) >1/n} and B, ={w:0< f(w) <1/n} forn >1.

Since f(w) > %XAR (w) > 0on £, it follows from property (II) that x4, € L.
Since A,, T {w : f(w) > 0} as n — oo, there exists an M > 1 such that
w(Apr) > 0. Then ||xa,, || >0, and so we can put

€

— Allxandl
Since B,, | 0 as n — oo, it follows from property (III) that

(67

lim | f-xz,| =0.
n—00

Therefore we may suppose without loss of generality that the above M is
such that

I -xB.l < If-xBu |l <e/2 foralln> M.

Then, since f, = fn - XAy + fn - XBay, We have

1fnll < - Xan |+ 11fn - X8l
< fn - xanl + 1S - xBar | < [ fn - xAu Al +2/2,

and
I fr - XAl < 1fn - Xanniw: fu@)sa |+ 1fn - XA\ {wifn@)>al
< I Xamngw fo@)>ap |+ alixan |
< - Xamn{w f@)>ap | +€/4
Since Ay N{w : fn(w) > a} | 0 as n — oo, property (III) implies
Jim [f - Xawnge: fu@)>ay | = 05
consequently, we can find an ng > 1 such that if n > ng then
e € €
Ifall <3+ 3 +5=¢
This completes the proof.

LEMMA 4. Let S : L — L be a positive linear operator. Then |Sf|(w) <
S|fl(w) a.e. on 2 for any f € L, and ||S|| < oo.

Proof. Since —|f|(w) < f(w) < |f|(w) on §2, the positivity of S implies
that —S|f|(w) < Sf(w) < S|f|(w) a.e. on §2. Next, to prove ||S| < oo,
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suppose the contrary: ||S|| = co. Then for each n > 1 there exists f,, € L
such that ||f,|| = 1 and ||Sf,|| > n®. Then the function

f= inﬁfn (e LT)
n=1

satisfies Sf(w) > > ;i 2Sfi(w) > n™2Sf,(w) > 0 a.e. on {2, so that we
apply property (I) to infer that ||Sf|| > n=2||Sf.| > n for each n > 1. But
this is a contradiction, since Sf € L.

LEMMA 5. There exists a measurable function w on 2, with w(w) > 0
a.e. on §2, such that

S fwdp < oo forall fe LT,
Q
Proof. By an easy argument, it suffices to consider the case where
there exists an increasing sequence (f,,) of functions in L™ such that f,(w)
oo a.e. on {2 asn — oo. Let A, = {w: fr(w) > 1}. Then we have

o0
Xa, € L by property (II) and 2= U A,.
n=1
First, fix an n > 1. If f € L(A,) and f # 0, take a continuous linear
functional ¢ on L by the Hahn—Banach theorem such that ¢(f) # 0. Define

v(E) =p(xg) for Ee€ X(A,),

where Y(4,,) = {E € ¥ : E C A,}. (We note that if E € Y(A,,) then
Xe € L by property (II).) If E; € Y (A,),E; D E;+q for each ¢ > 1 and
Nic; E; =0, then lim;_, ||x g, || = 0 by property (III). It follows that v is a
signed (countably additive) measure on (A,, XY (A,)). Since v is absolutely
continuous with respect to y, we then apply the Radon—-Nikodym theorem
to infer that there exists a real-valued measurable function h on {2, with

{w : h(w) # 0} C A, such that for all E' € X(A,),
p(xe) =v(E) = | hdpu.
E

If ¢ € L then by property (II) there exists a sequence (g;) of simple
functions in L such that |g;(w)| < |g(w)| and |g(w) — gi(w)| 4 0 a.e. on 2 as
i — 00. Hence lim;_, ||g — ¢i|| = 0 by Lemma 3, and we have

0(g-xa,) = lim | gihdp.
1— 00 A

Further, using Fatou’s lemma, we see that §, |gh|du < oo, and thus

olg-xa,) = | ghdu=\ghdp.
An
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Since ¢(f)= SAn fhdu # 0, it follows that h # 0 on A,,. By this fact and the
o-finiteness of u it is standard from an exhaustion argument (cf. e.g. p. 17
of [8]) to see that there exists a sequence (h,,) of real-valued measurable
functions on {2 such that

(i) for all g € L and n > 1, {, |ghn|dp < oo,

(ii) the linear functionals ¢, on L defined by ¢,(g) = §, ghn du for
g € L are nonzero and continuous,

(iif) 2 =U,Zi{w : |hn(w)] > 0}.
Since the positive linear functionals 7,, on L defined by 7, (g) = {, glhn|dp
for g € L satisty ||, || = ||¢n| by property (I), the bounded linear functional

o0 nn
n= PysTIRT
2 3
on L has the representation
[e.e]
10) = § o) (3 7

It follows that the functlon

)du for g € L.

"[lenl

forwe 2
Z 2"Hs0 H

satisfies the desired properties of the lemma, and the proof is complete.

LEMMA 6. Let S : L — L be a positive linear operator and w be a
nonnegative measurable function on {2 such that SQ |flwdu < oo for all
f € L. Then there exists a nonnegative measurable function v on §2, written
as v = S*w, such that

S(Sf)wdu = S fvdu  for all f € L.
[0 [0
Proof. As in Lemma 5, we may assume that there exists a sequence
(Ay,) of sets in X' such that
(i) xa, € L for each n > 1,
(i) A, N A, =0 for n # m,
(iii) £2 = UZO=1 A
By Lemma 4, S is bounded. Similarly we observe that the positive linear

functional ¢ on L defined by ¢(f) = §,(Sf)wdu is bounded. It follows
from the proof of Lemma 5 that for each n > 1 there exists a nonnegative

measurable function v,, on 2, with {w : v, (w) # 0} C A,,, such that

S(Sf)wdu = van dp  for all f € L(A,).
Q Q
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Letting v(w) = v, (w) for w € A,,, we have a nonnegative measurable func-
tion v on {2, and letting B,, = |J;_, A;, we see from property (III) that for
any f € L,

V(SHwdp= lim \[S(f-xp)wdp= lim | fodu={ fodp,

n—00
9} 9} B, 9}

which completes the proof.

LEMMA 7. Let T' = {T}; }+~0 be a strongly continuous semigroup of positive
linear operators on L. Then {2 decomposes under T into two sets C and D
i X with the properties that

(i) for some h e L, C =, 1{w : T nh(w) > 0},
(i) for anyt >0 and f € L,T;f(w) =0 a.e. on D.

Proof. As is easily seen, it suffices to consider the case where there
exists an h € LT with h(w) > 0 on 2. If g is another function in L™ with
g(w) > 0 on 2 then, letting gx (w) = min{kg(w), h(w)}, we see that g, € LT
by property (II) and 0 < gx(w) 1 h(w) as k — oo for each w € 2. Since
h —gr € LT, it follows from Lemma 3 that limy_, ||k — gx|| = 0, and so
for any n > 1 we have limg_,oc [| 11 /nh — T1/ngk|| = 0. Thus by Lemma 2 it
follows that

o0
{w: Tynh(w) >0} C | J{w : Tijngr(w) > 0},
k=1
which together with the fact that T),,gr < kT}/,g on §2 implies {w :
T1 nh(w) > 0} C {w : Ty /ng(w) > 0}; consequently,

J{w: Tujnh(w) > 0} € | J{w: Ti/ng(w) > 0}.

n=1
Since the argument is symmetric, the reverse inclusion also holds, and thus
we get

U {w: Ty ph(w) > 0} = U {w : T /ng(w) > 0},

from which it follows immediately that the sets C' = (J;_ {w : T /nh(w)
>0} and D = 2\ C satisfy the desired properties, completing the proof.

We note that the two decompositions 2 = P+ N and {2 = C'+ D have no
relation in general (cf. e.g. [11] and § 7.1 of [8]). But under some conditions
on the semigroup T' = {7};} and the norm || - || of L we have C' C P.

PROPOSITION 1. Let T' = {T}} be as in Lemma 7. If the strong limit Ty =
strong-lim,_,, T} ewists, then C' = {w : Toh(w) > 0} for some h € LT. In
particular, if || To|| < 1 and the norm || -|| of L is such that 0 < f(w) < g(w)
a.e. on 2 and || f|| = llg|| imply f = g, then C C P.
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Proof. It suffices to consider the case where there exists an h € LT with
h(w) > 0 on {2. Since Ty = T;Ty = ToT; for t > 0, it follows from the proof
of Lemma 7 that

{w: Ty ph(w) > 0} = {w: ToTy jh(w) > 0} C {w : Toh(w) > 0}.

Thus C C {w : Toh(w) > 0}. On the other hand, as lim, o |Toh — T} /||
= 0, it also follows from Lemma 2 that

{w: Toh(w) > 0} C | J{w: Ti/nh(w) > 0} =C.

n=1

To prove the remainder of the proposition, let ||Tp|| < 1. It is sufficient
to prove that if g € LT (C) and g # 0 then ||T;g|| > 0 for some ¢t > 0. To do
so, suppose the contrary: Tyg = 0 for all ¢ > 0. Then Thg = 0, and thus the
function g(w) = min{g(w), Toh(w)} satisfies Tog = 0. It follows that

0 < Toh(w) — g(w) < Toh(w) ae.
on {2 and
Ty(Toh — §) = Toh — Tog = Toh.
Since [|7p|| < 1, we must have ||Toh — g|| = [|Toh||. Hence by the hypothesis

on the norm || - || of L, we get Toh — g = Tph and therefore g = 0. But this
is a contradiction, since Toh(w) > 0 on C. The proof is complete.

PROPOSITION 2. Let T' = {T;} be as in Lemma 7. If | T¢|| < 1 for all
t > 0, and the norm || - || of L is such that 0 < f(w) < g(w) a.e. on 2 and
£l = llgll imply f = g, then C C P and T;L(P) C L(P) for all t > 0.

Proof. As before, let h denote a function in Lt with A(w) > 0 on (2.
Then the function g = Sé Ti;hdt € L™ satisfies

|Tig — gll < 2t|h]| =0 ast— 0.

Since Tig = Ti(g - xp), it follows that lim; o ||T:(g - xp) — g|| = 0. Since
IT:|| < 1 for all ¢ > 0 by hypothesis, we have ||g - xp|| = |lg|| and hence
g - xp = ¢ as in the proof of Proposition 1. That is,

{w:g(w) >0} CP.
On the other hand, by the strong continuity of 7' = {T;},

=0 forn>1.

lim '
t—0

Since Sg T,T\ jphdu < Sé T,hdu = g for t+1/n < 1, we then apply Lemma 2
together with an approximation argument to see that

{w:Ty/ph(w) >0} C {w: g(w) > 0},

t
1



A GENERAL DIFFERENTIATION THEOREM 133

so that C' C {w : g(w) > 0} and consequently C' C P. (Incidentally, we note
that C' = {w : g(w) > 0}. In fact, by Lemma 2, g(w) = 0 a.e. on D.)

Since TyL(P) C L(C) by Lemma 7, we can use the above result C' C P
to obtain T3 L(P) C L(P). This completes the proof of the proposition.

LEMMA 8. Let T = {T;} be a strongly continuous semigroup of positive
linear operators on L. Then there exists a positive real number o and a
sequence (vy,) of nonnegative measurable functions on 2 such that

(i) 0 <vy(w) <wve(w) < ... ae on (2,
(ii) P ={w:v,(w) >0 for some n > 1},
(iii) for each f € L™, ¢t >0 and n > 1 we have

V(T fyondp < € § o dp < oc.
0} 0}

Proof. Let @ > 0 be such that e=®||Ty|| < 1. It follows that for any
f € L the vector-valued function t — e~ *'T;f is Bochner integrable on
the interval (1/n,00) with respect to the Lebesgue measure for each n > 1.
Define the positive linear operator S, : L. — L by

Snf = X e T, fdt for f € L.
1/n

By Lemma 5 there exists a strictly positive measurable function w on {2
such that {, | flwdu < oo for all f € L, and by Lemma 6 let

v, =S,w forn>1.

Clearly, 0 < v1(w) < wz(w) < ... a.e. on 2, and for f € L™ we have

00 > | fondu =\ f(Siw)du =\ (Snf)wdp

Q Q 2
= X ( S eiO‘tthdt)wd,u = S (e*at S(th)wdu)dt
2 1/n 1/n 2

by Fubini’s theorem. Thus if f € LT (N) then, since |7} f|| = 0 for all ¢ > 0,
we get |, fu, du = 0. It follows that v, (w) =0 a.e. on N.

On the other hand, if f € LT (P) and ||f|| > 0 then ||T}f]| > 0 for some
t > 0, whence {, (T f)wdp > 0. It follows that {, fv, du > 0 whenever
1/n < t. This proves (ii).

To prove (iii), let f € L*. Then for any ¢ > 0 and n > 1 we have

0< X(th)vn dp = X ( S efo‘sTt_s_sfds)wd,u
0 2 1/n
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< S <e°‘t OXO e_O‘STSfds)wd,u = e X fondu < oo,
2 1/n 2

whence (iii) follows.
Proof of Theorem. Let o and (v,,) be as in Lemma 8. Put
P, ={w:v,(w) >0} and N, =02\PF,.

By Lemma 8 it follows that for each n > 1 the process {F} - xp, }+>0 in L is
also superadditive with respect to the semigroup T" = {T;}. Further, since
P =J,°, P,, in order to prove the theorem we may assume without loss
of generality that {2 = P,, for some n > 1. Then define

Tvt = BiatTt,
so that
S(th)vn dp < S fopdu < oo
[0 [0
for fe LT(£2), and v, (w) > 0 a.e. on 2 = P,,. It follows that L C L (v,du),
and by an easy approximation argument, for each ¢ > 0,7} can be regarded
as a positive linear contraction operator on Lj(v,du). Since the linear func-

tional ¢ on L defined by o(f) = SQ fondp for f € L is positive and hence
bounded, it follows that for every f € L,

S |j:tf - Tsfh)n d,u S Hﬁf - TSf” : HQH < o0

17
and hence
lim \ |T,f — Tuf|vn dp = lim | Tef — Tof =0 for s > 0.
t—s t—s

Thus, since L is a dense subspace of Ly (v, dp), T = {T;} can be regarded
as a strongly continuous semigroup of positive linear contraction operators
on Lq(vpdp). If the Li-norm of Ly(v,dp) is written as || - ||; then from the
linear boundedness hypothesis on {F;” } we get

sup{||F; ||1/t: 0 <t < s} <|lo| -sup{||Fy ||/t:0<t<s}<o0
for some s > 0. On the other hand, by the superadditivity of F' = {F}} with
respect to T' = {T;} we deduce that
e I FTL (w) < e ' F (w) + Ty(e~*F ) (w) ae.
on {2 for all t,s > 0. It is now standard (cf. e.g. the proof of Theorem 2.1 of
[1]) to construct a positive process G = {G;}¢>0 in L1 (v, du), additive with
respect to T = {T;}, such that

(i) e F (w) < Gi(w) a.e. on 2 for each t > 0,
(ii) sup{t™1||Gy]l1 : t > 0} < oc0.
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Then we have
Fy(w) +e*Gi(w) >0  ae.
and
et Gy (w) = e Gy (w) + e TG (w) (by T, = e 'Ty)
> e Gy(w) + Ty (e**G,)(w) >0 ae. (by Gy(w) >0)
on {2, and thus if we set
Fy(w) = Fy(w) + ™Gy (w),

then F = {th} becomes a positive superadditive process in Lq(v,dp) with
respect to the semigroup T' = {T}}, where each T} = e**T; is considered to
be a positive linear operator on Lq(v,dp). If we define

Hy(w) = e Fy(w),
then, using the facts that F = {E} is positive and e®'T, = 22T, > T} > 0
for ¢t > 0, we obtain
Hyyo(w) = eIy (w) > eI [Fy(w) + Ty Fy(w)]

> MRy (w) + T (e Fy) (w)

> Hy(w) + T,Hy(w) >0 ae.
on {2, so that H = {H;}+~0 is a positive superadditive process in Lj (v,du)
with respect to the positive contraction operator semigroup 7' = {T;} on
Ll(vnd,u)

Since the decomposition {2 = P + N, mentioned in the Introduction, of

the space {2 = P,, with respect to the semigroup 7' = {T;} on L1 (v,du) is

P = =P, and N = 0 (cf. the proof of Lemma 8) and since H, =G, =0
a.e. on {2 for all t > 0, it follows from the Proposition of [6] that the limits

H ot
q-lim —— ) = ¢-lim e ) i)
t—0 ¢t t—0 t
at F at
= q-lim Fi(w) + T Grw)) and g-lim —Gt(w)
t—0 t t—0

exist and are finite a.e. on {2 = P,,, which completes the proof of the theorem.
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