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Abstract. We study the densities of the semigroup generated by the operator X%+
|Y| on the 3-dimensional Heisenberg group. We show that the 7th derivatives of the
densities have a jump discontinuity. Outside the plane z = 0 the densities are C>°. We
give explicit spectral decomposition of images of —X 24 |Y'| in representations.

1. Introduction. In [1] P. Glowacki and A. Hulanicki discovered that
there exist convolution semigroups (u¢)¢>o of probability measures on a Lie
group G such that all u; have densities p; whose first group derivatives Xp;,
are in L? but higher derivatives are not. Paper [1] does not say anything
about pointwise derivatives of p;. The aim of the present paper is to clarify
this point. Indeed, the densities p; of the semigroup considered in [1] do
have a number of derivatives but at some points the seventh derivative does
not exist. In order to obtain the result and clarify the situation, we study
the semigroup and its infinitesimal generator in some detail, mainly when
transferred by unitary irreducible representations of G. The operators thus
obtained are known objects but the information about them needed here is
perhaps easier to prove directly than to recover from the fairly complicated
general theory. Therefore we include many proofs here. Of course, we do not
claim any originality at this point.

By the 3-dimensional Heisenberg group G we mean the Euclidean space
R3 with multiplication defined by

(1, y1,21) - (T2, Y2, 22) = (1 + T2, Y1 + Y2, 21 + 22 + T1Y2).

The basis X, Y, Z of the left invariant Lie algebra of G related to the
coordinate system is

0 0 0 0
x=2 y_-2. .9 .
Oox’ 8y+
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86 P. GADZINSKI

The operator we are going to study is defined as
A=-X?+[Y|.
For t > 0, let d; be the automorphism
8e(z,y, 2) = (t%, 1%, t°2),

where a, b > 0, ¢ = a+b. If f is a function from the Schwartz class S(G),
then

X(fody) =t (Xf)ody,
Y(fod)=t"-(Yf)od,
Z(fody) =t (Zf)ods.

To simplify calculations we assume from now on that b = 2a, ¢ = 3a and «a
is an odd, positive number. Then

A(fod,) =1t (Af)od,.

Let us define a family of unitary representations 7 : G — U(L*(R)) for
A € R* (where R* =R\ {0}):

it p(u) = FEF o+ o), where u € R, (2,4,2) € G, ¢ € L*(R),
A1 .
Ty = 755 (g) it A >0,
if A <O.

Q »

a1
Tg = Ts0(9)

A

We shall write simply 7 for 7!. The representations 7* can be extended to

the space of bounded measures:
772 = Sﬂ';\ du(g) if u € M(G).
G
Expanding the formula for 71']/}, where f € L'(G) N L?(G), we obtain
—a v—u isgn °z by
() = | (m)w | f(Wy ) En (A= A" w) dydz) do.
R R2
Thus the kernel of the operator 77? is given by
v—u
Al
where F;, i = 1,2,3, denotes the Fourier transform with respect to the
ith coordinate. The operators \/LQ—W.E- are isometries, hence we have the

(1.1) k}‘(u,v) = ])\]_afg}"gf< —sgn()\)])\]bu,—sgn()\)\)\\c>,

Plancherel formula

(1:2) 171320 = 2

I} Ifis AP d.
R
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Applying the inverse Fourier transform to (1.1) one can verify that

(L.3) flz,y,2) = # VKRNI 0, (A (u+ ) A2 e ™A ) gy d ),
RQ

We have just defined 772 for measures. Now we extend this representation
over some class of operators. Let T" be a (possibly unbounded) operator on
L?(G) such that every function f from the Schwartz class S(G) belongs to
the domain of T and T'f € L*(G). If for all A € R*, f € S(G), ¢ € L*(R),

TP = T3 5P
and the operator 72 is closable, then we define the representation of 7' as
the closure of m.. We denote this closure also by 7. One can check that

of O . cr
o= (). s, = s YA,

A b 82
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2. Eigenfunctions of 7. In this section we aim to show that all
eigenfunctions of 7 arise in a simple way from the Airy function. Since the
operator 77 differs from 74 only by a scalar factor, we restrict our attention
to m4. The operator 74 is selfadjoint and positive definite (cf. [4], Theorem
X.28), hence

o(ma) C [0, 00).
PROPOSITION 2.1. The operator (w4 + I)~1 is compact.
Proof. It is enough to show that the set
K ={pe L2R) : ||(ma + Dl < 1)
has a finite e-mesh for every ¢ > 0. Let ¢ € K. Then
lellirzey = Il(ma + Dellzmllellirz@) = ((Ta + e, @)

2l

+ H\ufl/%\\%%u{) +lell7e -
L2(R)

Hence

0
@) lelom <1 g s

<L llul

L2 (R)

ol 2@ < 1.
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If M~1/2 < /2, then the set K1 = {¢)y = ¢ - 1_p e : ¢ € K} has a
trivial £/2-mesh which consists of a single point 0. Moreover (2.1) shows
that functions belonging to Ky = {2 = ¢ — 1 = ¢ -1y : @ € K} are
uniformly bounded and equicontinuous, which, combined with the Ascoli—
Arzeld theorem, completes the proof. m

COROLLARY 2.2. There exists an orthogonal system o, of normalized
eigenfunctions of w4 such that

TAY = Z )\n<(P7 QOn> Pn -

n=1
The only point of accumulation of the sequence () is 0o, so we can assume
that (\,) is weakly increasing.
Since the potential of w4, which equals |u|, is symmetric and tends to
o0 as u — +00, we have

Fact 2.3. Every eigenvalue of ma is simple and every eigenfunction of
T4 1S either even or odd.

Let ¢ be an eigenfunction of 74, which means (—8%/0u? + |u|)p(u) =
Ap(u). Then the function

P(u) = o(u+A)

satisfies the formulae

(2.2) < W] + u>1/) =0 ifu>-=)
(2.3) | () du= |
- 0

lo(u)|? du < |l@l| 72 gy < oo

We can extend v|[_ o) to the whole line keeping the condition (2.2); after
normalization we obtain a function @ such that

D? , T ) I(1/3)
<_W —i—u)@(u):O if u e R, (S] |@(u)|” du < 00, @(0) = 531/6
These are exactly the conditions characterizing the Airy function. The fol-

lowing facts about this function can be found in [2], pp. 213-215:

FAcCT 2.4. At infinity both ®(u) and —P'(u) decrease to 0 faster than any
e~ Mu M > 0.

Fact 2.5. The function @ has an analytic extension to the whole C, given
by the explicit formula

(2.4) P(u) = Py(u) =C S ¢! (5 (EX)* +u€+iv) g for all y > 0.

— 00
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The extended function ®(z) satisfies the following estimate: For all k € N,
z=x +1iy € C and some constants C, which depend only on k,

(2.5) 88 (2)] < Cr(l2] + D)2 eVIzHIVL

It follows from Fact 2.3 that &(—\) = 0 or ¢/(—\) = 0 whenever A is
an eigenvalue of m4. It turns out that also the converse implication holds.
More precisely, we have

THEOREM 2.6. The spectrum of w4 equals
(2.6) o(ma)={NER:P(=N\) =0 or &(-\) = 0}.

Moreover, the function
o0

~1/2
(2.7.2) @n(u) = Cud(u—N,) if u>0, Cp= (2 | |q5(u)|2du> ,
—An
(2.7.b) @ (u) = (=1)" e, (—u) if u<0,
is the normalized eigenfunction corresponding to the eigenvalue X\,,. We have
&(—An) =0 for n even and ' (—\,) =0 for n odd.

The next fact gives an estimate of the nth eigenvalue of 74, and of the
difference of two consecutive eigenvalues. The formula (2.8) follows from
(2.6), and from the estimate of the zeros of @ in [2], p. 215. The formula
(2.9) holds, since the Airy function @ oscillates faster than solutions of the
differential equation (—92?/02% + \,)¢ = 0 and slower than solutions of
(—02/02% + A\p11)e = 0 on the interval [\, 11, —\,] (cf. [3], pp. 311-316),
and the above equations are satisfied by sin(v/A, v + ug) and sin(y/A,+1u
+ ul).

Fact 2.7. The eigenvalues A, satisfy the following estimates:

3 2/3
(2.8) Ap ~ <Zﬂn> :

(2.9) g)\;i/f < A1 — A < gA;W.

The greatest zero of the function &' is Ay = —1.0189... < —1, hence we
obtain the estimate

Facr 2.8. For all f € D, ,,
(2.10) Imadll = IIf]

3. Estimates of || P" f||12(g) for P € {X,Y, Z}. In this section we show
that any operator of multiplication by a polynomial and some differential
operators can be estimated by powers of the operator m4. We use these
results to estimate differential operators on the group G by powers of the
operator A.
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DEFINITION 3.1. Define V; to be the linear space spanned by (¢,)52,,
and V5 to be the linear space spanned by

0
uk@n : 1R+a uk%@n : 1R+a ukSDn : 1R*a U %@n : 1R*a
k=0,1,2,..., n=1,2,...

(Note that by Fact 2.4, V5 is contained in L2.)

Most of the proofs in this section consist of checking inequalities for
functions from the space V;. Then the results for L2-functions follow by
the density of V; in L2. Since higher derivatives of functions from V; do
not necessarily belong to L?, it is useful to consider also V5. Notice that V5
is preserved by the operators of multiplication by u, |u|, and also by 9/0u
acting on R*. But it is not preserved by 74 if we consider the elements of
this space as functions on R. Throughout this section we use (2.10), which
enables us to find explicit constants in the forthcoming inequalities. Some
of them already appeared in [1].

PRrOPOSITION 3.2. The following estimates hold:

: 0 1/2 .

(i) H—<P Slmd ez if €D 1,
au L2(]R) ( ) A

2 o I 2

@) gl + |aze|  SHmaclim 7 eDn
um Ml mw)

ok 3/2 .

(iif) 4 <2V3||m{ ¢llrewy  if ¢ €D s,
u LQ(R) A

Proof. We have

2 (-2 ) oe) = rap ) = ol
Gu L2(R) - 8 ou? ®

which proves (i). For (ii),

+ HWPH%%R)

2 32
(- g ut)e]|  -zmre( - pelule)
L2(R)

0 0
- 2
~ Imaglfe) — 2Re 5o, gclule )

s,

2
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2
12 0

[l ou

¥

0
= Imael 2 — 2Re <a—<p7sgn(U)<P> ~2
U L2(R)

0
< lmapliz@) + 2|7 lellzz@y < 3llmagllie )
OullL2ry
Finally, (iii) follows from () and (ii); indeed,
o3
<V3

Kl ral
0u " 2wy

au

_ @H%W — sgn(u)p

L2(R)
< V(I el 2@ + Iell2m) < 2V3I7Y %ol 2e)- m
REMARK 3.3. Modifying slightly the proof of (ii) of the last proposition
we obtain, for ¢ € V5,
1/2
lollzzae

32
|5 (H( +‘u')
L2(R*)
+ el L2 ey

(911,

ProproSITION 3.4. If p € D”Z for some k € N, then

L2(R)

2

0
ol 2
+ H@u(p

L2 (R*) L2(R*)

¥l 2@y < 28(k + DIk oll L2y
Proof. Denote by Cy, k € N, and Dy, k € N\ {0}, the smallest numbers
such that
[u*oll2m) < Crllmagllizmy,  mau™ " ollLe@ < Dillmiolle ).
Put also Dy = 1/2. What we have to show is the estimate Cj, < 2% (k + 1)!.
Notice that

¥l 2Ry < Crllmau® ol 2@y < C1De|holl L2 (),
hence
Cr < C1Dyp < V3D, <2D), if k> 1.

The inequality Cy < 2Dy, is also valid for k = 0, thus it is enough to verify
that Dy, < 28~1(k + 1)!. We prove this by induction.
For k = 0,1 the inequality is obvious. For k > 2,

mauk o = uF T lm a0 — 2(k — 1)%(1/“_290) + (k—1)(k — 2)uk_3(p,

therefore
Imau™ ol L2 @) < Cootllmhiollz®) + 2(k — 1) D1 |7 ol r2 )

+ (k= 1)(k = 2)Chsllmh ¢l 2wy,
D, <Cp_1+ 2(]{3 — 1)Dk_1 + (kj — 1)(](5 — 2)Ck_3,
and using the inductive hypothesis we obtain Dy, < 28~1(k +1)!. m
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THEOREM 3.5. If ¢ € D_k/2 for some k € N, then
A

|

(We denote by the same letters functions on R and their restrictions to R*.)

ak

Dk < Ckllm a2l L2 ().

L2(R*)

Proof. The proof is by induction on k. The formula is obvious for k = 0,
and for k = 1,2, 3 it follows from Proposition 3.2. Let now k > 4. If ¢ € V7,
then %gp € V5, hence, by Remark 3.3,

ak 82 ’ ‘ ak 2
= < ( + > ®
Out " L) o OuE=2 T Lo
H akfl ak—Q
Tl a7 + H—ﬂﬂ
OuF = oy 10Ul Lo e

< (- (k= 2)ss(0) s )

+ Crallm D20 2y + Crall 2200 12

L2(R*)

< ckfzuw’;%um) + (k= 2)Chsllmy ™20l o r
+ Cra 780 L2y + Cr—all 7S 0l Lo my
< (Chor +2Ck—a + (k = 2)Cr_a) |75 0l 2y -

LEMMA 3.6. Let w be a Hilbert-Schmidt operator on L?*(R), and put
By=1,B; =1, By =+/3, B3 =23, C}, = 2*(k + 1)!. Then

(i) [mxewllas < Bill(mh)*2w|us if k=0,1,2,3,
(ii) 73 pwllns < Cull(m)) T3 2wllys i k1 €N.

Proof. We only prove (ii) using Proposition 3.4. The statement (i) fol-
lows from Proposition 3.2 in an analogous way.
Let (e,)2%; be an orthonormal basis of L?(R). Then

[e.e] oo
I 2 wllfis = D I3 prwenlfamy = Y A 0PN Cwenl |2 )

n=1 n=1

Z k+3l/2we ”LQ(R) CkH( )k+3l/2w”%{s-'

THEOREM 3.7. Let the constants By,Cy be as in the previous lemma.
Then

(i) IX* fllr2@) < Bill A*? £l 12(c) if f€Dyxsz, k=0,1,2,3,
() Y*Z' fllr2@) < CrllA2 fllray  if f € Dassasa, kil €N
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Proof. Using the Plancherel formula (1.2), and the last lemma, we ob-
tain

IX*£1IZ2(6) = C Y llmsn s AP dA

< O\ BEll(m))*2x 3 [fis APt dA = BRIA f|72q).

5 t—y %M

The inequality (ii) can be proved in a similar way. =

4. Regularity of the semigroup generated by m4. For each t > 0,
e~ '™ is an integral operator with kernel

(4.1) (u,v) Z u)pn (v)-

PROPOSITION 4.1. The function p:(u,v) has an extension to the set K =
{(t,u,v) : Ret > 0, u,v € C} which is analytic (in each variable) at every
point (t,u,v) € K such that Reu # 0, Rev # 0.

Proof. Consider the analytic functions
o (2) = Cr®(z = M),
o (2) = (=)"MC,d(—2 — \,) for z€C.
Then, by Theorem 2.6, the function ¢,, defined as

+ .
_Jer(z) ifRez >0,
on(2) = { 0, (z) ifRez <0,

coincides for z € R with the ¢,, introduced in Corollary 2.2. The functions
¢n(2) are analytic for Rez # 0 (for Rez = 0 they can even be discontin-
uous). Therefore it is enough to notice that by (2.5) and (2.8) the series
S0 e Pt (u)pit (v) are uniformly convergent on every compact subset
of K. Thus they define analytic functions. m

ProrosiTION 4.2. If 0 < k,1 < 3,t >0, then
oF o
ok ol

Proof. Using Proposition 3.2 we obtain

ZHB (k) (u)e ,(f)( L2 ®e2) <Z tA"HSD(k)( )||L2(R)H90$zl)(v)||L2(R)

(u,v) € L*(R?).

S BkBl Z e_tA”)\q(Tk+l)/2 < o0,
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thus
o* o ™ —tan ( !
W@Pt(uav) = Z e o) ()l (v). w
n=1

LEMMA 4.3. Set

r(h) = pi(hug, hvg),
where ug, vy are fived real numbers, not simultaneously 0. Then the limits

— lim r® — lim r®
g1 = limr (h), g2 Jim (h)

exist and g1 = —g2 # 0. (In particular r®) is discontinuous at 0.)

Proof. By the definition of the function r,

(4'2) T(B)(h) - < Z e_t)\n QOn(' UO)QOTL(' UO)> . (h)

(N>

(If ug = 0, then we only consider terms with k£ = 3, and if vy = 0, then only
those with k£ = 0.)
For every n € N we have ¢,,(0) = 0 or ¢},(0) = 0, hence

oy, (huo )y, (hvg) = @7, (0)¢y, (0) + o(h) = =Anil, (0)¢ (0) + o(h) = o(h),
on (hug )y (hvg) = @n(hug)(sgn(hvo)en (hve) + (|hve| — An)ey, (hvo))
= sgn(hvo)|en (0)]> + o(h).

Each of the functions

Rt > he Z e~ B8R (hug ) ot® (hwy),

n=1

R™ 9hb—>Ze An B (hug) o) (hw)
has an analytic extension unlformly converging on compacta to the series
Zf” ) (o) (7)™ (o)

(with ¢ defined as in the proof of Proposition 4.1). Hence we can pass to
the limits limy, o and limp~ o under the sum sign in (4.2):

rOm) = (3) a8 3 e senlhun) o 0

n=1
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( )2 ~00n sgm(hvo) o (0) 2 + ofh)

oo

= sen(h)(fuol’ + uof*) 32 = o O)F + of),

which means that

o0

g1 = —(luol® + |vol*) Z Prlon(0)? #0, go=—g1. m

Taking (ug,vp) = (0,1) and (ug,vp) = (1,0) we obtain

COROLLARY 4.4. The derivatives %pt(u,v) and aa—;pt(u,v) do not be-
long to L?.

THEOREM 4.5. The pointwise left and right derivatives

&\~ &\ N\~ #N\T
(ﬁ) p(0,v), (ﬁ) p(0,v), <%> pe(u,0), <%> pi(u,0)
exist for all v, u. But outside a discrete set of v and u respectively we have

In particular 68—;pt(0,v) and %pt(u, 0) do not exist at these points.

Proof. By symmetry we can only consider 9/0u?. We see that

o)=Y e Z (] = Ao (w)n (0)
PNE .
(25) #i0.0) == 3 e Ay 0en0) £ 3 e enOen(o),

The two third derivatives are equal only in the case

Z e P, (0), (v) = 0.

The left-hand side is real analytic for v > 0 and for v < 0, and moreover, its
value is > oo, e7" |, (0)]? # 0 for v = 0, thus it is 0 on a discrete set. m

5. Regularity of the semigroup generated by A. In this section
we prove that the semigroup e *4 consists of convolution operators with L2
functions. Then we discuss singularities of these functions. Applying (4.1)
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we get
c PN o c = LA o
o I A = g 3 e
R Rn=1
3« —-3),-3

According to (2.8),

Hence by the Plancherel formula (1.2) and (1.3) we find that e~*4 is a
convolution operator with a function P, € L?(G) such that

(5.1)  Puay,z) = C | | oA A (u + 2)) A*H2e e ) gy
RR

(e o]

= C {1 e Pt (A ) (N (u + @)

RRn=1
« |)\|a+26—1e—i)\c(z+uy) du d.
Using Theorem 3.7(ii) and standard arguments we obtain

THEOREM 5.1. For every k,l € N and every (z,y, z) the pointwise deriva-
tive
oF o
oyt 921
6k

. . ! . .
exists, and the function W%Pt is continuous on the whole G.

Pt(wayaz)

THEOREM 5.2. The derivative
k

0
@Pt(xayaz)

exists for every k € N and every point (z,y,z) such that x # 0.
Proof. Fix zg > 0. Let x1, x2 € C*°(R) be functions such that
xi1(z) =0 ifx < -2z, xi(z)=1 ifz>—3a,
0<x1<1,  xi(z)+xe(x+m0) =1
First we estimate the integral with respect to w in (5.1). For z close to xq,
Pl

S Ven (N wen (A2 (u + )™ du

R
= AL el )@l (A1 (u+ 2))e ™ " xa (u) du

supp X1
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T 5 () B -1y

utxo—xESUpp X2 l+m+r==k
x o (N (1 = 2))pn (N[ *u)e= =93 8 (4 4 20 — ) du.

We estimate these integrals using Theorem 3.5:

ak a a —iAu
@X%(W won (A" (u+ x))e™ " du
R

<A (A 0P (A (u+ )| du

R\{—z}
+ Z k |)\|al+cm| |m
Imr Y
l+m+r=k
< 01PN (u = 2))n (1A *u)] du x5 [loo
R\{z}

< I onll 2y o8 2 ey

+C Z A=y ™ oD | ooy lon | 2 )

I+m<k
§C|)\|akfa)\lfl/2+c Z |)\|al+cmfa|y|m>\ln/2 <C Z |)\|a(l+3m71))\ln/2‘
I+m<k I+m<k
We now show that
9" - APt
(52) —Pley,z) =C[Y e NN
Rn=1

ok N
% @(Swn(lklau)son(w(u+x))eﬂ » du)
R

% |)\|a+26—1e—i)\cz d\

and that the integral is absolutely convergent.
It is enough to estimate

[e o)

X Ze—|)\\b)\nt|>\|a(l+3m—1)>\£l/2|>\|a+2c—1 d\

R n=1
Z (Se A2 A t‘)\‘a(l—&—Bm—i—G) 1 d)\> )\1/2 CZ A;(l+3m+6)/2A%2
n=1 R n=1

[ee)

_ Z (3m+6)/2<czn—2 m < s
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The integral on the right-hand side of (5.2) is a continuous function of
(z,y, z), hence in fact it is equal to %Pt(x,y, z).
For zy < 0 the calculations are the same. m

COROLLARY 5.3. The kernels P, are C*° functions outside the plane
{(z,y,2) : 2 = 0}.
THEOREM 5.4. The derivatives
R N\ "\~
oxr GP(O Y,z )7 <w> Pt(07y7z)7 (W) Pt(anaz)

exist for every y,z. Moreover, there exists an open interval B containing 0
such that for all z € B and y € R,

" \" "\~
(57) P02 # (57) PO.022)

In particular aa—;Pt(O,y, z) does not exist at these points.

Proof. The sixth derivative with respect to x of the inner integral in
(5.1) is equal to

86 a a —iAu
o FenlA ) (AL ()™
R

= ™ 55 Jen(A" = a)eD (Ao = du

3

Z( ) 3 l|)\|(6 l)a(z)\c )
=0
x [ oD 0 — ) (A e =
R

The integral
CS Z ef|/\\b/\nt
Rn=1

o a a —iX°u 4261 —iXez
X_8$6<S(pn(‘)\‘ w)en (A (u + x))e A ydu)‘)\‘ +20-1,-ix%z gy
R

is absolutely convergent and defines a continuous function, hence, by (5.1), it
is equal to aa—ﬁePt(O, y,2). The terms with [ = 1,2, 3 are differentiable. More-

over gp% )( ) = sgn(v)en, (v) + (J[v] — A\p)@l (v). Observe that ([v] — A\,)¢l, (v)
has a derivative in L2. Thus we only have to discuss the behavior of the
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integral

— A5 [ sen(u — 2)@n (N (u — 2)) sgn(u)pn (A *u)e ™ =Y du
R
= A% {sm(u)en (A"0) sgn(u + )N 0+ 2))e ™ du.
R
The difference

(&) () oo

R
x sgn(u 4 x)@n (| (u 4 x))e ™AW du)
is 0 for x # 0, and 4|\|%?|p,,(0)|? for = = 0, hence

TN 0T\
- C S Z ef|/\\b/\nt4’)\’6a’@n(O)IQ‘)\‘aJchflefi)\cz d\.
Rn=1
This integral is continuous, does not depend on y, and for z = 0 equals

4C |7 eI o, ()2 A2 > 0.
Rn=1
Therefore (5.3) is not zero for z in a neighborhood of 0 and for all y € R.
The theorem is proved. m
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