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ORDERINGS AND PREORDERINGS IN RINGS WITH INVOLUTION

BY

ISMAIL M. I D R I S (CAIRO)

Abstract. The notions of a preordering and an ordering of a ring R with involution
are investigated. An algebraic condition for the existence of an ordering of R is given.
Also, a condition for enlarging an ordering of R to an overring is given. As for the case
of a field, any preordering of R can be extended to some ordering. Finally, we investigate
the class of archimedean ordered rings with involution.

1. Introduction, definitions and basic facts. The notion of an order-
ing of a field was studied by Artin and Schreier. This notion was extended
to division rings with involution in [1], [2] and [3]. One can ask now if this
can be generalized to noncommutative rings with involution. In this paper,
the notions of a preordering and an ordering of a ring R with involution
are investigated. An algebraic condition for the existence of an ordering of
R is given. Also, a condition for enlarging an ordering of R to an overring
is given. As for the case of a field, any preordering of R can be extended
to some ordering. Finally, we investigate the class of archimedean ordered
rings with involution. We should remark that the orderings as defined in
this work can only exist for rings without zero-divisors.

Now, we state some definitions and basic facts that will be needed in
this paper. Hereafter R will be a not necessarily commutative ring with
involution * (an anti-automorphism of period 2). By a norm in R we mean
an element of the form xx∗ for some x ∈ R. Let S = {s ∈ R : s = s∗} be
the set of all symmetric elements of R. For x1, . . . , xr ∈ R we shall write
(x1x

∗
1, . . . , xrx

∗
r) to denote the set of products of the 2r elements xi and x∗i

(i = 1, . . . , r) in some arbitrary but fixed order. Let X denote the union of
the sets (x1x

∗
1, . . . , xrx

∗
r) (xi ∈ R, i = 1, . . . , r; r any positive integer), and

we write P for the subset of R consisting of sums of elements of X. Then P
is called the *-core of R. This generalizes the notion of a *-core given in [1]
for the case of a ring with involution.

Clearly X contains the set of all products of norms of R, and P contains
the set of all sums of products of norms, in particular X ⊂ P . Also, it is
clear that X is *-closed, multiplicatively closed and contains 1; and P is
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*-closed and closed under sums and products. If ∗ = identity, then R is
commutative and P will be the set of all sums of products of squares of R.
Our goal is to show that R has an ordering if and only if 0 6∈ P . First, we
give the definition of an ordering.

Definition 1.1. A ∗-closed subset M ⊆ R is called a preordering of R
if:

(a) M + M ⊆M ;
(b) M ·M ⊆M ;
(c) 0 6∈M , 1 ∈M ; and
(d) a1, . . . , at ∈ M and x1, . . . , xr ∈ R implies that any product of the

2r + t elements aj , xi, x
∗
i in some arbitrary but fixed order belongs to M

(where xi 6= 0).

A preordering M is called an ordering of R if:

(e) For 0 6= s = s∗ ∈ R, s ∈ M ∪ −M , i.e. S is a totally ordered
(additive) group.

If R is commutative, then condition (d) above is equivalent to the con-
dition

a ∈M, x ∈ R⇒ axx∗ ∈M.

The above definition of an ordering of R generalizes the notion of a strong
ordering of a division ring with involution given in [2]. Also, M ∩ S will be
a Jordan ordering in the sense given in [3] in the case of a division ring with
involution. If ∗ = identity, then R is commutative, and the definition of an
ordering reduces to that of the classical Artin–Schreier ordering.

Proposition 1.2. Let M be an ordering on R. Then

M ∩ −M = ∅,
and R is a domain of characteristic zero.

P r o o f. If a ∈M∩−M , then 0 = a+(−a) ∈M+M ⊆M , contradicting
(c) above. Since 1 ∈M , it follows that, for any natural number n,

n · 1 = 1 + . . . + 1 ∈M.

Therefore, charR = 0. Finally, if x, y ∈ R \ {0} and xy = 0, then 0 =
x∗xyy∗ ∈M , a contradiction. This shows that R is a domain.

Proposition 1.3. Let M be a preordering. Then

(a) s = s∗ ∈M , s invertible ⇒ s−1 ∈M .
(b) s ∈ R, s invertible ⇒ sMs−1 ⊂M .

P r o o f. (a) We note that s−1 = s(s−1s−1∗) ∈M .
(b) sMs−1 = sMs−1(s−1∗s∗) ⊂M (by Definition 1.1(d)).
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If we are given an ordering M of R, then M defines a partial order
relation on R by:

b ≥ a⇔ b− a ∈M ∪ {0}.
The ring Z of integers, the field Q of rational numbers and the field R of
real numbers, with their usual orderings and the identity as involution, are
examples of ordered commutative rings. The field C of complex numbers
with conjugation as involution is ordered by the set M = R+ (the positive
real numbers).

An example of a noncommutative ordered ring is the Weyl algebra gener-
ated over R by x and y with the relation xy−yx = 1, i.e., R = R〈x, y〉/(xy−
yx−1), relative to the involution, making x symmetric and y skew. Elements
of R have the canonical form

r = r0(x) + r1(x)y + . . . + rn(x)yn,

where each ri(x) ∈ R[x], rn(x) 6= 0. Let M ⊆ R be the set of all nonzero
elements r ∈ R as above for which rn(x) has a positive leading coefficient.
One can show that M is an ordering of R.

2. Existence of orderings. For a preordering M and 0 6= s = s∗ ∈ R
we define M(s) to be the set of all sums of products of elements of M ,
elements xi, x

∗
i of R and s in some arbitrary but fixed order (where xi 6= 0).

If R is commutative, then clearly M(s) = Ms. For R = D a division ring,
also M(s) = Ms.

Lemma 2.1. M ∪M(s) ∪M + M(s) is a preordering iff 0 6∈M + M(s).

P r o o f. Let M ′ = M ∪M(s)∪M +M(s). Then clearly M ′+M ′ ⊂M ′.
By the definition of M(s) and property (d) of a preordering, we have

M ′ ·M ′ = M ·M(s) + M(s) ·M + M ·M + M(s) ·M(s)

⊂M(s) + M(s) + M + M ⊂M + M(s) ⊂M ′.

Also M ′ has property (d) and 1 ∈ M ′. Since 0 6∈ M ∪ M(s), M ′ is a
preordering iff 0 6∈M + M(s).

Lemma 2.2. If M is a preordering and 0 6= s = s∗ ∈ R, then either

M1 = M ∪M(s) ∪M + M(s) or M2 = M ∪M(−s) ∪M + M(−s)
is a preordering containing M .

P r o o f. We first note that any element of M(−s) is of the form −x where
x ∈M(s) and hence every element of M +M(−s) is of the form t−x, where
t ∈M , x ∈M(s). Assume now that the lemma is false. Then by Lemma 2.1,
0 ∈M+M(s) and 0 ∈M+M(−s). Hence t1+x1 = 0 = t2−x2 where t1, t2 ∈
M , x1, x2 ∈ M(s), and x1 = −t1, x2 = t2. Since x1x2 ∈ M(s) ·M(s) ⊂ M
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and t1t2 ∈M and t1t2 = −x1x2, it follows that 0 = x1x2 + t1t2 ∈M , which
is a contradiction. Thus M1 or M2 is a preordering.

Proposition 2.3. If M is a maximal preordering with respect to inclu-
sion, then M is an ordering.

P r o o f. We need to show that S ⊂M ∪−M . For 0 6= s = s∗ ∈ S, either

M1 = M ∪M(s) ∪M + M(s) or M2 = M ∪M(−s) ∪M + M(−s)
is a preordering containing M . But M is maximal, so M = M1 or M = M2

and hence M contains s or −s as desired.

Theorem 2.4. Let R be a ring with involution. Then R has an ordering
if and only if 0 6∈ P .

P r o o f. If R has an ordering M , then P ⊂ M and 0 6∈ P . Conversely,
if 0 6∈ P , then P is a preordering. By Zorn’s Lemma, we have a maximal
preordering M . By Proposition 2.3, M is an ordering of R.

Theorem 2.5. Any preordering M0 of R can be extended to some order-
ing M .

P r o o f. By Zorn’s Lemma, the set of all preorderings extending M0

contains some maximal preordering M . By Proposition 2.3, M is an ordering
containing M0.

We note that any intersection of orderings of R is a preordering of R.
If R is orderable, i.e., 0 6∈ P , then the ∗-core P is a preordering with the
following features: P ⊂M and M ·P = P ·M = M for each preordering M .
Throughout the rest of this section, we will assume that 0 6∈ P . By Sym(A)
we mean the subset of symmetric elements of A.

Corollary 2.6. Sym(P ) = Sym(
⋂

i Mi), where the intersection is over
all orderings Mi of R.

P r o o f. Clearly Sym(P )⊆ Sym(
⋂

i Mi). Conversely, we show that s =
s∗ 6∈ P implies s 6∈M for some ordering M . Since P is a preordering, Lemma
2.2 shows that M1 = P ∪P (−s)∪P +P (−s) is a preordering containing P
and −s. By Theorem 2.5, M1 can be extended to some ordering M . Since
−s ∈M1 ⊂M and M is an ordering, it follows that s 6∈M .

Corollary 2.7. Let M0 be any preordering. Then we have Sym(M0) =
Sym(

⋂
i Mi), where the intersection is over all orderings Mi containing M0.

Lemma 2.8. Let M1 and M2 be two orderings of R. If M1 ⊂M2, then

Sym(M1) = Sym(M2).

P r o o f. If there is s = s∗ ∈ M2 −M1, then s 6∈ M1 implies −s ∈ M1 ⊂
M2, so both s and −s are in M2, which is absurd.
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Theorem 2.9. Let R ⊆ R′ be rings with involution. Let M be an ordering
of R. Let M ′ be the set of all sums of products of 2r + t elements aj , xi,
x∗i in some arbitrary but fixed order , where a1, . . . , at ∈M and x1, . . . , xr ∈
R′ − {0}. If 0 6∈M ′, then M can be enlarged to some ordering of R′.

P r o o f. Since 0 6∈M ′, it follows that 0 6∈ P ′ (the ∗-core of R′) and R′ is
ordered. It is easy to show that M ′ is a preordering of R′. By Theorem 2.5,
M ′ can be enlarged to some ordering M1 ⊃M ′ ⊃M .

It is known that any archimedean ordered ring is commutative. In the
rest of this work, we shall investigate the class of archimedean ordered rings
with involution. Let s = s∗ be a positive element in an ordered ring R with
involution. We say that s is infinitely large if s > n for any integer n ≥ 1,
and that s is infinitely small if n · s < 1 for any integer n ≥ 1.

Lemma 2.10. For any ordered ring R, the following two properties are
equivalent :

(a) For any positive elements s = s∗, d = d∗ in R, there exists an integer
n ≥ 1 such that n · s > d.

(b) R has neither infinitely large nor infinitely small elements.

P r o o f. Assume (b) holds and consider s, d > 0. By (b), there exist
integers m,n ≥ 1 such that d < n and m · s > 1. Then m · n · s > n > d as
desired. Now, assume (a) holds, and s = s∗ > 0. Since 1, s > 0, by (a) there
exist integers m,n ≥ 1 such that m = m · 1 > s and n · s > 1, so that s is
neither infinitely large nor infinitely small.

An ordered ring with involution is called archimedean if it satisfies any
of the two conditions of Lemma 2.10. We note that if R = D is an ordered
division ring, then for s = s∗ > 0, s is infinitely large if and only if s−1 is
infinitely small. Thus D is archimedean if and only if D has no infinitely
large elements, if and only if D has no infinitely small elements.

Theorem 2.11. Let R be an archimedean ordered ring with involution.
Then all symmetric elements in R mutually commute.

P r o o f. Let b, d and s be three symmetric elements of R. Let k be the
skew symmetric element [b, d] = bd − db and form the symmetric element
[k, s] = [[b, d], s]. From (s−k)∗(s−k) ≥ 0 and (s−k)(s−k)∗ ≥ 0 one can get
the inequality 0 ≤ |[k, s]| ≤ s2 − k2 where |[k, s]| means the absolute value
symbol in its usual sense. We assume that s > 0 (if s < 0 we replace s by
−s). Since R is archimedean, for each n ≥ 1 there exists an integer m such
that 1 > ns −m ≥ 0 so that (ns −m)2 < 1. Now, replace s by ns −m in
the above inequality to get 0 ≤ n|[k, s]| ≤ 1− k2, n = 1, 2, . . . ; this implies
[k, s] = 0 (since both |[k, s]| and 1−k2 are positive symmetric elements), i.e.
k = [b, d] commutes with s for all symmetric b, d, and s. This says that all
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commutators [b, d], b, d ∈ S, commute with all symmetric elements. From
the identity

2b[b, d] = [b2, d] + [b, [b, d]] = [b2, d],

2b[b, d] also commutes with all symmetric elements, for b, d ∈ S. Thus both
[b, d] and 2b[b, d] commute with all symmetric elements. As R is a domain, b
must commute with all symmetric elements. Hence all symmetric elements
mutually commute.

Corollary 2.12. Let R be an archimedean ordered ring with involution
where the set S of symmetric elements generates R. Then R is a commuta-
tive domain.

In the case of a division ring R with involution, it is known that S
generates R, unless R is of dimension 4 over its centre. Hence we get

Corollary 2.13. If R is an archimedean ordered division ring with
involution, then R is commutative or of dimension 4 over its centre.
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