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CLASSIFICATIONS AND EXISTENCE OF POSITIVE SOLUTIONS
OF A HIGHER ORDER NONLINEAR DIFFERENCE EQUATION

BY

WAN-TONG L I (LANZHOU) AND SUI SUN C H E N G (HSINCHU)

Abstract. A classification scheme for the eventually positive solutions of a class of
higher order nonlinear difference equations is given in terms of their asymptotic magni-
tudes, and necessary as well as sufficient conditions for the existence of such solutions are
provided.

1. Introduction. This paper is concerned with a class of higher order
nonlinear difference equations of the form

(1) ∆(rn∆
m−1xn) + f(n, xn) = 0, n = K,K + 1, . . . ,

where K is a fixed integer, m is an integer greater than or equal to 2,
{rn}∞n=K is a positive sequence and f(n, x) is a real-valued function defined
on {K,K + 1, . . .} × R which is continuous in the second variable x and
satisfies f(n, x) > 0 for x > 0. We intend to give a classification scheme for
eventually positive solutions of our equations in terms of their asymptotic
magnitude and provide necessary conditions as well as sufficient conditions
for the existence of such solutions. In order to accomplish our goal, additional
conditions will be imposed on the coefficient sequences {rn} and the function
f . We will need either one of the following two assumptions for the sequence
{rn} so as to include the case where rn ≡ 1:

(H1) ∆rn ≥ 0 for n ≥ K, and

(H2)
∑∞
n=K 1/rn =∞.

As for the function f , if for each fixed integer n, f(n, x)/x is nondecreas-
ing in x for x > 0, then is called superlinear . If for each integer n, f(n, x)/x
is nonincreasing in x for x > 0, then f is said to be sublinear. Superlinear
or sublinear functions f will be assumed in later results. Here we note that
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if 0 < a ≤ x ≤ b, then

f(n, a) ≤ f(n, x) ≤ f(n, b)

if f is superlinear, and

a

b
f(n, b) ≤ f(n, x) ≤ b

a
f(n, a)

if f is sublinear.

Nonlinear difference equations have been studied by a number of authors
[1]–[13]. In particular, He [6] (see also [10]) studied equation (1) whenm = 2,
and obtained existence criteria for eventually positive solutions. Zhou and
Yan [12] studied the equation

(2) ∆(rn(∆m−1xn)1/δ) + f(n, xn) = 0,

where δ is a quotient of odd positive integers. In that paper bounded and
eventually positive solutions are considered. In particular, it is shown that
when (H2) holds, then under the additional assumption that m is even, (2)
has a bounded and eventually positive solution if, and only if,

(3)

∞∑
n=K

nm−2
{

1

rn

∞∑
j=n

|f(j, c))|
}1/δ

<∞

for some c 6= 0.

By a solution of (1), we mean a real sequence {xn}∞n=K which satisfies
it. Since (1) can be written in the form of a recurrence relation, it is clear
that given appropriate initial conditions, a solution can be obtained by suc-
cessive iterations. For the sake of convenience, we will employ the following
notations:

Rs,n =

n−1∑
i=s

1

ri
, K ≤ s ≤ n− 1,

Rs =

∞∑
i=s

1

ri
, s ≥ K.

We will need the following results. The first one requires the concept
of a set of uniformly Cauchy sequences. Let l∞ be the Banach space of all
bounded real sequences x = {xn}∞n=K endowed with the usual operations
and supremum norm. A subset S of l∞ is said to be uniformly Cauchy if
for every ε > 0, there exists an integer M such that whenever i, j > M , we
have |xi − xj | < ε for any x ∈ S.

Lemma 1 (Cheng and Patula [4]). Let Ω be a closed bounded convex sub-
set of l∞. Suppose T is a continuous mapping such that T (Ω) is contained
in Ω, and T (Ω) is uniformly Cauchy. Then T has a fixed point in Ω.
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The following theorem of Stolz is a discrete analog of l’Hopital’s rule [1,
Theorem 1.7.7 and Corollary 1.7.8].

Lemma 2. Let {uk} and {vk} be two real sequences such that vk > 0
and ∆vk > 0 for all large k. If limk→∞ vk =∞ and limk→∞∆uk/∆vk = c,
where c may be infinite, then limk→∞ uk/vk = c.

Given a real function u(t) whose derivative u(r)(t) is sign regular, the
intermediate derivatives will also satisfy certain sign conditions. Such results
are well known in the theory of ordinary differential equations and their
discrete analogs have been reported by a number of authors. Two of such
sign regularity conditions are stated by Zafer and Dahiya [11].

Lemma 3. Let N be a positive integer. Let {yn} be a real sequence such
that {yn} and {∆Nyn} are of constant sign. Suppose further that {∆Nyn}
does not vanish identically for all large n and that yn∆

Nyn ≤ 0 for n ≥ 0.
Then

(i) for each j ∈ {1, . . . , N − 1}, the sequence {∆jyn} is of constant sign
for all large n; and

(ii) there is an integer k ∈ {0, 1, . . . , N − 1} such that (−1)N−k−1 = 1
and for each j ∈ {0, 1, . . . , k}, yn∆jyn > 0 for all large n, while for each
j ∈ {k + 1, . . . , N − 1}, (−1)j−kyn∆

jyn > 0 for all large n.

Lemma 4. Let N be a positive integer. Let {yn} be a real sequence such
that for each j ∈ {0, 1, . . . , N − 1}, {∆jyn} is of constant sign for all large
n. Suppose further that yn∆

Nyn ≥ 0 for all large n. Then either

(i) for each j ∈ {1, . . . , N}, yn∆jyn ≥ 0 for all large n; or
(ii) there is an integer k ∈ {0, 1, . . . , N − 2} such that (−1)N−k = 1,

and for each j ∈ {1, . . . , k}, yn∆jyn > 0 for all large n, while for each
j ∈ {k + 1, . . . , N − 2}, (−1)j−kyn∆

jyn > 0 for all large n.

2. A classification scheme. Let {xn} be an eventually positive solution
of (1). Then ∆(rn∆

m−1xn) = −f(n, xn) < 0 for all large n. The sequence
{∆m−1xn} is therefore strictly decreasing for all large n. We further assert
that {∆m−1xn} is eventually positive.

Lemma 5. Suppose the condition (H2) holds. Let {xn} be an eventually
positive solution of (1). Then the sequence {∆m−1xn} is eventually positive.

P r o o f. Assume without loss of generality that xn > 0 for n ≥ K. Then
in view of (1),

rn+1∆
m−1xn+1 < rn∆

m−1xn, n ≥ K.
If it were the case that ∆m−1xN < 0 for some N ≥ K, then

rn∆
m−1xn < . . . < rN∆

m−1xN , n ≥ N + 1,
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which implies that

∆m−2xn−∆m−2xN =

n−1∑
i=N

∆m−1xi <

n−1∑
i=N

rN
ri
∆m−1xN = RN,nrN∆

m−1xN .

Since (H2) implies limn→∞RN,n =∞, we see that the right hand side tends
to−∞. Thus limn→∞∆m−2xn = −∞, which implies that {xn} is eventually
negative. This is a contradiction.

Under the additional hypothesis (H1), more can be said.

Lemma 6. Suppose the conditions (H1) and (H2) hold. Let {xn} be an
eventually positive solution of (1). Then the sequence {∆mxn} is eventually
negative.

P r o o f. By Lemma 5, {∆m−1xn} is eventually positive. Furthermore, in
view of (1) and our assumption on {rn}, we see that

rn∆
mxn = −∆rn∆m−1xn − f(n, xn) < 0

as required.

Under the conditions (H1) and (H2), it is clear that Lemma 3 provides a
classification scheme for eventually positive solutions of (1). Such a scheme
is crude, however. We will propose an auxiliary classification scheme for
eventually positive solutions of (1). For the sake of convenience, we use the
following notations:

Ej(∞, ∗) =

{
{xn}∞n=K

∣∣∣∣ lim
n→∞

xn
n2j−2

=∞, lim
n→∞

xn
n2j−1

∈ R \ {0}
}
,

Ej(∞, 0) =

{
{xn}∞n=K

∣∣∣∣ lim
n→∞

xn
n2j−2

=∞, lim
n→∞

xn
n2j−1

= 0

}
,

Ej(∗, 0) =

{
{xn}∞n=K

∣∣∣∣ lim
n→∞

xn
n2j−2

∈ R \ {0}, lim
n→∞

xn
n2j−1

= 0

}
,

Oj(∞, ∗) =

{
{xn}∞n=K

∣∣∣∣ lim
n→∞

xn
n2j−1

=∞, lim
n→∞

xn
n2j
∈ R \ {0}

}
,

Oj(∞, 0) =

{
{xn}∞n=K

∣∣∣∣ lim
n→∞

xn
n2j−1

=∞, lim
n→∞

xn
n2j

= 0

}
,

Oj(∗, 0) =

{
{xn}∞n=K

∣∣∣∣ lim
n→∞

xn
n2j−1

∈ R \ {0}, lim
n→∞

xn
n2j

= 0

}
,

where j is some integer to be specified.

Theorem 1. Suppose the conditions (H1) and (H2) hold. If m is even,
then for each eventually positive solution {xn} of (1), there is some integer
j in {1, . . . ,m/2} such that {xn} belongs to one of the classes Ej(∞, ∗),
Ej(∞, 0) or Ej(∗, 0). If m is odd , then for each eventually positive solution
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{xn} of (1), either there is an integer i ∈ {1, . . . , (m− 1)/2} such that {xn}
belongs to one of the classes Oi(∞, ∗), Oi(∞, 0), Oi(∗, 0), or else it converges.

P r o o f. First of all, we infer from Lemma 6 that {∆mxn} is eventually
negative. Suppose m is even. By Lemma 3, there is an integer t = 2j − 1,
where j ∈ {1, . . . ,m/2}, such that for each k ∈ {0, 1, . . . , t − 1}, ∆kxn > 0
for all large n, and for each k ∈ {t, t + 1, . . .m − 1}, (−1)k+1∆kxn > 0 for
all large n. In particular, ∆2j−2xn > 0, ∆2j−1xn > 0 and ∆2jxn < 0 for all
large n. Therefore the limits

lim
n→∞

∆2j−1xn = λ2j−1 and lim
n→∞

∆2j−2xn = λ2j−2

satisfy 0 ≤ λ2j−1 < ∞ and 0 < λ2j−2 ≤ ∞. If λ2j−1 > 0, then by the
theorem of Stolz, we have

lim
n→∞

xn
n2j−1

= lim
n→∞

∆xn
(2j − 1)n2j−2

= . . . = lim
n→∞

∆2j−1xn
(2j − 1)!

= lim
n→∞

λ2j−1
(2j − 1)!

6= 0.

It follows that limn→∞ xn/n
2j−2 =∞. That is, {xn} belongs to E(∞, ∗).

If λ2j−1 = 0 and λ2j−2 = ∞, then by the theorem of Stolz again, it is
easy to see that

lim
n→∞

xn
n2j−1

= 0 and lim
n→∞

xn
n2j−2

=∞.

That is, {xn} belongs to E(∞, 0). Finally, if λ2j−1 = 0 and 0 < λ2j−2 <∞,
then by the theorem of Stolz,

lim
n→∞

xn
n2j−2

=
λ2j−2

(2j − 2)!
6= 0.

It follows that limn→∞ xn/n
2j−1 = 0, and hence {xn} belongs to E(∗, 0).

When the integer m is odd, in view of Lemma 3, there is an even integer
t ∈ {0, 1, . . . ,m − 1} such that for each k ∈ {0, 1, . . . , t}, ∆kxn > 0 for all
large n, and for each k ∈ {t+ 1, . . . ,m− 1}, (−1)k−t∆kxn > 0 for all large
n. In case t ∈ {1, . . . ,m − 1}, the proof is similar to that given above. If
t = 0, then xn > 0, ∆xn < 0 and ∆2xn > 0 for all large n. It follows that
{xn} converges to some nonnegative constant. The proof is complete.

3. Existence criteria. Under the conditions (H1) and (H2), eventually
positive solutions can be classified according to Theorem 1. To justify our
classification scheme, we need to find sufficient conditions for the existence of
positive solutions in various subsets. We remark that there is an uncertainty
involved, namely, the integer j which is needed in the definitions of the
subsets E and O. We first deal with the case where m is even.
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Theorem 2. Suppose that m is even, and that (H1) and (H2) hold.
Suppose further thatf is either superlinear or sublinear. If there is a constant
c > 0 and j ∈ {1, . . . ,m/2− 1} such that

(4)

∞∑
n=K

nm−2j−1
{

1

rn

∞∑
k=n

|f(k, ck2j−1)|
}
<∞,

then (1) has an eventually positive solution in Ej(∞, ∗). The converse is
also true.

P r o o f. Let a = c/2 if f is superlinear and a = c if f is sublinear. Set
Γ (n) = n2j−1. In view of (4), we may choose an integer N so large that

(5)

∞∑
i=N

(i−N + 1) . . . (i−N +m− 2j − 1)

(2j − 1)!(m− 2j − 1)!

{
1

ri

∞∑
k=i

f(k, ck2j−1)

}
<
a

2
.

Let us introduce the linear space X of all real sequences x = {xn}∞n=N such
that

sup
n≥N
|xn|/Γ (n) <∞.

It is not difficult to verify that X endowed with the norm

‖x‖ = sup
n≥N
|xn|/Γ (n)

is a Banach space. Define a subset Ω of X as follows:

Ω = {{xn}∞n=N ∈ X | aΓ (n) ≤ xn ≤ 2aΓ (n), n ≥ N}.

Then Ω is a bounded, convex closed subset of X. Let us further define an
operator T : Ω → X as follows:

(Tx)n =
3a

2
Γ (n) +

n−1∑
im−1=N

im−1−1∑
im−2=N

. . .

im−2j+2−1∑
im−2j+1=N

H(im−2j+1), n ≥ N,

where

H(n) =
∞∑
i=n

(i− n+ 1) . . . (i− n+m− 2j − 1)

(m− 2j − 1)!

{
1

ri

∞∑
k=i

f(k, xk)

}
.

The mapping T has the following properties. First of all, T maps Ω into Ω.
Indeed, if x = {xn}∞n=N belongs to Ω, then

(Tx)n ≥
3a

2
Γ (n) ≥ aΓ (n), n ≥ N.

Furthermore, by (5), we also have
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(Tx)n ≤
3a

2
Γ (n)

+
(n−N)2j−1

(2j − 1)!

∞∑
i=N

(i−N + 1) . . . (i−N +m− 2j − 1)

(m− 2j − 1)!

{
1

ri

∞∑
k=i

f(k, xk)

}
≤ 3a

2
Γ (n) +

a

2
Γ (n) = 2aΓ (n).

Next, we show that T is continuous. To see this, let ε > 0. Choose
M ≥ N so large that

∞∑
i=M

(i−M + 1) . . . (i−M +m− 2j − 1)

(m− 2j − 1)!

{
1

ri

∞∑
k=i

f(k, ck2j−1)

}
< ε,

and
∞∑

k=M

f(k, ck2j−1) < ε.

Let {x(v)} be a sequence in Ω such that x(v) → x. Since Ω is closed, x ∈ Ω.
Furthermore, for all large v,∣∣∣ ∞∑
k=n

f(k, x
(v)
k )−

∞∑
k=n

f(k, xk)
∣∣∣ ≤ ∣∣∣M−1∑

k=n

f(k, x
(v)
k )−

M−1∑
k=n

f(k, xk)
∣∣∣

+
∣∣∣ ∞∑
k=M

f(k, x
(v)
k )
∣∣∣+
∣∣∣ ∞∑
k=M

f(k, xk)
∣∣∣ ≤ 3δε,

where δ = 1 if f is superlinear, and δ = 1/2 if f is sublinear. In view of the
definition of T ,

|(Tx(v))n − (Tx)n|

≤ Γ (n)

M−1∑
i=n

(i− n+ 1) . . . (i− n+m− 2j − 1)

(m− 2j − 1)!

× 1

ri

∣∣∣ ∞∑
k=i

f(k, x
(v)
k )−

∞∑
k=i

f(k, xk)
∣∣∣

+ Γ (n)

∣∣∣∣ ∞∑
i=M

(i−M + 1) . . . (i−M +m− 2j − 1)

(m− 2j − 1)!
· 1

ri

∞∑
k=i

f(k, x
(v)
k )

∣∣∣∣
+ Γ (n)

∣∣∣∣ ∞∑
i=M

(i−M + 1) . . . (i−M +m− 2j − 1)

(m− 2j − 1)!
· 1

ri

∞∑
k=i

f(k, xk)

∣∣∣∣
≤ Γ (n) · 3δε.

This shows that ‖Tx(v) − Tx‖ tends to zero, i.e., T is continuous.
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Finally, note that when t > n ≥ m,

|(Tx)t − (Tx)n|

≤ Γ (n)

∣∣∣∣ ∞∑
i=n

(i− n+ 1) . . . (i− n+m− 2j − 1)

(m− 2j − 1)!
· 1

ri

∞∑
k=i

f(k, xk)

∣∣∣∣
+ Γ (n)

∣∣∣∣ ∞∑
i=t

(i− t+ 1) . . . (i− t+m− 2j − 1)

(m− 2j − 1)!
· 1

ri

∞∑
k=i

f(k, xk)

∣∣∣∣
≤ 2Γ (n)

∣∣∣∣ ∞∑
i=n

(i− n+ 1) . . . (i− n+m− 2j − 1)

(m− 2j − 1)!
· 1

ri

∞∑
k=i

f(k, xk)

∣∣∣∣
≤ 2Γ (n)δε.

Therefore, T (Ω) is uniformly Cauchy.

In view of Lemma 1, we see that there is an x∗ ∈ Ω such that Tx∗=x∗. It
is easy to check that x∗ is an eventually positive solution of (1). Furthermore,
by the theorem of Stolz,

lim
n→∞

1

n2j−1

n−1∑
im−1=n1

im−1−1∑
im−2=n1

. . .

im−2j+2−1∑
im−2j+1=n1

H(im−2j+1)

= . . . = lim
n→∞

1

(2j − 1)!

∞∑
i=n

(i− n+ 1) . . . (i− n+m− 2j − 1)

(m− 2j − 1)!

× 1

ri

∞∑
k=i

f(k, x∗k) = 0.

Thus

lim
n→∞

x∗n
n2j−1

= lim
n→∞

(Tx∗)n
n2j−1

=
3a

2
and lim

n→∞

x∗n
n2j−2

=∞.

That is to say, x∗ belongs to Ej(∞, ∗).
We now show that the converse holds. Let {xn} be an eventually positive

solution of (1) which belongs to Ej(∞, ∗). In view of Lemmas 3 and 6, we
see that ∆m−1xn > 0 and ∆mxn < 0 for n greater than or equal to some
integer n1, and {∆kxn} is eventually monotonic for each k ∈ {1, . . . ,m−1}.
Since limn→∞ xn/n

2j−1 = a > 0, there exists an integer n2 ≥ n1 such that

a

2
n2j−1 ≤ xn ≤

3a

2
n2j−1, n ≥ n2,

so that

f(k, xk) ≥ f
(
k,
a

2
k2j−1

)
, k ≥ n2,
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if f is superlinear, and

f(k, xk) ≥ 3f

(
k,
a

2
k2j−1

)
, k ≥ n2,

if f is sublinear. We assert that

lim
n→∞

∆2j−1xn = (2j − 1)!a.

In fact, by the theorem of Stolz,

lim
n→∞

xn
n2j−1

= lim
n→∞

∆xn
(2j − 1)n2j−2

= . . . = lim
n→∞

∆2j−1xn
(2j − 1)!

= a.

In case j < m/2, we see further that

(6) lim
n→∞

∆2jxn = lim
n→∞

∆2j+1xn = . . . = lim
n→∞

∆m−1xn = 0

since {∆ixn} is eventually monotonic for i = 2j, 2j + 1, . . . ,m− 1.
By (1),

rs∆
m−1xs +

s−1∑
j=n

f(j, xj) = rn∆
m−1xn, s ≥ n+ 1 ≥ n2,

so that

∆m−1xn >
1

rn

∞∑
j=n

f(j, xj), n ≥ n2.

Summing the above inequalities successively, and invoking (6) if necessary,
we see that

−∆2jxn >

∞∑
im−2j−2=n

∞∑
im−2j−3=im−2j−2

. . .

∞∑
i=i1

1

ri

∞∑
k=i

f(k, xk) = H(n),

n ≥ n2.
Summing the above inequalities one more time, we then obtain

∞ > ∆2j−1xn2
> ∆2j−1xn2

− (2j − 1)!a >

∞∑
i=n2

H(i)

≥ 1

(m− 2j − 1)!2m−2j−1

∞∑
i=2n2

im−2j−1
1

ri

∞∑
k=i

f(k, xk)

≥ C
∞∑

i=2n2

im−2j−1
1

ri

∞∑
k=i

f(k, ck2j−1),

for some appropriate constants C and c. The proof is complete.

In the above result, it would be nice to include the case where j = m/2.
Indeed, we can obtain a similar result provided rn = r > 0 for n = K,
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K + 1, . . . The proof is not much different from that of Theorem 2 and is
therefore omitted.

Theorem 2′. Suppose that m is even, that rn = r > 0 for n ≥ K,
and that (H1) and (H2) hold. Suppose further that f is either superlinear or
sublinear. If there a constant c > 0 such that

∞∑
n=K

|f(k, ckm−1)| <∞,

then (1) has an eventually positive solution in Em/2(∞, ∗). The converse is
also true.

We now turn to eventually positive solutions in Ej(∗, 0). By means of
the same reasoning used in the proof of Theorem 2, it is not difficult to show
that the converse part of the following result holds.

Theorem 3. Suppose that m is even, and that (H1) and (H2) hold.
Suppose further thatf is either superlinear or sublinear. If there is a constant
c > 0 and j ∈ {1, . . . ,m/2} such that

(7)

∞∑
n=K

nm−2j
{

1

rn

∞∑
k=n

|f(k, ck2j−2)|
}
<∞,

then (1) has an eventually positive solution in Ej(∗, 0). The converse is also
true.

The proof of the sufficiency part is also similar to that of Theorem 2
and is therefore only sketched as follows. Let a = c/2 if f is superlinear and
a = c if f is sublinear. Set

Γ (n) = n2j−2, n ≥ K.
Then as in the proof of Theorem 2, we see that there exists an integer
n1 ≥ K and a sequence {x∗n} such that

aΓ (n) ≤ x∗n ≤ 2aΓ (n), n ≥ n1,
and

x∗n =
3a

2
Γ (n) +

n−1∑
im−1=n1

im−1−1∑
im−2=n1

. . .

im−2j+3−1∑
im−2j+2=n1

G(im−2j+1), n ≥ n1,

where

G(n) =

∞∑
i=n

(i− n+ 1) . . . (i− n+m− 2j)

(m− 2j)!

{
1

ri

∞∑
k=i

f(k, xk)

}
.

Then by means of the theorem of Stolz, we may show that

lim
n→∞

x∗n
n2j−2

=
3a

2
+ β
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where β is a constant satisfying

0 < β ≤
∞∑

n=n1

(n− n1 + 1) . . . (n− n1 +m− 2j − 1)

(m− 2j − 1)!

×
{

1

ri

∞∑
k=n

2f(k, ck2j−2)

}
.

It follows that

lim
n→∞

x∗n
n2j−1

= 0.

These show that {x∗n} is an eventually positive solution in Ej(∗, 0).

Next we provide an existence criterion for eventually positive solutions
in Ej(∞, 0).

Theorem 4. Suppose that m is even, and that (H1) and (H2) hold.
Suppose further that for each n ≥ K, f(n, x) is nonincreasing in x. If there
is some integer j ∈ {1, 2, . . . ,m/2− 1} such that

(8)

∞∑
n=K

nm−2j−1
{

1

rn

∞∑
k=n

|f(k, ak2j−2)|
}
<∞

for some a > 0, and

(9)

∞∑
n=K

nm−2j
{

1

rn

∞∑
k=n

|f(k, bk2j−2)|
}

=∞

for every b > 0, then equation (1) has a positive solution in Ej(∞, 0). Con-
versely , if (1) has a positive solution x ∈ Ej(∞, 0), then (9) holds for every
b > 0 and

(10)

∞∑
n=K

nm−2j−1
{

1

rn

∞∑
k=n

|f(k, ck2j−1)|
}
<∞

for every c > 0.

P r o o f. The proof is similar to that of Theorem 2 and is sketched as
follows. Replace Γ (n) in the proof of Theorem 2 by

Γ (n) = n2j−2, n ≥ K,
and also modify the mapping T in an appropriate manner so as to yield a
fixed point {x∗n} such that

aΓ (n) ≤ x∗n ≤ 2aΓ (n), n ≥ n1 ≤ K,
and

x∗n =
3a

2
Γ (n) +

n−1∑
im−1=n1

im−1−1∑
im−2=n1

. . .

im−2j+4−1∑
im−2j+3

G(im−2j+3), n ≥ n1,
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where

G(n) =
∞∑
i=n

(i− n+ 1) . . . (i− n+m− 2j − 1)

(m− 2j − 1)!

{
1

ri

∞∑
k=i

f(k, xk)

}
.

By means of the theorem of Stolz, we may show that

lim
n→∞

x∗n
n2j−2

=
3a

2
+ lim
n→∞

1

(2j − 2)!

n−1∑
k=n1

G(k)

and

lim
n→∞

x∗n
n2j−1

= lim
n→∞

1

(2j − 1)!
G(n) = 0.

Since ∆2j−2x∗n > 0 and ∆2j−1x∗n > 0, the sequence {∆2j−2x∗n} is positive
and increasing, thus it either converges to some positive limit or diverges
to ∞. If the former holds, then limn→∞ x∗/n2j−2 is a positive constant, so
that x∗ ∈ Ej(∗, 0). But then by Theorem 3, the condition (7) holds for some
positive constant c, contrary to the assumption that (9) holds for every
b > 0. Thus we may now conclude that limn→∞ x∗/n2j−2 = ∞, so that
x∗ ∈ Ej(∞, 0).

For the converse, let {xn} be an eventually positive solution in Ej(∞, 0)
which satisfies

lim
n→∞

xn
n2j−2

=∞, lim
n→∞

xn
n2j−1

= 0.

For any a > 0 and b > 0, there exists n1 ≥ K such that

bn2j−2 ≤ xn ≤ an2j−1, n ≥ n1.

Since f is nonincreasing, we see that

f(n, an2j−1) ≤ f(n, xn) ≤ f(n, bn2j−2), n ≥ n1.

We may now proceed as in the proof Theorem 2 to conclude that (10) holds
for every c > 0. Next, by the theorem of Stolz,

lim
n→∞

xn
n2j−2

= . . . = lim
n→∞

∆2j−2xn
(2j − 2)!

=∞,

and

(11) lim
n→∞

∆2j−1xn = . . . = lim
n→∞

∆m−1xn = 0.

In view of (1),

rs∆
m−1xs +

s−1∑
i=n

f(i, xi) = rn∆
m−1xn, s ≥ n+ 1 ≥ n1,



NONLINEAR DIFFERENCE EQUATIONS 149

so that

∆m−1xn =
1

rn

∞∑
i=n

f(i, xi), n ≥ n1.

Summing the above equalities successively, and utilizing (11) if necessary,
we see that

∆2j−1xn =

∞∑
l=n

∞∑
i=l

H(i), n ≥ n1,

where H(n) has been defined in Theorem 2. Again by summing the above
equalities from n1 to n− 1, we see further that

∆2j−2xn = ∆2j−2xn1
+

n−1∑
k=n1

∞∑
l=k

∞∑
i=l

H(i).

Since
n−1∑
k=n1

∞∑
l=k

∞∑
i=l

H(i) ≤
n−1∑
l=n1

∞∑
i=n1

im−2j−1
{

1

ri

∞∑
k=i

f(k, xk)

}

≤
∞∑
l=n1

∞∑
i=n1

im−2j−1
{

1

ri

∞∑
k=i

f(k, bk2j−2)

}

≤
∞∑
i=n1

im−2j
{

1

ri

∞∑
k=i

f(k, bk2j−2)

}
,

and since limn→∞∆2j−2xn = ∞, (9) holds for every b > 0. The proof is
complete.

Again, when j = m/2, we can establish the following by parallel argu-
ments.

Theorem 4′. Suppose that m is even, that rn = r > 0 for n ≥ K, and
that (H1) and (H2) hold. Suppose further that for each n ≥ K, f(n, x) is
nonincreasing in x. If

∞∑
n=K

|f(n, anm−2)| <∞

for some a > 0, and

(12)

∞∑
n=K

∞∑
k=n

|f(k, bkm−2)| =
∞∑
k=K

(k −K)|f(k, bkm−2)| =∞

for every b > 0, then equation (1) has a positive solution in Em/2(∞, 0).
Conversely , if (1) has a positive solution x ∈ Em/2(∞, 0), then (12) holds
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for every b > 0 and
∞∑
n=K

|f(n, cnm−1)| <∞

for every c > 0.

We remark that the first equality in (12) is true (see e.g. [12]).

We now turn our attention to the case where m is odd.

Theorem 5. Suppose that m is odd , and that (H1) and (H2) hold. Sup-
pose further that f is either superlinear or sublinear. If there is a constant
c > 0 and j ∈ {1, . . . , (m− 3)/2} such that

∞∑
n=K

nm−2j−2
{

1

rn

∞∑
k=n

|f(k, ck2j)|
}
<∞,

then (1) has an eventually positive solution in Oj(∞, ∗). The converse is
also true.

The proof is similar to that of Theorem 2, we only need to note that the
sequence Γ (n) there should be replaced by Γ (n) = n2j and the mapping T
should be modified so that

(Tx)n =
3a

2
Γ (n) +

n−1∑
im−1=N

im−1−1∑
im−2=N

. . .

im−2j+1−1∑
im−2j=N

H(im−2j), n ≥ N,

where

H(n) =

∞∑
i=n

(i− n+ 1) . . . (i− n+m− 2j − 2)

(m− 2j − 2)!

{
1

ri

∞∑
k=i

f(k, xk)

}
.

In case j = (m− 1)/2, we have the following result which can be proved
by parallel arguments.

Theorem 5′. Suppose that m is odd , that rn = r > 0 for n ≥ K, and
that (H1) and (H2) hold. Suppose further that f is either superlinear or
sublinear. If there is a constant c > 0 such that

∞∑
n=K

|f(n, cnm−1)| <∞,

then (1) has an eventually positive solution in Om/2(∞, ∗). The converse is
also true.

Theorem 6. Suppose that m is odd , and that (H1) and (H2) hold. Sup-
pose further that f is either superlinear or sublinear. If there is a constant
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c > 0 and j ∈ {1, . . . , (m− 1)/2} such that

∞∑
n=K

nm−2j−1
{

1

rn

∞∑
k=n

|f(k, ck2j−1)|
}
<∞,

then (1) has an eventually positive solution in Oj(∗, 0). The converse is also
true.

Theorem 7. Suppose that m is odd , and that (H1) and (H2) hold. Sup-
pose further that for each n ≥ K, f(n, x) is nonincreasing in x. If there is
some integer j ∈ {1, . . . , (m− 3)/2} such that

(13)

∞∑
n=K

nm−2j−2
{

1

rn

∞∑
k=n

|f(k, ak2j−1)|
}
<∞

for some a > 0 and

(14)
∞∑
n=K

nm−2j−1
{

1

rn

∞∑
k=n

|f(k, bk2j−1)|
}

=∞

for every b > 0, then (1) has a positive solution in Oj(∞, 0). Conversely , if
(1) has a positive solution in Oj(∞, 0), then (14) holds for every b > 0 and

∞∑
n=K

nm−2j−2
{

1

rn

∞∑
k=n

|f(k, ck2j)|
}
<∞

for every c > 0.

Theorem 7′. Suppose that m is odd , that rn = r > 0 for n ≥ K, and
that (H1) and (H2) hold. Suppose further that for each n ≥ K, f(n, x) is
nonincreasing in x. If

∞∑
n=K

|f(n, anm−2)| <∞

for some a > 0 and

(15)

∞∑
n=K

∞∑
k=n

|f(k, bkm−2)| =
∞∑
k=K

(k −K)|f(k, bkm−2)| =∞

for every b > 0, then (1) has a positive solution in O(m−1)/2(∞, 0). Con-
versely , if (1) has a positive solution in O(m−1)/2(∞, 0), then (15) holds for
every b > 0 and

∞∑
n=K

|f(n, anm−1)| <∞

for every c > 0.



152 W. T. LI AND S. S. CHENG

Theorem 8. Suppose that m is odd , and that (H1) and (H2) hold. Sup-
pose further that f is either superlinear or sublinear. If there is a constant
c > 0 and j ∈ {1, . . . , (m− 1)/2} such that

∞∑
n=K

nm−2
{

1

rn

∞∑
k=n

|f(k, c)|
}
<∞,

then (1) has an eventually positive solution which converges to a positive
constant. The converse is also true.

The proof is similar to that of Theorem 2, we only need to note that
the sequence Γ (n) should now be replaced by Γ (n) = 1 and the mapping T
should be modified so that

(Tx)n=
3a

2
+

∞∑
i=n

(i− n+ 1) . . . (i− n+m− 2)

(m− 2)!

{
1

rn

∞∑
k=i

f(k, xk)

}
, n ≥ N.

Theorem 9. Suppose that m is odd , and that (H1) and (H2) hold. Sup-
pose further that f is nondecreasing in x. Then (1) has an eventually positive
solution {xn} which converges to zero if

(16) n

∞∑
i=n

(i− n+ 1) . . . (i− n+m− 2)

(m− 2)!

{
1

ri

∞∑
k=i

∣∣∣∣f(k, 1

k

)∣∣∣∣} ≤ 1

holds for n ≥ N ≥ m+ 2.

P r o o f. Let X be the partially ordered Banach space of all bounded
real sequences x = {xn}∞n=N endowed with the usual supremum norm and
termwise ordering. Define a subset Ω of X by

Ω = {{xn} ∈ X : 0 ≤ xn ≤ 1, n ≥ N}.
For any subset M of Ω, it is clear that inf M ∈ Ω and supM ∈ Ω. Define
an operator T on Ω as follows:

(Tx)n=n

∞∑
i=n

(i− n+ 1) . . . (i− n+m− 2)

(m− 2)!

{
1

ri

∞∑
k=i

∣∣∣∣f(k, xkk
)∣∣∣∣}, n ≥ N.

By (16), we see that T (Ω) ⊆ Ω. Furthermore, it is clear that T is an in-
creasing mapping. By means of the Knaster–Tarski fixed point theorem (see
e.g. [5, Theorem 1.7.3]), there exists a sequence w = {wn} ∈ Ω such that
Tw = w. If we let

un = wn/n, n ≥ N,
then

un =

∞∑
i=n

(i− n+ 1) . . . (i− n+m− 2)

(m− 2)!

{
1

ri

∞∑
k=i

|f(k, uk)|
}
.
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By taking differences on both sides of the above equality, we may easily
verify that u = {un} is a solution of (1) for all large n. Since u is eventually
positive and converges to zero, we have found the desired solution. The proof
is complete.
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