INTERPOLATION SETS FOR FRÉCHET MEASURES

BY

J. C A G GIANO (STATE UNIVERSITY, AR)

Abstract

We introduce various classes of interpolation sets for Fréchet measuresthe measure-theoretic analogues of bounded multilinear forms on products of $C(K)$ spaces.

1. Introduction. The classical theory of interpolation sets in a harmo-nic-analytic context can be roughly described as the study of norm properties of "one-dimensional" objects (bounded linear forms) in relation to some underlying spectral set. The study of interpolation sets for naturally multi-dimensional structures has developed only in the last twenty years; see [GMc], [GS2]. In this work, it is our aim to examine certain harmonicanalytic interpolation properties of Fourier transforms of Fréchet measures the measure-theoretic counterparts of multi-linear forms on products of $C_{0}(K)$ spaces. There are some interesting departures from the one-dimensional theory.

Definition 1 ([B5, Def. 1.1]). Let $\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}$ be locally compact spaces with respective Borel fields $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$. A set function $\mu: \mathcal{A}_{1} \times \ldots \times \mathcal{A}_{n} \rightarrow \mathbb{C}$ is an \mathcal{F}_{n}-measure if, when $n-1$ coordinates are fixed, μ is a measure in the remaining coordinate. When the measure spaces are arbitrary or understood, we denote the space of \mathcal{F}_{n}-measures by $\mathcal{F}_{n}=\mathcal{F}_{n}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}\right)$.

For our purposes, each space \mathcal{X}_{i} will be the circle group \mathbb{T}. There is a natural identification between the space of \mathcal{F}_{n}-measures on $\mathbb{T} \times \ldots \times \mathbb{T}$ and the space of bounded n-linear forms on $C(\mathbb{T}) \times \ldots \times C(\mathbb{T})[B 4$, Thm. 4.12]. Denoting this identification by

$$
\beta_{\eta} \leftrightarrow \eta,
$$

we define the Fourier transform of an \mathcal{F}_{n}-measure η on \mathbb{T}^{n} to be the function

[^0]on \mathbb{Z}^{n} given by
\[

$$
\begin{aligned}
\widehat{\eta}\left(m_{1}, \ldots, m_{n}\right) & =\beta_{\eta}\left(e^{-i m_{1} t_{1}}, \ldots, e^{-i m_{n} t_{n}}\right) \\
& =\int_{\mathbb{T}^{n}} e^{-i m_{1} t_{1}} \otimes \ldots \otimes e^{-i m_{n} t_{n}} \eta\left(d t_{1}, \ldots, d t_{n}\right) \\
& =\int_{\mathbb{T}^{n-1}} e^{-i m_{1} t_{1}} \otimes \ldots \otimes e^{-i m_{n-1} t_{n-1}} \int_{\mathbb{T}} e^{-i m_{n} t_{n}} \eta\left(d t_{1}, \ldots, d t_{n}\right) .
\end{aligned}
$$
\]

The integral above is defined iteratively, i.e.,

$$
\int_{\mathbb{T}} e^{-i m_{n} t_{n}} \eta\left(d t_{1}, \ldots, d t_{n}\right) \in \mathcal{F}_{n-1}(\mathbb{T}, \ldots, \mathbb{T})
$$

see [B4, Lemma 4.9] for details.
The space of \mathcal{F}_{2}-measures on $\mathcal{X} \times \mathcal{Y}$ (referred to as the space of bimeasures on $\mathcal{X} \times \mathcal{Y}$ in the literature) is a convolution Banach ${ }^{*}$-algebra [GS1] whose structure extends that of the space of measures on $\mathcal{X} \times \mathcal{Y}$. Convolution of \mathcal{F}_{n}-measures is not well defined in general when $n>2$ [GS3], essentially because there is no general Grothendieck-type inequality for $n>2$. If we restrict our attention to the so-called projectively bounded Fréchet measures, we have a well defined convolution, as well as suitable extensions of the Grothendieck inequality. The class of completely bounded multi-linear forms has also been considered as a natural class of \mathcal{F}_{n}-measures which satisfies a Grothendieck-type inequality; see [CS], $[\mathrm{ZS}],[\mathrm{Y}]$.

Definition 2 ([B5]). Let $\mu \in \mathcal{F}_{n}(\mathbb{T}, \ldots, \mathbb{T})$, and let E_{1}, \ldots, E_{n} be finite subsets of the unit ball of $\mathcal{L}^{\infty}(\mathbb{T})$. For $\left(f_{1}, \ldots, f_{n}\right) \in E_{1} \times \ldots \times E_{n}$ define

$$
\begin{equation*}
\phi_{\mu}\left(f_{1}, \ldots, f_{n}\right)=\int_{\mathbb{T}^{n}} f_{1} \otimes \ldots \otimes f_{n} \mu\left(d t_{1}, \ldots, d t_{n}\right) \tag{1}
\end{equation*}
$$

Let

$$
\begin{align*}
& \|\mu\|_{\mathrm{pb}_{n}}=\sup \left\{\left\|\phi_{\mu}\right\|_{\mathcal{V}_{n}\left(E_{1}, \ldots, E_{n}\right)}:\right. \tag{2}\\
& \left.\quad E_{j} \subset \operatorname{Ball}\left(\mathcal{L}^{\infty}(\mathbb{T})\right),\left|E_{j}\right|<\infty, j=1, \ldots, n\right\} .
\end{align*}
$$

Then μ is projectively bounded if $\|\mu\|_{\mathrm{pb}_{n}}<\infty$. The space of projectively bounded \mathcal{F}_{n}-measures on $\mathbb{T} \times \ldots \times \mathbb{T}$ is denoted by $\mathcal{P B} \mathcal{F}_{n}=\mathcal{P} \mathcal{B} \mathcal{F}_{n}(\mathbb{T}, \ldots, \mathbb{T})$.

The class of projectively bounded \mathcal{F}_{n}-measures is a non-empty proper subspace of \mathcal{F}_{n} for $n>2$, and $\mathcal{P B} \mathcal{F}_{n}=\mathcal{F}_{n}$ for $n<3$ (see [B5]). Projectively bounded \mathcal{F}_{n}-measures obey a Grothendieck-type inequality in the sense that $\widehat{\mu} \in \widetilde{\mathcal{V}}_{n}(\mathbb{Z}, \ldots, \mathbb{Z})$ for all $\mu \in \mathcal{P B} \mathcal{F}_{n}$. To see this, let $E_{N}=$ $\left\{e^{-i N t}, \ldots, 1, \ldots, e^{i N t}\right\}$, and let $m_{1}, \ldots, m_{n} \in[N]=\{-N, \ldots,-1$, $0,1, \ldots, N\}$. Then

$$
\begin{equation*}
\left\|\widehat{\mu} 1_{[N]^{n}}\right\|_{\mathcal{V}_{n}([N], \ldots,[N])}=\left\|\phi_{\mu}\right\| \mathcal{V}_{n}\left(E_{N}, \ldots, E_{N}\right) \leq\|\mu\|_{\mathcal{P B} \mathcal{F}_{n}} \tag{3}
\end{equation*}
$$

Since $\widehat{\mu} 1_{[N]^{n}} \rightarrow \widehat{\mu}$ pointwise, we see immediately that $\widehat{\mu} \in \widetilde{\mathcal{V}}_{n}(\mathbb{Z}, \ldots, \mathbb{Z})$.
Given $E \subset \mathbb{Z}^{n}$ and $m \leq n$, we define

$$
B_{m}(E)=\left\{\phi \in \ell^{\infty}(E): \exists \mu \in \mathcal{F}_{m}, \widehat{\mu}\left(j_{1}, \ldots, j_{n}\right)=\phi\left(j_{1}, \ldots, j_{n}\right) \text { on } E\right\}
$$

with

$$
\|\phi\|_{B_{m}(E)}=\inf \left\{\|\mu\|_{\mathcal{F}_{m}}: \widehat{\mu}=\phi \text { on } E\right\}
$$

and
$P B_{m}(E)=\left\{\phi \in \ell^{\infty}(E): \exists \mu \in \mathcal{P \mathcal { B }} \mathcal{F}_{m}, \widehat{\mu}\left(j_{1}, \ldots, j_{n}\right)=\phi\left(j_{1}, \ldots, j_{n}\right)\right.$ on $\left.E\right\}$, with

$$
\|\phi\|_{P B_{m}(E)}=\inf \left\{\|\mu\|_{\mathcal{P} \mathcal{B F} \mathcal{F}_{m}}: \widehat{\mu}=\phi \text { on } E\right\}
$$

A word about the condition $m \leq n$: there are certain canonical containments in $\mathcal{F}_{n}(\mathbb{T}, \ldots, \mathbb{T})$, which yield corresponding containments in the restriction algebras defined above. Consider the case $n=3$. We have $\mathcal{F}_{1}\left(\mathbb{T}^{3}\right) \varsubsetneqq$ $\mathcal{F}_{2}\left(\mathbb{T}^{2}, \mathbb{T}\right) \nsubseteq \mathcal{F}_{3}(\mathbb{T}, \mathbb{T}, \mathbb{T})$, so $B_{1}\left(\mathbb{Z}^{3}\right) \nsubseteq B_{2}\left(\mathbb{Z}^{3}\right) \varsubsetneqq B_{3}\left(\mathbb{Z}^{3}\right)$. For certain subsets of \mathbb{Z}^{n} we may have equality of restriction algebras; see Def. 11.

For a given Banach space A of functions on \mathbb{Z}^{n} and $S \subset \mathbb{Z}^{n}$, we use the notation $\left.[A]\right|_{S}$ to denote the quotient space A / J_{S}, where

$$
J_{S}=\{f \in A: f=0 \text { on } S\} .
$$

Similarly, for a given Banach space B of functions on \mathbb{T}^{n} and $S \subset \mathbb{Z}^{n}$, we use the notation $[B]_{S}$ to denote $\left\{f \in B: \widehat{f}=0\right.$ on $\left.S^{c}\right\}$. We define $\mathcal{V}_{n}=\mathcal{V}_{n}(\mathbb{T}, \ldots, \mathbb{T}) \equiv \hat{\bigotimes}_{k=1}^{n} C(\mathbb{T})$. The Banach space dual of \mathcal{V}_{n} is $\mathcal{F}_{n}=$ $\mathcal{F}_{n}(\mathbb{T}, \ldots, \mathbb{T})\left[\mathrm{B} 4\right.$, Thm. 4.12]. The Banach space dual of $\mathcal{F}_{n}(\mathbb{Z}, \ldots, \mathbb{Z})$ is the space $\widetilde{\mathcal{V}}_{n}(\mathbb{Z}, \ldots, \mathbb{Z})$, given by

$$
\widetilde{\mathcal{V}}_{n}(\mathbb{Z}, \ldots, \mathbb{Z})=\left\{\phi \in \ell^{\infty}\left(\mathbb{Z}^{n}\right): \phi=\lim _{k} \phi_{k} \text { pointwise, } \sup _{k}\left\|\phi_{k}\right\|_{\hat{\otimes}}<\infty\right\}
$$

where $\left\|\|_{\hat{\otimes}}\right.$ denotes the norm in $\mathcal{V}_{n}(\mathbb{Z}, \ldots, \mathbb{Z})$. We will use $\| \cdot \|_{\dot{\otimes}}$ to denote the injective tensor norm, and we note that it is straightforward to show that $\mathcal{F}_{n}(\mathbb{Z}, \ldots, \mathbb{Z})$ is canonically isomorphic to $\check{\bigotimes}_{j=1}^{n} \ell^{1}(\mathbb{Z})$.

2. Interpolation sets

2.1. $\mathcal{P B F} \mathcal{F}_{n}$-Sidon sets

Proposition 3 ([GS2, Thm. 1]). $\widehat{\eta} \in \widetilde{\mathcal{V}}_{2}(\mathbb{Z}, \mathbb{Z})$ for all $\eta \in \mathcal{F}_{2}(\mathbb{T}, \mathbb{T})$.
Proof. Choose Grothendieck probability measures ν_{1}, ν_{2} ([G, Corollaire 2, p. 61], [GS1, Thm. 1.2]), so that η extends to $L^{2}\left(\mathbb{T}, \nu_{1}\right) \times L^{2}\left(\mathbb{T}, \nu_{2}\right)$. Still denoting this extension by η, we have

$$
\|\eta\| \leq K_{G}\|\eta\|_{\mathcal{F}_{2}}
$$

Let $S: L^{2}\left(\mathbb{T}, \nu_{1}\right) \rightarrow L^{2}\left(\mathbb{T}, \nu_{2}\right)$ satisfy $\eta(f, g)=\langle S f, g\rangle$ and let $\left\{a_{j k}\right\} \in$ $\mathcal{F}_{2}(\mathbb{Z}, \mathbb{Z})$. Finally, choose finite subsets A and B of \mathbb{Z}. Then

$$
\begin{aligned}
\left|\sum_{j \in A, k \in B} a_{j k} \widehat{\eta}(j, k)\right| & =K_{G}\|\eta\|_{\mathcal{F}_{2}}\left|\sum_{j \in A, k \in B} a_{j k}\left\langle\frac{S e^{-i j s}}{K_{G}\|\eta\|_{\mathcal{F}_{2}}}, e^{-i k t}\right\rangle\right| \\
& \leq 4 K_{G}^{2}\|\eta\|_{\mathcal{F}_{2}}\left\|\left\{a_{j k}\right\}\right\|_{\mathcal{F}_{2}(\mathbb{Z}, \mathbb{Z})} .
\end{aligned}
$$

The last inequality follows immediately from the Grothendieck inequality [LP, Thm. 2.1].

We note that Proposition 3 is equivalent to $\ell^{1}(\mathbb{Z}) \check{\otimes} \ell^{1}(\mathbb{Z}) \subset C(\mathbb{T}) \hat{\otimes} C(\mathbb{T})$ under the correspondence

$$
\left\{a_{m n}\right\} \leftrightarrow \sum_{m, n} a_{m n} e^{i m s} e^{i n t}
$$

Definition 4. A set $S \subset \mathbb{Z} \times \mathbb{Z}$ is called $\mathcal{P B} \mathcal{F}_{n}$-Sidon if $P B_{n}(S)=$ $\left.\left[\widetilde{\mathcal{V}}_{n}(\mathbb{Z}, \ldots, \mathbb{Z})\right]\right|_{S}$. The $\mathcal{P B} \mathcal{F}_{n}$-Sidon constant of S is

$$
\gamma_{S}=\sup \left\{\|\phi\|_{P B_{n}(S)}:\|\phi\|_{\left.\left[\tilde{\mathcal{V}}_{n}(Z, \ldots, Z)\right]\right|_{S}}=1\right\}
$$

In [GS1] (resp. [GS2]), the authors define BM-Sidon (resp. BM-interpolation) sets to be those subsets E of $\widehat{G} \times \widehat{H}$ for which $P B_{2}(E)=C(E)$, where G and H are LCA groups. The case $n=2$ in Definition 4 is different, and we see that BM -Sidon sets are necessarily $\mathcal{P B} \mathcal{F}_{2}$-Sidon.

The sections of $\mathcal{P B} \mathcal{F}_{n}$-Sidon sets behave as expected; let E be $\mathcal{P B} \mathcal{F}_{n^{-}}$ Sidon, and let $S \subset\{1, \ldots, n\}$ be an ordered subset with $|S|=m$. Define the projection $\pi_{S}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{m}$ in the obvious way. Then the $(n-m)$-section

$$
E \cap \pi_{S}^{-1}\left(j_{1}, \ldots, j_{m}\right)
$$

is $\mathcal{P B F} \mathcal{F}_{n-m}$-Sidon. To show this, we need only interpolate elementary tensors in $\widetilde{\mathcal{V}}_{n-m}(\mathbb{Z}, \ldots, \mathbb{Z})$. Any such tensor ψ is extendible to a tensor $\bar{\psi} \in$ $\widetilde{\mathcal{V}}_{n}(\mathbb{Z}, \ldots, \mathbb{Z})$ in the obvious way. Since E is $\mathcal{P B} \mathcal{F}_{n}$-Sidon, we can find a projectively bounded Fréchet measure $\mu_{\bar{\psi}}$ which interpolates $\bar{\psi}$ on E. Viewing $\mu_{\bar{\psi}}$ as an n-linear form, we see that we obtain a bounded $(n-m)$-linear form by simply fixing the coordinates of $\mu_{\bar{\psi}}$ corresponding to S. This restriction is projectively bounded, and interpolates the original tensor ψ on $E \cap \pi_{S}^{-1}$.

For $S \subset \mathbb{Z} \times \mathbb{Z}$ we let $I_{S}(\mathbb{T}, \mathbb{T})=\left\{f \in\left[\mathcal{V}_{2}(\mathbb{T}, \mathbb{T})\right]_{S}: \widehat{f} \in\left[\ell^{1} \check{\otimes} \ell^{1}\right]_{S}\right\}$. The proof of the following theorem is straightforward.

Theorem 5. Let $S \subset \mathbb{Z} \times \mathbb{Z}$. The following are equivalent:
(i) $I_{S}(\mathbb{T}, \mathbb{T})=\left[\mathcal{V}_{2}(\mathbb{T}, \mathbb{T})\right]_{S}$ (i.e., S is $\mathcal{P B} \mathcal{F}_{2}$-Sidon).
(ii) $\exists C>0$ with $\|\widehat{f}\|_{\dot{\otimes}} \leq C\|f\|_{\mathcal{V}_{2}(T, T)}, \quad \forall f \in I_{S}(\mathbb{T}, \mathbb{T})$.
(iii) $I_{S}(\mathbb{T}, \mathbb{T})=\left[L^{\infty}(\mathbb{T}) \hat{\otimes} L^{\infty}(\mathbb{T})\right]_{S}$.

Proposition 6. (i) Let $E, F \subset \mathbb{Z}$ be Sidon. Then $E \times F$ is $\mathcal{P B F}_{2}$-Sidon.
(ii) Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be strictly monotone. Then the graph of f is $\mathcal{P} \mathcal{B} \mathcal{F}_{2}$ Sidon.

Proof. (i) Clearly $\left.\left[\widetilde{\mathcal{V}}_{2}(\mathbb{Z}, \mathbb{Z})\right]\right|_{E \times F}=\widetilde{\mathcal{V}}_{2}(E, F)$. We show $\widetilde{\mathcal{V}}_{2}(E, F) \subset$ $P B_{2}(E \times F)$. By a standard compactness argument, we need only interpolate restrictions of elementary tensors to $E \times F$. Let α_{E}, α_{F} be the Sidon constants of E and F, and let $\phi \otimes \psi$ be an elementary tensor of norm 1 in $\mathcal{V}_{2}(E, F)$. Then we can find measures μ and ν such that $\widehat{\mu}(m) \widehat{\nu}(n)=$ $\phi(m) \psi(n)$ for any $(m, n) \in E \times F$, with $\|\mu \otimes \nu\|_{\mathcal{F}_{2}} \leq \alpha_{E} \alpha_{F}$.
(ii) As shown in [GS1, Thm. 6.3], any bounded sequence on graph f can be interpolated by the transform of an \mathcal{F}_{2}-measure.

The existence of other examples of $\mathcal{P B F} \mathcal{F}_{2}$-Sidon sets is not known. In one dimension, the use of Riesz products as interpolating measures suggests a number of arithmetic criteria on subsets as sufficient conditions for satisfaction of the Sidon property. There is no clear connection between arithmetic properties of a given subset of \mathbb{Z}^{2} and the $\mathcal{P B} \mathcal{F}_{2}$-Sidon property, making the question of sufficiency somewhat more delicate.

As in the one-dimensional case, there is an approximate interpolation condition for $\mathcal{P B F} \mathcal{F}_{2}$-Sidon sets.

Proposition 7. Let $E \subset \mathbb{Z} \times \mathbb{Z}$. If there are $0<\delta<1$ and $0<C<\infty$ such that for all $f, g \in \operatorname{Ball}_{1}\left(\ell^{\infty}(\mathbb{Z})\right)$, there is $\mu \in \mathcal{F}_{2}(\mathbb{T}, \mathbb{T}),\|\mu\|_{\mathcal{F}_{2}}<C$, satisfying

$$
\begin{equation*}
\|f \otimes g-\widehat{\mu}\|_{\left.\left[\tilde{\mathcal{V}}_{2}(Z, Z)\right]\right|_{E}}<\delta \tag{4}
\end{equation*}
$$

then E is $\mathcal{P B F}_{2}$-Sidon.
Proof. We show that $[C(\mathbb{T}) \hat{\otimes} C(\mathbb{T})]_{E} \subset\left[\ell^{1} \check{\otimes} \ell^{1}\right]_{E}$. Choose a polynomial f with support in E, and select $\omega_{1}, \omega_{2} \in\{-1,1\}^{\mathbb{Z}}$. The canonical projections $r_{j}:\{-1,1\}^{\mathbb{Z}} \rightarrow\{-1,1\}$ given by $r_{j}(\omega)=\omega(j)$ are the Rademacher functions. Choose an \mathcal{F}_{2}-measure $\mu_{\omega_{1}, \omega_{2}}$ satisfying

$$
\left\|\widehat{\mu}_{\omega_{1}, \omega_{2}}(j, k)-r_{j}\left(\omega_{1}\right) r_{k}\left(\omega_{2}\right)\right\|_{\left.\left[\tilde{\nu}_{2}(Z, Z)\right]\right|_{E}}<\delta .
$$

By (4) and duality,

$$
\begin{aligned}
\left|\sum_{(j, k) \in E} \widehat{f}(j, k) r_{j}\left(\omega_{1}\right) r_{k}\left(\omega_{2}\right)\right| \leq & \left|\sum_{(j, k) \in E} \widehat{f}(j, k)\left(r_{j}\left(\omega_{1}\right) r_{k}\left(\omega_{2}\right)-\widehat{\mu}_{\omega_{1}, \omega_{2}}(j, k)\right)\right| \\
& +\left|\sum_{(j, k) \in E} \widehat{f}(j, k) \widehat{\mu}_{\omega_{1}, \omega_{2}}(j, k)\right| \\
\leq & \delta\|\widehat{f}\|_{\dot{\otimes}}+\|f\|_{\nu_{2}(\mathbb{T}, \mathbb{T})}\left\|\mu_{\omega_{1}, \omega_{2}}\right\|_{\mathcal{F}_{2}(\mathbb{T}, \mathbb{T})} .
\end{aligned}
$$

Taking suprema over all choices of ω_{1} and ω_{2}, we obtain

$$
\|\widehat{f}\|_{\check{\otimes}} \leq \frac{4 C}{1-\delta}\|f\|_{\mathcal{V}_{2}(\mathbb{T}, \mathbb{T})}
$$

The factor 4 appears due to the consideration of real and imaginary parts in the calculation of the injective norm of \widehat{f}.

We note that it is straightforward to show that the union of $\mathcal{P B} \mathcal{F}_{2}$-Sidon sets of the type described in Proposition 6 is again $\mathcal{P B} \mathcal{F}_{2}$-Sidon, whereas the union problem in general remains open. An analogous approximate interpolation condition holds for $\mathcal{P B} \mathcal{F}_{n}$-Sidon sets.

That the diagonal of $\mathbb{Z} \times \mathbb{Z}$ is $\mathcal{P B} \mathcal{F}_{2}$-Sidon allows us to demonstrate a fundamental difference between multiplier properties of \mathcal{F}_{1}-measures and \mathcal{F}_{2}-measures. Define $U: \mathcal{F}_{2}(\mathbb{T}, \mathbb{T}) \times \mathcal{F}_{2}(\mathbb{T}, \mathbb{T}) \rightarrow \mathcal{F}_{2}(\mathbb{T}, \mathbb{T})$ by $U(\mu, \nu)=\mu * \nu$. Then U is a bounded bilinear operator [GS1, Thm. 2.6]. Interestingly, U is not bounded on $L^{p}\left(\mathbb{T}^{2}\right) \times \mathcal{F}_{2}(\mathbb{T}, \mathbb{T})$, in direct contrast with the situation for ($\mathcal{F}_{1^{-}}$)measures.

Proposition 8. Let $2<p<\infty$. Then U is not a bounded operator on $L^{p}\left(\mathbb{T}^{2}\right) \times \mathcal{F}_{2}(\mathbb{T}, \mathbb{T})$.

Let Δ denote the diagonal in $\mathbb{Z} \times \mathbb{Z}$, and let f be a Δ-polynomial,

$$
f(s, t)=\sum a_{j} e^{i j(s+t)}
$$

For $\omega \in\{-1,1\}^{\mathbb{Z}}$, let

$$
f_{\omega}(s, t)=\sum a_{j} e^{i j(s+t)} r_{j}(\omega)
$$

Since Δ is $\mathcal{P B F} \mathcal{F}_{2}$-Sidon, we can find $\mu_{\omega} \in \mathcal{F}_{2}(\mathbb{T}, \mathbb{T})$ such that

$$
\widehat{\mu}(j, j)=r_{j}(\omega), \quad j \in \mathbb{Z}
$$

and $\left\|\mu_{\omega}\right\|_{\mathcal{F}_{2}} \leq \gamma_{\Delta}$ for all ω. Suppose $\|U\|=C<\infty$. Then

$$
f=f_{\omega} * \mu_{\omega}=U\left(f_{\omega}, \mu_{\omega}\right)
$$

and $\|f\|_{L^{p}} \leq C \gamma_{\Delta}\left\|f_{\omega}\right\|_{L^{p}}$, which implies that

$$
\|f\|_{L^{p}} \leq C \gamma_{\Delta} \mathrm{E}_{\omega}\left\|f_{\omega}\right\|_{L^{p}}
$$

Applying Khinchin's inequalites, we obtain

$$
\begin{aligned}
\|f\|_{L^{p}}^{p} & \leq C^{p} \gamma_{\Delta}^{p} \mathrm{E}_{\omega} \iint_{\mathbb{T}}\left|\sum a_{j} e^{i j(s+t)} r_{j}(\omega)\right|^{p} \\
& =C^{p} \gamma_{\Delta}^{p} \iint_{\mathbb{T}} \mathrm{E}_{\omega}\left|\sum a_{j} e^{i j(s+t)} r_{j}(\omega)\right|^{p} \leq C^{p} \gamma_{\Delta}^{p} p^{p / 2}\left(\sum\left|a_{j}\right|^{2}\right)^{p / 2}
\end{aligned}
$$

which shows that Δ is a $\Lambda(p)$-set, a contradiction.
We now consider $\mathcal{P} \mathcal{B} \mathcal{F}_{n}$-Sidon sets for $n>2$. The space of \mathcal{F}_{1}-measures on \mathbb{T}^{n} is denoted by $\mathcal{M}\left(\mathbb{T}^{n}\right)$.

Lemma 9. $\mathcal{M}\left(\mathbb{T}^{n}\right) \subset \mathcal{P B} \mathcal{F}_{n}(\mathbb{T}, \ldots, \mathbb{T})$.

Proof. Let $\mu \in \mathcal{M}\left(\mathbb{T}^{n}\right)$, and choose finite subsets E_{1}, \ldots, E_{n} in the unit ball of $\mathcal{L}^{\infty}(\mathbb{T})$. Then

$$
\begin{aligned}
& \left\|\phi_{\mu}\right\|_{\mathcal{V}_{n}\left(E_{1}, \ldots, E_{n}\right)} \\
& =\sup _{\|\beta\|_{\mathcal{F}_{n} \leq 1}}\left|\sum_{f_{1} \in E_{1}, \ldots, f_{n} \in E_{n}} \beta\left(f_{1}, \ldots, f_{n}\right) \int_{\mathbb{T}^{n}}\left(f_{1} \otimes \ldots \otimes f_{n}\right) \mu(d t \times \ldots \times d t)\right| \\
& \leq \sup _{\|\beta\|_{\mathcal{F}_{n}} \leq 1} \int_{\mathbb{T}^{n}}\left|\sum_{f_{1} \in E_{1}, \ldots, f_{n} \in E_{n}} \beta\left(f_{1}, \ldots, f_{n}\right)\left(f_{1} \otimes \ldots \otimes f_{n}\right)\right||\mu|(d t \times \ldots \times d t) \\
& \leq 2^{n}\|\mu\|_{\mathcal{M}\left(\mathbb{T}^{n}\right)} .
\end{aligned}
$$

Corollary 10. If E_{1}, \ldots, E_{n} are Sidon, then $E_{1} \times \ldots \times E_{n}$ is $\mathcal{P} \mathcal{B} \mathcal{F}_{n}$ Sidon.

Proof. We need only recall that $B\left(E_{1} \times \ldots \times E_{n}\right)=\widetilde{\mathcal{V}}_{n}\left(E_{1}, \ldots, E_{n}\right)$.
2.2. $\mathcal{F}_{m} / \mathcal{F}_{n}$-sets

Definition 11. Let $m>n \geq 0$. For $n>0$, a set $E \subset \mathbb{Z}^{m}$ is an $\mathcal{F}_{m} / \mathcal{F}_{n^{-}}$ set if $B_{m}(E)=B_{n}(E) ; E \subset \mathbb{Z}^{m}$ is an $\mathcal{F}_{m} / \mathcal{F}_{0}$-set if $B_{m}(E)=\ell^{\infty}(E)$.

We define $\mathcal{P B} \mathcal{F}_{m} / \mathcal{P B} \mathcal{F}_{n}, \mathcal{P B} \mathcal{F}_{m} / \mathcal{F}_{n}$, and $\mathcal{F}_{m} / \mathcal{P B} \mathcal{F}_{n}$ sets analogously. In this terminology, Sidon sets are $\mathcal{F}_{1} / \mathcal{F}_{0}$-sets and BM-Sidon sets are $\mathcal{F}_{2} / \mathcal{F}_{0^{-}}$ sets. In [GS2], the authors use the term $B M / B$-sets for those subsets of the dual of an LCA group whose bimeasure restriction algebra coincides with the measure restriction algebra. In our terminology, these are $\mathcal{F}_{2} / \mathcal{F}_{1}$-sets. We see immediately that any Sidon set in \mathbb{Z}^{m} is $\mathcal{F}_{m} / \mathcal{F}_{0}, \mathcal{F}_{m} / \mathcal{F}_{1}$ (and hence $\mathcal{F}_{m} / \mathcal{F}_{n}$ for any $\left.n<m\right), \mathcal{P B} \mathcal{F}_{m} / \mathcal{P B} \mathcal{F}_{n}$ and $\mathcal{F}_{m} / \mathcal{P} \mathcal{B} \mathcal{F}_{m}$.

The proof of Proposition 6(i) shows that we need not step outside the space of measures to interpolate all of $\widetilde{\mathcal{V}}_{2}(E, F)$ when E and F are Sidon. Thus, we have

Corollary 12. If E and F are Sidon subsets of \mathbb{Z}, then $E \times F$ is $\mathcal{F}_{2} / \mathcal{F}_{1}$.

There is a partial converse to the previous corollary: if $A \times A$ is $\mathcal{F}_{2} / \mathcal{F}_{1}$ then A is Sidon. To see this, let $\Delta_{A \times A}=\left\{\left(a_{j}, a_{j}\right): a_{j} \in A\right\}$. Since the $\mathcal{F}_{2} / \mathcal{F}_{1}$ property is inherited by subsets, $\Delta_{A \times A}$ is $\mathcal{F}_{2} / \mathcal{F}_{1}$. We claim that $\Delta_{A \times A}$ is Sidon in $\mathbb{Z} \times \mathbb{Z}$. Let $\phi \in \ell^{\infty}\left(\Delta_{A \times A}\right)$. For $f, g \in C(\mathbb{T})$, define

$$
\eta_{\phi}(f, g)=\sum_{j} \phi(j) \widehat{f}\left(a_{j}\right) \widehat{g}\left(a_{j}\right)
$$

Then η_{ϕ} is a bounded linear form on $\mathcal{V}_{2}(\mathbb{T}, \mathbb{T})$ satisfying

$$
\widehat{\eta}_{\phi}\left(a_{j}, a_{j}\right)=\phi(j)
$$

But $\Delta_{A \times A}$ is $\mathcal{F}_{2} / \mathcal{F}_{1}$, and so we can find a measure μ_{ϕ} satisfying

$$
\widehat{\mu}_{\phi}\left(a_{j}, a_{j}\right)=\phi(j)
$$

So $\Delta_{A \times A}$ is Sidon. Now, let f be an A-polynomial, $f(s)=\sum_{j} c_{j} e^{i a_{j} s}$, and consider

$$
F(s, t)=\sum_{j} c_{j} e^{i a_{j}(s+t)}
$$

If B denotes the Sidon constant of $\Delta_{A \times A}$, we have

$$
\|\widehat{f}\|_{\ell^{1}}=\sum_{j}\left|c_{j}\right| \leq B \sup _{s, t}\left|\sum_{j} c_{j} e^{i a_{j}(s+t)}\right|=B\|f\|_{\infty}
$$

and A is Sidon. We also note that the result above need not hold when the factors forming the Cartesian product in $\mathbb{Z} \times \mathbb{Z}$ are different. For example, $\mathbb{Z} \times\{n\}$ is $\mathcal{F}_{2} / \mathcal{F}_{1}$. To see this, choose $\mu \in \mathcal{F}_{2}(\mathbb{T}, \mathbb{T})$, and let η_{μ} be the corresponding bilinear form on $C(\mathbb{T}) \times C(\mathbb{T})$. Then

$$
\left.\widehat{\mu}\right|_{\mathbb{Z} \times\{n\}}=\left.\left(\eta_{\mu}(\cdot, n) \otimes e^{i n t} d t\right)\right|_{\mathbb{Z} \times\{n\}} .
$$

This leads to a question. Given two (different) infinite subsets A and B such that $A \times B$ is $\mathcal{F}_{2} / \mathcal{F}_{1}$, must A or B be Sidon? We do not know the answer.

Which sets are both $\mathcal{F}_{2} / \mathcal{F}_{1}$ and $\mathcal{P B} \mathcal{F}_{2}$-Sidon? It is obvious that any Sidon subset of $\mathbb{Z} \times \mathbb{Z}$ is necessarily $\mathcal{F}_{2} / \mathcal{F}_{1}$ and $\mathcal{P B} \mathcal{F}_{2}$-Sidon. We can glean a bit more. It is straightforward to show

Proposition 13. If S is $\mathcal{F}_{2} / \mathcal{F}_{1}$ and $\mathcal{P} \mathcal{B} \mathcal{F}_{2}$-Sidon then S is $\Lambda(p)$ for all $p<\infty$.

We can separate the various interpolation sets described thus far. Let us consider the two-dimensional case. A product of two Sidon sets is $\mathcal{P B F} \mathcal{F}_{2^{-}}$ Sidon and $\mathcal{F}_{2} / \mathcal{F}_{1}$, but not $\mathcal{F}_{2} / \mathcal{F}_{0} . \mathbb{Z} \times\{n\}$ is $\mathcal{F}_{2} / \mathcal{F}_{1}$ but not $\mathcal{P} \mathcal{B} \mathcal{F}_{2}$-Sidon or $\mathcal{F}_{2} / \mathcal{F}_{0}$, while the diagonal $\Delta=\{(n, n): n \in \mathbb{Z}\}$ is $\mathcal{F}_{2} / \mathcal{F}_{0}$ (hence $\mathcal{P B} \mathcal{F}_{2^{-}}$ Sidon) but not $\mathcal{F}_{2} / \mathcal{F}_{1}$.

In [GS2], the authors ask: if E, F, and G are infinite subsets of \mathbb{Z} such that $E \cup F$ and G are lacunary $(E \cap F=\emptyset)$, must $(E+F) \times G$ be an $\mathcal{F}_{2} / \mathcal{F}_{1}$-set? This question turns out to be a "cusp" case, as Theorem 15 and the next lemma demonstrate.

Lemma 14. Let E, F, G and H be infinite subsets of \mathbb{Z} with $E \cap F=$ $G \cap H=\emptyset$, and $E \cup F, G \cup H$ lacunary. Choose a one-to-one correspondence between \mathbb{N} and \mathbb{N}^{3}, and enumerate E, F, G and H according to this correspondence:

$$
\begin{equation*}
E=\left\{\lambda_{a b c}\right\}, \quad F=\left\{\nu_{a b c}\right\}, \quad G=\left\{\varrho_{a b c}\right\}, \quad H=\left\{\kappa_{a b c}\right\}, \quad a, b, c \in \mathbb{N} . \tag{8}
\end{equation*}
$$

Then $U \subset(E+F) \times(G+H)$ given by

$$
U=\left\{\left(\lambda_{a b c}+\nu_{b c d}\right) \times\left(\varrho_{c d a}+\kappa_{d a b}\right)\right\}
$$

is not Sidon.

Proof. As described in [B3], the scheme above gives rise to a 4/3product, with Sidon index 8/7.

Theorem 15. If E, F, G, and H are as above, then $(E+F) \times(G+H)$ is not $\mathcal{F}_{2} / \mathcal{F}_{1}$.

Proof. We can find a bounded function ϕ on U which is not the transform of a measure on \mathbb{T}^{2}. Then ϕ is a function of twelve variables, but by the linkages described in the lemma we consider ϕ as a function of a, b, c, and d. Let β_{ϕ} be the bilinear form on $C(\mathbb{T}) \times C(\mathbb{T})$ given by

$$
\beta_{\phi}(f, g)=\sum_{a, b, c, d} \phi(a, b, c, d) \widehat{f}\left(\lambda_{a b c}+\nu_{b c d}\right) \widehat{g}\left(\varrho_{c d a}+\kappa_{d a b}\right)
$$

An application of the Cauchy-Schwarz inequality gives boundedness of β_{ϕ}, and we easily verify that

$$
\widehat{\beta}_{\phi}\left(\lambda_{a b c}+\nu_{b c d}, \varrho_{c d a}+\kappa_{d a b}\right)=\phi(a, b, c, d) .
$$

Thus U is not $\mathcal{F}_{2} / \mathcal{F}_{1}$, and any set containing U cannot be $\mathcal{F}_{2} / \mathcal{F}_{1}$.
Let $A, B \subset \mathbb{Z}, A \cap B=\emptyset, \operatorname{card}(A)=\operatorname{card}(B)=\infty$. For $m, n \geq 2$, let E_{1}, \ldots, E_{m} be pairwise disjoint infinite subsets of A and let F_{1}, \ldots, F_{n} be pairwise disjoint infinite subsets of B. By considering translates of a set of the form $(E+F) \times(G+H)$, we see that $\left(E_{1}+\ldots+E_{m}\right) \times\left(F_{1}+\ldots+F_{n}\right)$ is not an $\mathcal{F}_{2} / \mathcal{F}_{1}$-set.

We can illustrate something of the "tightness" of the original question in [GS2] as it relates to a generalization of an inequality of Littlewood. One avenue of attack on the problem is as follows. Let

$$
E=\left\{\lambda_{i}\right\}, \quad F=\left\{\nu_{j}\right\}, \quad G=\left\{\varrho_{k}\right\} .
$$

Any element of $\ell^{2}\left(\mathbb{N}^{2}\right) \check{\otimes} \ell^{2}(\mathbb{N})$ naturally induces a bounded bilinear form on $C(\mathbb{T}) \times C(\mathbb{T})$. For $a=\left\{a_{(j, k), l}\right\} \in \ell^{2}\left(\mathbb{N}^{2}\right) \check{\otimes} \ell^{2}(\mathbb{N})$, define such a form β_{a} by

$$
\beta_{a}(f, g)=\sum_{j, k, l} a_{(j, k), l} \widehat{f}\left(\lambda_{j}+\nu_{k}\right) \widehat{g}\left(\varrho_{l}\right)
$$

The problem is solved if we can produce a tensor as above which simultaneously is not the transform of a measure restricted to $(E+F) \times G$. But this cannot be done. Littlewood's mixed-norm inequality in three dimensions [D] states that if $\left\{a_{(j, k), l}\right\}$ is any finitely supported tensor, then

$$
\left\|a_{(j, k), l}\right\|_{\tilde{\mathcal{V}}_{3}(\mathbb{N}, \mathbb{N}, \mathbb{N})} \leq 2 \sqrt{2} \sup _{l} \sqrt{\sum_{(j, k)}\left|a_{(j, k), l}\right|^{2}}
$$

which implies that $\ell^{2}\left(\mathbb{N}^{2}\right) \check{\otimes} \ell^{2}(\mathbb{N}) \subset \widetilde{\mathcal{V}}_{3}(\mathbb{N}, \mathbb{N}, \mathbb{N})$. Since $B((E+F) \times G)$ contains all elements of $\widetilde{\mathcal{V}}_{3}(\mathbb{N}, \mathbb{N}, \mathbb{N})$, we see that it is impossible to find a
tensor with the desired properties. As a final comment along this line we remark that in [GS2] the authors prove the following:

Proposition 16. Let H be an infinite subgroup of the discrete group Γ, and let K be any infinite subset of Γ. Then $H \times K$ is not $\mathcal{F}_{2} / \mathcal{F}_{1}$.

Notice that this is a "limiting case" of $\left(E_{1}+\ldots+E_{n}\right) \times K$.
Certain of the "fractional Cartesian products" [B3], [B4] provide examples of $\mathcal{P B} \mathcal{F}_{n}$-Sidon sets, $\mathcal{P B} \mathcal{F}_{n} / \mathcal{F}_{1}$-sets, and $\mathcal{F}_{n} / \mathcal{F}_{0}$-sets. For completeness, we include some of the ideas of [B3] and [B4]. Let E be a lacunary subset of \mathbb{Z}. Let $[m]=\{1, \ldots, m\}$. Given $S \subset[m], \pi_{S}$ denotes the projection from E^{m} to $E^{|S|}(|S|=\operatorname{card}(S))$ given by

$$
\pi_{S}\left(e_{1}, \ldots, e_{m}\right)=\left(e_{j}: j \in S\right)
$$

with the $|S|$-tuple on the right of the equality above ordered canonically. Let $\mathcal{S}=\left\{S_{k}: k=1, \ldots, n\right\}$ be a collection of subsets of $[m]$ whose union is $[m]$. Further, we require that each element of $[m]$ appears in at least two elements of \mathcal{S}. For each $k=1, \ldots, n$, consider $\ell^{2}\left(\mathbb{Z}^{\left|S_{k}\right|}\right)$. Let $\phi \in \ell^{\infty}\left(\mathbb{Z}^{m}\right)$, and for $\left(x_{1}, \ldots, x_{n}\right) \in \ell^{2}\left(\mathbb{Z}^{\left|S_{1}\right|}\right) \times \ldots \times \ell^{2}\left(\mathbb{Z}^{\left|S_{n}\right|}\right)$ define

$$
\begin{align*}
\eta_{\phi, \mathcal{S}}\left(x_{1}, \ldots,\right. & \left.x_{n}\right) \tag{6}\\
& =\sum_{\vec{a} \in \mathbb{Z}^{m}} \phi(\vec{a}) x_{1}\left(\pi_{S_{1}}(\vec{a})\right) \ldots x_{n}\left(\pi_{S_{n}}(\vec{a})\right), \quad x_{j} \in \ell^{2}\left(\mathbb{Z}^{\left|S_{j}\right|}\right) .
\end{align*}
$$

In [B1], Blei shows that for all bounded arrays $\phi, \eta_{\phi, \mathcal{S}}$ is a well defined n linear form whose norm is bounded by $\|\phi\|_{\infty}$. As such, $\eta_{\phi, \mathcal{S}}$ can be regarded as an n-linear form on $C\left(\mathbb{T}^{\left|S_{1}\right|}\right) \times \ldots \times C\left(\mathbb{T}^{\left|S_{n}\right|}\right)$, or (equivalently) as an $\mathcal{F}_{n^{-}}$ measure on the product of the respective Borel fields of the given products of \mathbb{T}. Let

$$
\begin{aligned}
& \mathcal{V}_{\mathcal{S}}\left(\mathbb{Z}^{m}\right)=\left\{\phi(\vec{a})=\sum_{j=1}^{\infty} \alpha_{j} \psi_{j 1}\left(\pi_{S_{1}}(\vec{a})\right) \ldots \psi_{j n}\left(\pi_{S_{n}}(\vec{a})\right),\right. \\
&\left.\psi_{j i} \in c_{0}\left(\mathbb{Z}^{\left|S_{i}\right|}\right), \sum\left|\alpha_{j}\right|<\infty\right\} .
\end{aligned}
$$

Identifying arrays which are the same pointwise on \mathbb{Z}^{m}, we obtain a quotient space, with norm

$$
\begin{array}{r}
\|\phi\|_{\mathcal{V}_{s}}=\inf \left\{\sum\left|\beta_{j}\right|: \phi(\vec{a})=\sum_{j=1}^{\infty} \beta_{j} \psi_{j 1}\left(\pi_{S_{1}}(\vec{a})\right) \ldots \psi_{j n}\left(\pi_{S_{n}}(\vec{a})\right)\right. \\
\left.\quad \text { pointwise on } \mathbb{Z}^{m}\right\} .
\end{array}
$$

$\widetilde{\mathcal{V}}_{\mathcal{S}}\left(\mathbb{Z}^{m}\right)$ is the space of arrays on \mathbb{Z}^{m} obtained by taking pointwise limits of uniformly bounded sequences of elements in $\mathcal{V}_{\mathcal{S}}\left(\mathbb{Z}^{m}\right)$.

We now transfer the constructions above to $\mathcal{F}_{n}(\mathbb{T}, \ldots, \mathbb{T})$. Let $E \subset \mathbb{Z}$ be lacunary, and let $\mathcal{S}=\left\{S_{k}: k=1, \ldots, n\right\}$ be a cover of $[m]$ with the properties described above. Consider an m-fold enumeration of $E: E=$ $\left\{e_{a_{1} \ldots a_{m}}: a_{j} \in \mathbb{N}\right\}$ along with $\left|S_{j}\right|$-fold enumerations of $E: E_{j}=\left\{e_{a_{1} \ldots a_{\left|S_{j}\right|}}\right\}$. Then we define a subset $E^{\mathcal{S}}$ of E^{n} by
$E^{\mathcal{S}}=\left\{\left(e_{\pi_{S_{1}}\left(j_{1}, \ldots, j_{m}\right)}^{(1)}, e_{\pi_{S_{2}}\left(j_{1}, \ldots, j_{m}\right)}^{(2)}, \ldots, e_{\pi_{S_{n}}\left(j_{1}, \ldots, j_{m}\right)}^{(n)}\right): e_{\pi_{S_{i}}\left(j_{1}, \ldots, j_{m}\right)}^{(i)} \in E_{i} \forall i\right\}$.
We view $\eta_{\phi, \mathcal{S}}$ as an \mathcal{F}_{n}-measure in the natural way. It is known [B4] that $\widetilde{\mathcal{V}}_{\mathcal{S}}\left(\mathbb{Z}^{m}\right)$ can be realized as a restriction algebra of Fourier-Stieltjes transforms of measures on \mathbb{T}^{n}, namely,

$$
\widetilde{\mathcal{V}}_{\mathcal{S}}\left(\mathbb{Z}^{m}\right)=B\left(E^{\mathcal{S}}\right)=\mathcal{M}\left(\mathbb{T}^{m}\right) /\left\{\mu \in \mathcal{M}\left(\mathbb{T}^{m}\right): \widehat{\mu}=0 \text { on }\left(E^{\mathcal{S}}\right)^{\mathrm{c}}\right\}
$$

Theorem 17 ([B1]). The n-linear form $\eta_{\phi, \mathcal{S}}$ defined by (6) is projectively bounded if and only if $\phi \in \widetilde{\mathcal{V}}_{\mathcal{S}}\left(\mathbb{Z}^{m}\right)$.

Let $e_{\mathcal{S}}$ be the combinatorial dimension of $E^{\mathcal{S}}$ ([BS]). By [B5, Cor. 7.4] we see that if $e_{\mathcal{S}}=1$, then $E_{\mathcal{S}}$ is $\mathcal{P B} \mathcal{F}_{m} / \mathcal{F}_{0}$. This is a generalization of the "monotone graphs" of Proposition 6.

Theorem 18. Let E be lacunary, and let \mathcal{S} be a cover of $[m]$ so that every element of $[m]$ appears in at least two elements of \mathcal{S}. If $e_{\mathcal{S}}>1$, then $E^{\mathcal{S}} \subset \mathbb{Z}^{m}$ is $\mathcal{P B F} \mathcal{F}_{m}$-Sidon, $\mathcal{P B} \mathcal{F}_{m} / \mathcal{F}_{1}$, and $\mathcal{F}_{m} / \mathcal{F}_{0}$, but not $\mathcal{F}_{m} / \mathcal{P B} \mathcal{F}_{m}$.

Proof. $E^{\mathcal{S}}$ is $\mathcal{P B} \mathcal{F}_{m}$-Sidon and $\mathcal{P} \mathcal{B} \mathcal{F}_{m} / \mathcal{F}_{1}$ since

$$
\widetilde{\mathcal{V}}_{\mathcal{S}}=\left.B\left(E^{\mathcal{S}}\right) \subset P B_{m}\left(E^{\mathcal{S}}\right) \subset \widetilde{\mathcal{V}}_{m}\right|_{E^{\mathcal{S}}}=\widetilde{\mathcal{V}}_{\mathcal{S}} .
$$

The last equality follows from the fact that $1_{E^{\mathcal{S}}} \in \widetilde{\mathcal{V}}_{\mathcal{S}}$. Next, $E^{\mathcal{S}}$ is $\mathcal{F}_{m} / \mathcal{F}_{0}$ since (6) is bounded for all arrays \vec{a}. Finally, because (6) can be projectively unbounded for some choice of ϕ ([B5, Cor. 7.4]) we see that $E^{\mathcal{S}}$ is not $\mathcal{F}_{m} / \mathcal{P B} \mathcal{F}_{m}$.

I am grateful to the referee of this paper for a number of useful comments and corrections, and for the suggested definition of $\mathcal{F}_{m} / \mathcal{F}_{0}$-sets.

REFERENCES

[B1] R. C. Blei, Multi-dimensional extensions of the Grothendieck inequality and applications, Ark. Mat. 17 (1979), 51-68.
[B2] -, Rosenthal sets that cannot be sup-norm partitioned and an application to tensor products, Colloq. Math. 37 (1977), 295-298.
[B3] -, Fractional Cartesian products of sets, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 2, 79-105.
[B4] -, Fractional dimensions and bounded fractional forms, Mem. Amer. Math. Soc. 331 (1985).
[B5] R. C. Blei, Projectively bounded Fréchet measures, Trans. Amer. Math. Soc. 348 (1996), 4409-4432.
[BS] R. C. Blei and J. Schmerl, Combinatorial dimension and fractional Cartesian products, Proc. Amer. Math. Soc. 120 (1994), 73-77.
[CS] E. Christensen and A. M. Sinclair, Representations of completely bounded multilinear operators, J. Funct. Anal. 72 (1987), 151-181.
[D] A. M. Davie, Quotient algebras of uniform algebras, J. London Math. Soc. 7 (1973), 31-40.
[GMc] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Grundlehren Math. Wiss. 238, Springer, New York, 1979.
[GS1] C. C. Graham and B. M. Schreiber, Bimeasure algebras on LCA groups, Pacific J. Math. 115 (1984), 91-127.
[GS2] -, -, Sets of interpolation for Fourier transforms of bimeasures, Colloq. Math. 51 (1987), 149-154.
[GS3] -, —, Projections in spaces of bimeasures, Canad. Math. Bull. 31 (1988), 19-25.
[G] A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. Sao Paulo 8 (1956), 1-79.
[LP] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in $\mathcal{L}_{p^{-}}$ spaces and their applications, Studia Math. 29 (1968), 275-326.
[R] W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-227.
[V] N. Th. Varopoulos, On an inequality of von Neumann and an application of the metric theory of tensor products to operators theory, J. Funct. Anal. 16 (1974), 83-100.
[Y] K. Ylinen, Noncommutative Fourier transforms of bounded bilinear forms and completely bounded multilinear operators, ibid. 79 (1988), 144-165.
[ZS] G. Zhao and B. M. Schreiber, Algebras of multilinear forms on groups, in: Contemp. Math. 189, Amer. Math. Soc., 1995, 497-511.

Department of Computer Science and Mathematics
Box 70, Arkansas State University
State University, AR 72467, U.S.A.

[^0]: 2000 Mathematics Subject Classification: 43A25, 43A46, 46A32.
 This is a portion of my doctoral thesis. I thank my advisor, Ron Blei, for his patience and encouragement. I also thank the Department of Mathematics at the University of Connecticut for its generous support during my graduate studies.

