COLLOQUIUM MATHEMATICUM

VOL. 83

2000

NO. 2

INTERPOLATION SETS FOR FRÉCHET MEASURES

BY

J. CAGGIANO (STATE UNIVERSITY, AR)

Abstract. We introduce various classes of interpolation sets for Fréchet measures the measure-theoretic analogues of bounded multilinear forms on products of C(K) spaces.

1. Introduction. The classical theory of interpolation sets in a harmonic-analytic context can be roughly described as the study of norm properties of "one-dimensional" objects (bounded linear forms) in relation to some underlying spectral set. The study of interpolation sets for naturally multi-dimensional structures has developed only in the last twenty years; see [GMc], [GS2]. In this work, it is our aim to examine certain harmonicanalytic interpolation properties of Fourier transforms of Fréchet measures the measure-theoretic counterparts of multi-linear forms on products of $C_0(K)$ spaces. There are some interesting departures from the one-dimensional theory.

DEFINITION 1 ([B5, Def. 1.1]). Let $\mathcal{X}_1, \ldots, \mathcal{X}_n$ be locally compact spaces with respective Borel fields $\mathcal{A}_1, \ldots, \mathcal{A}_n$. A set function $\mu : \mathcal{A}_1 \times \ldots \times \mathcal{A}_n \to \mathbb{C}$ is an \mathcal{F}_n -measure if, when n-1 coordinates are fixed, μ is a measure in the remaining coordinate. When the measure spaces are arbitrary or understood, we denote the space of \mathcal{F}_n -measures by $\mathcal{F}_n = \mathcal{F}_n(\mathcal{A}_1, \ldots, \mathcal{A}_n)$.

For our purposes, each space \mathcal{X}_i will be the circle group \mathbb{T} . There is a natural identification between the space of \mathcal{F}_n -measures on $\mathbb{T} \times \ldots \times \mathbb{T}$ and the space of bounded *n*-linear forms on $C(\mathbb{T}) \times \ldots \times C(\mathbb{T})$ [B4, Thm. 4.12]. Denoting this identification by

 $\beta_{\eta} \leftrightarrow \eta$,

we define the Fourier transform of an \mathcal{F}_n -measure η on \mathbb{T}^n to be the function

²⁰⁰⁰ Mathematics Subject Classification: 43A25, 43A46, 46A32.

This is a portion of my doctoral thesis. I thank my advisor, Ron Blei, for his patience and encouragement. I also thank the Department of Mathematics at the University of Connecticut for its generous support during my graduate studies.

^[161]

on \mathbb{Z}^n given by

$$\widehat{\eta}(m_1, \dots, m_n) = \beta_{\eta}(e^{-im_1t_1}, \dots, e^{-im_nt_n})$$

$$= \int_{\mathbb{T}^n} e^{-im_1t_1} \otimes \dots \otimes e^{-im_nt_n} \eta(dt_1, \dots, dt_n)$$

$$= \int_{\mathbb{T}^{n-1}} e^{-im_1t_1} \otimes \dots \otimes e^{-im_{n-1}t_{n-1}} \int_{\mathbb{T}} e^{-im_nt_n} \eta(dt_1, \dots, dt_n).$$

The integral above is defined iteratively, i.e.,

$$\int_{\mathbb{T}} e^{-im_n t_n} \eta(dt_1, \dots, dt_n) \in \mathcal{F}_{n-1}(\mathbb{T}, \dots, \mathbb{T});$$

see [B4, Lemma 4.9] for details.

The space of \mathcal{F}_2 -measures on $\mathcal{X} \times \mathcal{Y}$ (referred to as the space of *bimeasures* on $\mathcal{X} \times \mathcal{Y}$ in the literature) is a convolution Banach *-algebra [GS1] whose structure extends that of the space of measures on $\mathcal{X} \times \mathcal{Y}$. Convolution of \mathcal{F}_n -measures is not well defined in general when n > 2 [GS3], essentially because there is no general Grothendieck-type inequality for n > 2. If we restrict our attention to the so-called *projectively bounded* Fréchet measures, we have a well defined convolution, as well as suitable extensions of the Grothendieck inequality. The class of *completely bounded* multi-linear forms has also been considered as a natural class of \mathcal{F}_n -measures which satisfies a Grothendieck-type inequality; see [CS], [ZS], [Y].

DEFINITION 2 ([B5]). Let $\mu \in \mathcal{F}_n(\mathbb{T}, \dots, \mathbb{T})$, and let E_1, \dots, E_n be finite subsets of the unit ball of $\mathcal{L}^{\infty}(\mathbb{T})$. For $(f_1, \dots, f_n) \in E_1 \times \dots \times E_n$ define

(1)
$$\phi_{\mu}(f_1,\ldots,f_n) = \int_{\mathbb{T}^n} f_1 \otimes \ldots \otimes f_n \, \mu(dt_1,\ldots,dt_n).$$

Let

(2)
$$\|\mu\|_{\mathrm{pb}_n} = \sup\{\|\phi_\mu\|_{\mathcal{V}_n(E_1,\dots,E_n)}:$$

 $E_j \subset \operatorname{Ball}(\mathcal{L}^{\infty}(\mathbb{T})), \ |E_j| < \infty, \ j = 1,\dots,n\}.$

Then μ is projectively bounded if $\|\mu\|_{\mathrm{pb}_n} < \infty$. The space of projectively bounded \mathcal{F}_n -measures on $\mathbb{T} \times \ldots \times \mathbb{T}$ is denoted by $\mathcal{PBF}_n = \mathcal{PBF}_n(\mathbb{T}, \ldots, \mathbb{T})$.

The class of projectively bounded \mathcal{F}_n -measures is a non-empty proper subspace of \mathcal{F}_n for n > 2, and $\mathcal{PBF}_n = \mathcal{F}_n$ for n < 3 (see [B5]). Projectively bounded \mathcal{F}_n -measures obey a Grothendieck-type inequality in the sense that $\hat{\mu} \in \tilde{\mathcal{V}}_n(\mathbb{Z}, \ldots, \mathbb{Z})$ for all $\mu \in \mathcal{PBF}_n$. To see this, let $E_N =$ $\{e^{-iNt}, \ldots, 1, \ldots, e^{iNt}\}$, and let $m_1, \ldots, m_n \in [N] = \{-N, \ldots, -1, 0, 1, \ldots, N\}$. Then

INTERPOLATION SETS

(3)
$$\|\widehat{\mu}1_{[N]^n}\|_{\mathcal{V}_n([N],...,[N])} = \|\phi_\mu\|_{\mathcal{V}_n(E_N,...,E_N)} \le \|\mu\|_{\mathcal{PBF}},$$

Since $\widehat{\mu}1_{[N]^n} \to \widehat{\mu}$ pointwise, we see immediately that $\widehat{\mu} \in \widetilde{\mathcal{V}}_n(\mathbb{Z}, \dots, \mathbb{Z})$. Given $E \subset \mathbb{Z}^n$ and $m \leq n$, we define

$$B_m(E) = \{ \phi \in \ell^{\infty}(E) : \exists \mu \in \mathcal{F}_m, \ \widehat{\mu}(j_1, \dots, j_n) = \phi(j_1, \dots, j_n) \text{ on } E \},$$

with

$$\|\phi\|_{B_m(E)} = \inf\{\|\mu\|_{\mathcal{F}_m} : \widehat{\mu} = \phi \text{ on } E\},\$$

and

 $PB_m(E) = \{ \phi \in \ell^{\infty}(E) : \exists \mu \in \mathcal{PBF}_m, \ \widehat{\mu}(j_1, \dots, j_n) = \phi(j_1, \dots, j_n) \text{ on } E \},$ with

$$\|\phi\|_{PB_m(E)} = \inf\{\|\mu\|_{\mathcal{PBF}_m} : \widehat{\mu} = \phi \text{ on } E\}.$$

A word about the condition $m \leq n$: there are certain canonical containments in $\mathcal{F}_n(\mathbb{T}, \ldots, \mathbb{T})$, which yield corresponding containments in the restriction algebras defined above. Consider the case n=3. We have $\mathcal{F}_1(\mathbb{T}^3) \subsetneq$ $\mathcal{F}_2(\mathbb{T}^2, \mathbb{T}) \subsetneq \mathcal{F}_3(\mathbb{T}, \mathbb{T}, \mathbb{T})$, so $B_1(\mathbb{Z}^3) \subsetneq B_2(\mathbb{Z}^3) \subsetneq B_3(\mathbb{Z}^3)$. For certain subsets of \mathbb{Z}^n we may have equality of restriction algebras; see Def. 11.

For a given Banach space A of functions on \mathbb{Z}^n and $S \subset \mathbb{Z}^n$, we use the notation $[A]|_S$ to denote the quotient space A/J_S , where

$$J_S = \{ f \in A : f = 0 \text{ on } S \}.$$

Similarly, for a given Banach space B of functions on \mathbb{T}^n and $S \subset \mathbb{Z}^n$, we use the notation $[B]_S$ to denote $\{f \in B : \hat{f} = 0 \text{ on } S^c\}$. We define $\mathcal{V}_n = \mathcal{V}_n(\mathbb{T}, \ldots, \mathbb{T}) \equiv \bigotimes_{k=1}^n C(\mathbb{T})$. The Banach space dual of \mathcal{V}_n is $\mathcal{F}_n = \mathcal{F}_n(\mathbb{T}, \ldots, \mathbb{T})$ [B4, Thm. 4.12]. The Banach space dual of $\mathcal{F}_n(\mathbb{Z}, \ldots, \mathbb{Z})$ is the space $\widetilde{\mathcal{V}}_n(\mathbb{Z}, \ldots, \mathbb{Z})$, given by

$$\widetilde{\mathcal{V}}_n(\mathbb{Z},\ldots,\mathbb{Z}) = \{ \phi \in \ell^\infty(\mathbb{Z}^n) : \phi = \lim_k \phi_k \text{ pointwise, } \sup_k \|\phi_k\|_{\hat{\otimes}} < \infty \},\$$

where $\| \|_{\hat{\otimes}}$ denotes the norm in $\mathcal{V}_n(\mathbb{Z}, \ldots, \mathbb{Z})$. We will use $\| \cdot \|_{\check{\otimes}}$ to denote the injective tensor norm, and we note that it is straightforward to show that $\mathcal{F}_n(\mathbb{Z}, \ldots, \mathbb{Z})$ is canonically isomorphic to $\check{\bigotimes}_{j=1}^n \ell^1(\mathbb{Z})$.

2. Interpolation sets

2.1. \mathcal{PBF}_n -Sidon sets

PROPOSITION 3 ([GS2, Thm. 1]). $\widehat{\eta} \in \widetilde{\mathcal{V}}_2(\mathbb{Z}, \mathbb{Z})$ for all $\eta \in \mathcal{F}_2(\mathbb{T}, \mathbb{T})$.

Proof. Choose Grothendieck probability measures ν_1, ν_2 ([G, Corollaire 2, p. 61], [GS1, Thm. 1.2]), so that η extends to $L^2(\mathbb{T}, \nu_1) \times L^2(\mathbb{T}, \nu_2)$. Still denoting this extension by η , we have

$$\|\eta\| \le K_G \|\eta\|_{\mathcal{F}_2}.$$

Let $S : L^2(\mathbb{T}, \nu_1) \to L^2(\mathbb{T}, \nu_2)$ satisfy $\eta(f, g) = \langle Sf, g \rangle$ and let $\{a_{jk}\} \in \mathcal{F}_2(\mathbb{Z}, \mathbb{Z})$. Finally, choose finite subsets A and B of \mathbb{Z} . Then

$$\left|\sum_{j\in A, k\in B} a_{jk}\widehat{\eta}(j,k)\right| = K_G \|\eta\|_{\mathcal{F}_2} \left|\sum_{j\in A, k\in B} a_{jk} \left\langle \frac{Se^{-ijs}}{K_G \|\eta\|_{\mathcal{F}_2}}, e^{-ikt} \right\rangle \right|$$
$$\leq 4K_G^2 \|\eta\|_{\mathcal{F}_2} \|\{a_{jk}\}\|_{\mathcal{F}_2(\mathbb{Z},\mathbb{Z})}.$$

The last inequality follows immediately from the Grothendieck inequality [LP, Thm. 2.1]. \blacksquare

We note that Proposition 3 is equivalent to $\ell^1(\mathbb{Z}) \check{\otimes} \ell^1(\mathbb{Z}) \subset C(\mathbb{T}) \hat{\otimes} C(\mathbb{T})$ under the correspondence

$$\{a_{mn}\}\leftrightarrow \sum_{m,n}a_{mn}e^{ims}e^{int}$$

DEFINITION 4. A set $S \subset \mathbb{Z} \times \mathbb{Z}$ is called \mathcal{PBF}_n -Sidon if $PB_n(S) = [\widetilde{\mathcal{V}}_n(\mathbb{Z}, \dots, \mathbb{Z})]|_S$. The \mathcal{PBF}_n -Sidon constant of S is

$$\gamma_S = \sup\{\|\phi\|_{PB_n(S)} : \|\phi\|_{[\tilde{\mathcal{V}}_n(Z,...,Z)]|_S} = 1\}.$$

In [GS1] (resp. [GS2]), the authors define *BM-Sidon* (resp. *BM-inter*polation) sets to be those subsets E of $\hat{G} \times \hat{H}$ for which $PB_2(E) = C(E)$, where G and H are LCA groups. The case n = 2 in Definition 4 is different, and we see that BM-Sidon sets are necessarily \mathcal{PBF}_2 -Sidon.

The sections of \mathcal{PBF}_n -Sidon sets behave as expected; let E be \mathcal{PBF}_n -Sidon, and let $S \subset \{1, \ldots, n\}$ be an ordered subset with |S| = m. Define the projection $\pi_S : \mathbb{Z}^n \to \mathbb{Z}^m$ in the obvious way. Then the (n-m)-section

$$E \cap \pi_S^{-1}(j_1,\ldots,j_m)$$

is \mathcal{PBF}_{n-m} -Sidon. To show this, we need only interpolate elementary tensors in $\widetilde{\mathcal{V}}_{n-m}(\mathbb{Z},\ldots,\mathbb{Z})$. Any such tensor ψ is extendible to a tensor $\overline{\psi} \in \widetilde{\mathcal{V}}_n(\mathbb{Z},\ldots,\mathbb{Z})$ in the obvious way. Since E is \mathcal{PBF}_n -Sidon, we can find a projectively bounded Fréchet measure $\mu_{\overline{\psi}}$ which interpolates $\overline{\psi}$ on E. Viewing $\mu_{\overline{\psi}}$ as an *n*-linear form, we see that we obtain a bounded (n-m)-linear form by simply fixing the coordinates of $\mu_{\overline{\psi}}$ corresponding to S. This restriction is projectively bounded, and interpolates the original tensor ψ on $E \cap \pi_S^{-1}$.

For $S \subset \mathbb{Z} \times \mathbb{Z}$ we let $I_S(\mathbb{T}, \mathbb{T}) = \{f \in [\mathcal{V}_2(\mathbb{T}, \mathbb{T})]_S : \hat{f} \in [\ell^1 \check{\otimes} \ell^1]_S\}$. The proof of the following theorem is straightforward.

THEOREM 5. Let $S \subset \mathbb{Z} \times \mathbb{Z}$. The following are equivalent:

- (i) $I_S(\mathbb{T},\mathbb{T}) = [\mathcal{V}_2(\mathbb{T},\mathbb{T})]_S$ (*i.e.*, *S* is \mathcal{PBF}_2 -Sidon).
- (ii) $\exists C > 0$ with $\|f\|_{\check{\otimes}} \leq C \|f\|_{\mathcal{V}_2(T,T)}, \ \forall f \in I_S(\mathbb{T},\mathbb{T}).$
- (iii) $I_S(\mathbb{T},\mathbb{T}) = [L^{\infty}(\mathbb{T}) \otimes L^{\infty}(\mathbb{T})]_S.$

PROPOSITION 6. (i) Let $E, F \subset \mathbb{Z}$ be Sidon. Then $E \times F$ is \mathcal{PBF}_2 -Sidon. (ii) Let $f : \mathbb{Z} \to \mathbb{Z}$ be strictly monotone. Then the graph of f is \mathcal{PBF}_2 -Sidon.

Proof. (i) Clearly $[\widetilde{\mathcal{V}}_2(\mathbb{Z},\mathbb{Z})]|_{E\times F} = \widetilde{\mathcal{V}}_2(E,F)$. We show $\widetilde{\mathcal{V}}_2(E,F) \subset PB_2(E\times F)$. By a standard compactness argument, we need only interpolate restrictions of elementary tensors to $E \times F$. Let α_E, α_F be the Sidon constants of E and F, and let $\phi \otimes \psi$ be an elementary tensor of norm 1 in $\mathcal{V}_2(E,F)$. Then we can find measures μ and ν such that $\widehat{\mu}(m)\widehat{\nu}(n) = \phi(m)\psi(n)$ for any $(m,n) \in E \times F$, with $\|\mu \otimes \nu\|_{F_2} \leq \alpha_E \alpha_F$.

(ii) As shown in [GS1, Thm. 6.3], any bounded sequence on graph f can be interpolated by the transform of an \mathcal{F}_2 -measure.

The existence of other examples of \mathcal{PBF}_2 -Sidon sets is not known. In one dimension, the use of Riesz products as interpolating measures suggests a number of arithmetic criteria on subsets as sufficient conditions for satisfaction of the Sidon property. There is no clear connection between arithmetic properties of a given subset of \mathbb{Z}^2 and the \mathcal{PBF}_2 -Sidon property, making the question of sufficiency somewhat more delicate.

As in the one-dimensional case, there is an approximate interpolation condition for \mathcal{PBF}_2 -Sidon sets.

PROPOSITION 7. Let $E \subset \mathbb{Z} \times \mathbb{Z}$. If there are $0 < \delta < 1$ and $0 < C < \infty$ such that for all $f, g \in \text{Ball}_1(\ell^{\infty}(\mathbb{Z}))$, there is $\mu \in \mathcal{F}_2(\mathbb{T}, \mathbb{T})$, $\|\mu\|_{\mathcal{F}_2} < C$, satisfying

(4)
$$\|f \otimes g - \widehat{\mu}\|_{[\widetilde{\mathcal{V}}_2(Z,Z)]|_E} < \delta,$$

then E is \mathcal{PBF}_2 -Sidon.

Proof. We show that $[C(\mathbb{T}) \otimes C(\mathbb{T})]_E \subset [\ell^1 \otimes \ell^1]_E$. Choose a polynomial f with support in E, and select $\omega_1, \omega_2 \in \{-1, 1\}^{\mathbb{Z}}$. The canonical projections $r_j : \{-1, 1\}^{\mathbb{Z}} \to \{-1, 1\}$ given by $r_j(\omega) = \omega(j)$ are the Rademacher functions. Choose an \mathcal{F}_2 -measure μ_{ω_1,ω_2} satisfying

$$\left\|\widehat{\mu}_{\omega_1,\omega_2}(j,k) - r_j(\omega_1)r_k(\omega_2)\right\|_{[\widetilde{\mathcal{V}}_2(Z,Z)]|_E} < \delta$$

By (4) and duality,

$$\left|\sum_{(j,k)\in E}\widehat{f}(j,k)r_{j}(\omega_{1})r_{k}(\omega_{2})\right| \leq \left|\sum_{(j,k)\in E}\widehat{f}(j,k)(r_{j}(\omega_{1})r_{k}(\omega_{2}) - \widehat{\mu}_{\omega_{1},\omega_{2}}(j,k))\right| \\ + \left|\sum_{(j,k)\in E}\widehat{f}(j,k)\widehat{\mu}_{\omega_{1},\omega_{2}}(j,k)\right| \\ \leq \delta\|\widehat{f}\|_{\check{\otimes}} + \|f\|_{\mathcal{V}_{2}(\mathbb{T},\mathbb{T})}\|\mu_{\omega_{1},\omega_{2}}\|_{\mathcal{F}_{2}(\mathbb{T},\mathbb{T})}.$$

Taking suprema over all choices of ω_1 and ω_2 , we obtain

$$\|\widehat{f}\|_{\check{\otimes}} \leq \frac{4C}{1-\delta} \|f\|_{\mathcal{V}_2(\mathbb{T},\mathbb{T})}.$$

J. CAGGIANO

The factor 4 appears due to the consideration of real and imaginary parts in the calculation of the injective norm of \hat{f} .

We note that it is straightforward to show that the union of \mathcal{PBF}_2 -Sidon sets of the type described in Proposition 6 is again \mathcal{PBF}_2 -Sidon, whereas the union problem in general remains open. An analogous approximate interpolation condition holds for \mathcal{PBF}_n -Sidon sets.

That the diagonal of $\mathbb{Z} \times \mathbb{Z}$ is \mathcal{PBF}_2 -Sidon allows us to demonstrate a fundamental difference between multiplier properties of \mathcal{F}_1 -measures and \mathcal{F}_2 -measures. Define $U : \mathcal{F}_2(\mathbb{T}, \mathbb{T}) \times \mathcal{F}_2(\mathbb{T}, \mathbb{T}) \to \mathcal{F}_2(\mathbb{T}, \mathbb{T})$ by $U(\mu, \nu) = \mu * \nu$. Then U is a bounded bilinear operator [GS1, Thm. 2.6]. Interestingly, U is not bounded on $L^p(\mathbb{T}^2) \times \mathcal{F}_2(\mathbb{T}, \mathbb{T})$, in direct contrast with the situation for $(\mathcal{F}_1$ -)measures.

PROPOSITION 8. Let $2 . Then U is not a bounded operator on <math>L^p(\mathbb{T}^2) \times \mathcal{F}_2(\mathbb{T}, \mathbb{T})$.

Let Δ denote the diagonal in $\mathbb{Z} \times \mathbb{Z}$, and let f be a Δ -polynomial,

$$f(s,t) = \sum a_j e^{ij(s+t)}.$$

For $\omega \in \{-1,1\}^{\mathbb{Z}}$, let

$$f_{\omega}(s,t) = \sum a_j e^{ij(s+t)} r_j(\omega).$$

Since Δ is \mathcal{PBF}_2 -Sidon, we can find $\mu_{\omega} \in \mathcal{F}_2(\mathbb{T}, \mathbb{T})$ such that

$$\widehat{\mu}(j,j) = r_j(\omega), \quad j \in \mathbb{Z},$$

and $\|\mu_{\omega}\|_{\mathcal{F}_2} \leq \gamma_{\Delta}$ for all ω . Suppose $\|U\| = C < \infty$. Then

$$f = f_{\omega} * \mu_{\omega} = U(f_{\omega}, \mu_{\omega})$$

and $||f||_{L^p} \leq C\gamma_{\Delta} ||f_{\omega}||_{L^p}$, which implies that

$$\|f\|_{L^p} \le C\gamma_{\Delta} \mathcal{E}_{\omega} \|f_{\omega}\|_{L^p}.$$

Applying Khinchin's inequalites, we obtain

$$\begin{split} \|f\|_{L^{p}}^{p} &\leq C^{p} \gamma_{\Delta}^{p} \mathbf{E}_{\omega} \iint_{\mathbb{T} \mathbb{T}} \left| \sum a_{j} e^{ij(s+t)} r_{j}(\omega) \right|^{p} \\ &= C^{p} \gamma_{\Delta}^{p} \iint_{\mathbb{T} \mathbb{T}} \mathbf{E}_{\omega} \left| \sum a_{j} e^{ij(s+t)} r_{j}(\omega) \right|^{p} \leq C^{p} \gamma_{\Delta}^{p} p^{p/2} \left(\sum |a_{j}|^{2} \right)^{p/2}, \end{split}$$

which shows that Δ is a $\Lambda(p)$ -set, a contradiction.

We now consider \mathcal{PBF}_n -Sidon sets for n > 2. The space of \mathcal{F}_1 -measures on \mathbb{T}^n is denoted by $\mathcal{M}(\mathbb{T}^n)$.

LEMMA 9. $\mathcal{M}(\mathbb{T}^n) \subset \mathcal{PBF}_n(\mathbb{T},\ldots,\mathbb{T}).$

Proof. Let $\mu \in \mathcal{M}(\mathbb{T}^n)$, and choose finite subsets E_1, \ldots, E_n in the unit ball of $\mathcal{L}^{\infty}(\mathbb{T})$. Then

$$\begin{split} \|\phi_{\mu}\|_{\mathcal{V}_{n}(E_{1},\dots,E_{n})} &= \sup_{\|\beta\|_{\mathcal{F}_{n}} \leq 1} \Big| \sum_{f_{1} \in E_{1},\dots,f_{n} \in E_{n}} \beta(f_{1},\dots,f_{n}) \int_{\mathbb{T}^{n}} (f_{1} \otimes \dots \otimes f_{n}) \, \mu(dt \times \dots \times dt) \Big| \\ &\leq \sup_{\|\beta\|_{\mathcal{F}_{n}} \leq 1} \int_{\mathbb{T}^{n}} \Big| \sum_{f_{1} \in E_{1},\dots,f_{n} \in E_{n}} \beta(f_{1},\dots,f_{n})(f_{1} \otimes \dots \otimes f_{n}) \Big| \, |\mu|(dt \times \dots \times dt) \\ &\leq 2^{n} \|\mu\|_{\mathcal{M}(\mathbb{T}^{n})}. \quad \bullet \end{split}$$

COROLLARY 10. If E_1, \ldots, E_n are Sidon, then $E_1 \times \ldots \times E_n$ is \mathcal{PBF}_n -Sidon.

Proof. We need only recall that $B(E_1 \times \ldots \times E_n) = \widetilde{\mathcal{V}}_n(E_1, \ldots, E_n)$.

2.2. $\mathcal{F}_m/\mathcal{F}_n$ -sets

DEFINITION 11. Let $m > n \ge 0$. For n > 0, a set $E \subset \mathbb{Z}^m$ is an $\mathcal{F}_m/\mathcal{F}_n$ set if $B_m(E) = B_n(E)$; $E \subset \mathbb{Z}^m$ is an $\mathcal{F}_m/\mathcal{F}_0$ -set if $B_m(E) = \ell^{\infty}(E)$.

We define $\mathcal{PBF}_m/\mathcal{PBF}_n$, $\mathcal{PBF}_m/\mathcal{F}_n$, and $\mathcal{F}_m/\mathcal{PBF}_n$ sets analogously. In this terminology, Sidon sets are $\mathcal{F}_1/\mathcal{F}_0$ -sets and BM-Sidon sets are $\mathcal{F}_2/\mathcal{F}_0$ -sets. In [GS2], the authors use the term BM/B-sets for those subsets of the dual of an LCA group whose bimeasure restriction algebra coincides with the measure restriction algebra. In our terminology, these are $\mathcal{F}_2/\mathcal{F}_1$ -sets. We see immediately that any Sidon set in \mathbb{Z}^m is $\mathcal{F}_m/\mathcal{F}_0$, $\mathcal{F}_m/\mathcal{F}_1$ (and hence $\mathcal{F}_m/\mathcal{F}_n$ for any n < m), $\mathcal{PBF}_m/\mathcal{PBF}_n$ and $\mathcal{F}_m/\mathcal{PBF}_m$.

The proof of Proposition 6(i) shows that we need not step outside the space of measures to interpolate all of $\widetilde{\mathcal{V}}_2(E, F)$ when E and F are Sidon. Thus, we have

COROLLARY 12. If E and F are Sidon subsets of \mathbb{Z} , then $E \times F$ is $\mathcal{F}_2/\mathcal{F}_1$.

There is a partial converse to the previous corollary: if $A \times A$ is $\mathcal{F}_2/\mathcal{F}_1$ then A is Sidon. To see this, let $\Delta_{A \times A} = \{(a_j, a_j) : a_j \in A\}$. Since the $\mathcal{F}_2/\mathcal{F}_1$ property is inherited by subsets, $\Delta_{A \times A}$ is $\mathcal{F}_2/\mathcal{F}_1$. We claim that $\Delta_{A \times A}$ is Sidon in $\mathbb{Z} \times \mathbb{Z}$. Let $\phi \in \ell^{\infty}(\Delta_{A \times A})$. For $f, g \in C(\mathbb{T})$, define

$$\eta_{\phi}(f,g) = \sum_{j} \phi(j) \widehat{f}(a_{j}) \widehat{g}(a_{j}).$$

Then η_{ϕ} is a bounded linear form on $\mathcal{V}_2(\mathbb{T},\mathbb{T})$ satisfying

$$\widehat{\eta}_{\phi}(a_j, a_j) = \phi(j)$$

But $\Delta_{A \times A}$ is $\mathcal{F}_2/\mathcal{F}_1$, and so we can find a measure μ_{ϕ} satisfying

$$\widehat{\mu}_{\phi}(a_j, a_j) = \phi(j).$$

So $\Delta_{A \times A}$ is Sidon. Now, let f be an A-polynomial, $f(s) = \sum_j c_j e^{ia_j s}$, and consider

$$F(s,t) = \sum_{j} c_j e^{ia_j(s+t)}.$$

If B denotes the Sidon constant of $\Delta_{A \times A}$, we have

$$\|\widehat{f}\|_{\ell^{1}} = \sum_{j} |c_{j}| \le B \sup_{s,t} \left| \sum_{j} c_{j} e^{ia_{j}(s+t)} \right| = B \|f\|_{\infty},$$

and A is Sidon. We also note that the result above need not hold when the factors forming the Cartesian product in $\mathbb{Z} \times \mathbb{Z}$ are different. For example, $\mathbb{Z} \times \{n\}$ is $\mathcal{F}_2/\mathcal{F}_1$. To see this, choose $\mu \in \mathcal{F}_2(\mathbb{T}, \mathbb{T})$, and let η_{μ} be the corresponding bilinear form on $C(\mathbb{T}) \times C(\mathbb{T})$. Then

$$\widehat{\mu}|_{\mathbb{Z}\times\{n\}} = (\eta_{\mu}(\cdot, n) \otimes e^{int} dt)|_{\mathbb{Z}\times\{n\}}$$

This leads to a question. Given two (different) infinite subsets A and B such that $A \times B$ is $\mathcal{F}_2/\mathcal{F}_1$, must A or B be Sidon? We do not know the answer.

Which sets are both $\mathcal{F}_2/\mathcal{F}_1$ and \mathcal{PBF}_2 -Sidon? It is obvious that any Sidon subset of $\mathbb{Z} \times \mathbb{Z}$ is necessarily $\mathcal{F}_2/\mathcal{F}_1$ and \mathcal{PBF}_2 -Sidon. We can glean a bit more. It is straightforward to show

PROPOSITION 13. If S is $\mathcal{F}_2/\mathcal{F}_1$ and \mathcal{PBF}_2 -Sidon then S is $\Lambda(p)$ for all $p < \infty$.

We can separate the various interpolation sets described thus far. Let us consider the two-dimensional case. A product of two Sidon sets is \mathcal{PBF}_2 -Sidon and $\mathcal{F}_2/\mathcal{F}_1$, but not $\mathcal{F}_2/\mathcal{F}_0$. $\mathbb{Z} \times \{n\}$ is $\mathcal{F}_2/\mathcal{F}_1$ but not \mathcal{PBF}_2 -Sidon or $\mathcal{F}_2/\mathcal{F}_0$, while the diagonal $\Delta = \{(n,n) : n \in \mathbb{Z}\}$ is $\mathcal{F}_2/\mathcal{F}_0$ (hence \mathcal{PBF}_2 -Sidon) but not $\mathcal{F}_2/\mathcal{F}_1$.

In [GS2], the authors ask: if E, F, and G are infinite subsets of \mathbb{Z} such that $E \cup F$ and G are lacunary $(E \cap F = \emptyset)$, must $(E + F) \times G$ be an $\mathcal{F}_2/\mathcal{F}_1$ -set? This question turns out to be a "cusp" case, as Theorem 15 and the next lemma demonstrate.

LEMMA 14. Let E, F, G and H be infinite subsets of \mathbb{Z} with $E \cap F = G \cap H = \emptyset$, and $E \cup F$, $G \cup H$ lacunary. Choose a one-to-one correspondence between \mathbb{N} and \mathbb{N}^3 , and enumerate E, F, G and H according to this correspondence:

(8) $E = \{\lambda_{abc}\}, \quad F = \{\nu_{abc}\}, \quad G = \{\varrho_{abc}\}, \quad H = \{\kappa_{abc}\}, \quad a, b, c \in \mathbb{N}.$ Then $U \subset (E + F) \times (G + H)$ given by

$$U = \{ (\lambda_{abc} + \nu_{bcd}) \times (\varrho_{cda} + \kappa_{dab}) \}$$

is not Sidon.

Proof. As described in [B3], the scheme above gives rise to a 4/3-product, with Sidon index 8/7.

THEOREM 15. If E, F, G, and H are as above, then $(E+F) \times (G+H)$ is not $\mathcal{F}_2/\mathcal{F}_1$.

Proof. We can find a bounded function ϕ on U which is not the transform of a measure on \mathbb{T}^2 . Then ϕ is a function of twelve variables, but by the linkages described in the lemma we consider ϕ as a function of a, b, c, and d. Let β_{ϕ} be the bilinear form on $C(\mathbb{T}) \times C(\mathbb{T})$ given by

$$\beta_{\phi}(f,g) = \sum_{a,b,c,d} \phi(a,b,c,d) \widehat{f}(\lambda_{abc} + \nu_{bcd}) \widehat{g}(\varrho_{cda} + \kappa_{dab}).$$

An application of the Cauchy–Schwarz inequality gives boundedness of β_{ϕ} , and we easily verify that

$$\beta_{\phi}(\lambda_{abc} + \nu_{bcd}, \varrho_{cda} + \kappa_{dab}) = \phi(a, b, c, d).$$

Thus U is not $\mathcal{F}_2/\mathcal{F}_1$, and any set containing U cannot be $\mathcal{F}_2/\mathcal{F}_1$.

Let $A, B \subset \mathbb{Z}$, $A \cap B = \emptyset$, $\operatorname{card}(A) = \operatorname{card}(B) = \infty$. For $m, n \geq 2$, let E_1, \ldots, E_m be pairwise disjoint infinite subsets of A and let F_1, \ldots, F_n be pairwise disjoint infinite subsets of B. By considering translates of a set of the form $(E + F) \times (G + H)$, we see that $(E_1 + \ldots + E_m) \times (F_1 + \ldots + F_n)$ is not an $\mathcal{F}_2/\mathcal{F}_1$ -set.

We can illustrate something of the "tightness" of the original question in [GS2] as it relates to a generalization of an inequality of Littlewood. One avenue of attack on the problem is as follows. Let

$$E = \{\lambda_i\}, \quad F = \{\nu_j\}, \quad G = \{\varrho_k\},$$

Any element of $\ell^2(\mathbb{N}^2) \check{\otimes} \ell^2(\mathbb{N})$ naturally induces a bounded bilinear form on $C(\mathbb{T}) \times C(\mathbb{T})$. For $a = \{a_{(j,k),l}\} \in \ell^2(\mathbb{N}^2) \check{\otimes} \ell^2(\mathbb{N})$, define such a form β_a by

$$\beta_a(f,g) = \sum_{j,k,l} a_{(j,k),l} \widehat{f}(\lambda_j + \nu_k) \widehat{g}(\varrho_l).$$

The problem is solved if we can produce a tensor as above which simultaneously is not the transform of a measure restricted to $(E + F) \times G$. But this cannot be done. Littlewood's mixed-norm inequality in three dimensions [D] states that if $\{a_{(i,k),l}\}$ is any finitely supported tensor, then

$$\|a_{(j,k),l}\|_{\widetilde{\mathcal{V}}_3(\mathbb{N},\mathbb{N},\mathbb{N})} \leq 2\sqrt{2} \sup_l \sqrt{\sum_{(j,k)} |a_{(j,k),l}|^2},$$

which implies that $\ell^2(\mathbb{N}^2) \otimes \ell^2(\mathbb{N}) \subset \widetilde{\mathcal{V}}_3(\mathbb{N}, \mathbb{N}, \mathbb{N})$. Since $B((E + F) \times G)$ contains all elements of $\widetilde{\mathcal{V}}_3(\mathbb{N}, \mathbb{N}, \mathbb{N})$, we see that it is impossible to find a

J. CAGGIANO

tensor with the desired properties. As a final comment along this line we remark that in [GS2] the authors prove the following:

PROPOSITION 16. Let H be an infinite subgroup of the discrete group Γ , and let K be any infinite subset of Γ . Then $H \times K$ is not $\mathcal{F}_2/\mathcal{F}_1$.

Notice that this is a "limiting case" of $(E_1 + \ldots + E_n) \times K$.

Certain of the "fractional Cartesian products" [B3], [B4] provide examples of \mathcal{PBF}_n -Sidon sets, $\mathcal{PBF}_n/\mathcal{F}_1$ -sets, and $\mathcal{F}_n/\mathcal{F}_0$ -sets. For completeness, we include some of the ideas of [B3] and [B4]. Let E be a lacunary subset of \mathbb{Z} . Let $[m] = \{1, \ldots, m\}$. Given $S \subset [m]$, π_S denotes the projection from E^m to $E^{|S|}$ ($|S| = \operatorname{card}(S)$) given by

$$\pi_S(e_1,\ldots,e_m)=(e_j:j\in S),$$

with the |S|-tuple on the right of the equality above ordered canonically. Let $S = \{S_k : k = 1, ..., n\}$ be a collection of subsets of [m] whose union is [m]. Further, we require that each element of [m] appears in at least two elements of S. For each k = 1, ..., n, consider $\ell^2(\mathbb{Z}^{|S_k|})$. Let $\phi \in \ell^{\infty}(\mathbb{Z}^m)$, and for $(x_1, ..., x_n) \in \ell^2(\mathbb{Z}^{|S_1|}) \times ... \times \ell^2(\mathbb{Z}^{|S_n|})$ define

(6)
$$\eta_{\phi,S}(x_1, \dots, x_n)$$

= $\sum_{\vec{a} \in \mathbb{Z}^m} \phi(\vec{a}) x_1(\pi_{S_1}(\vec{a})) \dots x_n(\pi_{S_n}(\vec{a})), \quad x_j \in \ell^2(\mathbb{Z}^{|S_j|})$

In [B1], Blei shows that for all bounded arrays ϕ , $\eta_{\phi,S}$ is a well defined *n*linear form whose norm is bounded by $\|\phi\|_{\infty}$. As such, $\eta_{\phi,S}$ can be regarded as an *n*-linear form on $C(\mathbb{T}^{|S_1|}) \times \ldots \times C(\mathbb{T}^{|S_n|})$, or (equivalently) as an \mathcal{F}_n measure on the product of the respective Borel fields of the given products of \mathbb{T} . Let

$$\mathcal{V}_{\mathcal{S}}(\mathbb{Z}^m) = \left\{ \phi(\vec{a}) = \sum_{j=1}^{\infty} \alpha_j \psi_{j1}(\pi_{S_1}(\vec{a})) \dots \psi_{jn}(\pi_{S_n}(\vec{a})), \\ \psi_{ji} \in c_0(\mathbb{Z}^{|S_i|}), \ \sum |\alpha_j| < \infty \right\}.$$

Identifying arrays which are the same pointwise on \mathbb{Z}^m , we obtain a quotient space, with norm

$$\|\phi\|_{\mathcal{V}_{\mathcal{S}}} = \inf\left\{\sum |\beta_j| : \phi(\vec{a}) = \sum_{j=1}^{\infty} \beta_j \psi_{j1}(\pi_{S_1}(\vec{a})) \dots \psi_{jn}(\pi_{S_n}(\vec{a}))\right\}$$
pointwise on \mathbb{Z}^m

 $\mathcal{V}_{\mathcal{S}}(\mathbb{Z}^m)$ is the space of arrays on \mathbb{Z}^m obtained by taking pointwise limits of uniformly bounded sequences of elements in $\mathcal{V}_{\mathcal{S}}(\mathbb{Z}^m)$.

We now transfer the constructions above to $\mathcal{F}_n(\mathbb{T},\ldots,\mathbb{T})$. Let $E \subset \mathbb{Z}$ be lacunary, and let $\mathcal{S} = \{S_k : k = 1,\ldots,n\}$ be a cover of [m] with the properties described above. Consider an *m*-fold enumeration of $E : E = \{e_{a_1...a_m} : a_j \in \mathbb{N}\}$ along with $|S_j|$ -fold enumerations of $E : E_j = \{e_{a_1...a_{|S_j|}}\}$. Then we define a subset $E^{\mathcal{S}}$ of E^n by

$$E^{\mathcal{S}} = \{ (e_{\pi_{S_1}(j_1, \dots, j_m)}^{(1)}, e_{\pi_{S_2}(j_1, \dots, j_m)}^{(2)}, \dots, e_{\pi_{S_n}(j_1, \dots, j_m)}^{(n)}) : e_{\pi_{S_i}(j_1, \dots, j_m)}^{(i)} \in E_i \ \forall i \}.$$

We view $\eta_{\phi,S}$ as an \mathcal{F}_n -measure in the natural way. It is known [B4] that $\widetilde{\mathcal{V}}_{\mathcal{S}}(\mathbb{Z}^m)$ can be realized as a restriction algebra of Fourier–Stieltjes transforms of measures on \mathbb{T}^n , namely,

 $\widetilde{\mathcal{V}}_{\mathcal{S}}(\mathbb{Z}^m) = B(E^{\mathcal{S}}) = \mathcal{M}(\mathbb{T}^m) / \{ \mu \in \mathcal{M}(\mathbb{T}^m) : \widehat{\mu} = 0 \text{ on } (E^{\mathcal{S}})^c \}.$

THEOREM 17 ([B1]). The n-linear form $\eta_{\phi,S}$ defined by (6) is projectively bounded if and only if $\phi \in \widetilde{\mathcal{V}}_{\mathcal{S}}(\mathbb{Z}^m)$.

Let $e_{\mathcal{S}}$ be the combinatorial dimension of $E^{\mathcal{S}}$ ([BS]). By [B5, Cor. 7.4] we see that if $e_{\mathcal{S}} = 1$, then $E_{\mathcal{S}}$ is $\mathcal{PBF}_m/\mathcal{F}_0$. This is a generalization of the "monotone graphs" of Proposition 6.

THEOREM 18. Let E be lacunary, and let S be a cover of [m] so that every element of [m] appears in at least two elements of S. If $e_S > 1$, then $E^S \subset \mathbb{Z}^m$ is \mathcal{PBF}_m -Sidon, $\mathcal{PBF}_m/\mathcal{F}_1$, and $\mathcal{F}_m/\mathcal{F}_0$, but not $\mathcal{F}_m/\mathcal{PBF}_m$.

Proof. $E^{\mathcal{S}}$ is \mathcal{PBF}_m -Sidon and $\mathcal{PBF}_m/\mathcal{F}_1$ since

$$\widetilde{\mathcal{V}}_{\mathcal{S}} = B(E^{\mathcal{S}}) \subset PB_m(E^{\mathcal{S}}) \subset \widetilde{\mathcal{V}}_m|_{E^{\mathcal{S}}} = \widetilde{\mathcal{V}}_{\mathcal{S}}$$

The last equality follows from the fact that $1_{E^{S}} \in \widetilde{\mathcal{V}}_{S}$. Next, E^{S} is $\mathcal{F}_{m}/\mathcal{F}_{0}$ since (6) is bounded for all arrays \vec{a} . Finally, because (6) can be projectively unbounded for some choice of ϕ ([B5, Cor. 7.4]) we see that E^{S} is not $\mathcal{F}_{m}/\mathcal{PBF}_{m}$.

I am grateful to the referee of this paper for a number of useful comments and corrections, and for the suggested definition of $\mathcal{F}_m/\mathcal{F}_0$ -sets.

REFERENCES

- [B1] R. C. Blei, Multi-dimensional extensions of the Grothendieck inequality and applications, Ark. Mat. 17 (1979), 51–68.
- [B2] —, Rosenthal sets that cannot be sup-norm partitioned and an application to tensor products, Colloq. Math. 37 (1977), 295–298.
- [B3] —, Fractional Cartesian products of sets, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 2, 79–105.
- [B4] —, Fractional dimensions and bounded fractional forms, Mem. Amer. Math. Soc. 331 (1985).

J. CAGGIANO

- [B5] R. C. Blei, Projectively bounded Fréchet measures, Trans. Amer. Math. Soc. 348 (1996), 4409–4432.
- [BS] R. C. Blei and J. Schmerl, Combinatorial dimension and fractional Cartesian products, Proc. Amer. Math. Soc. 120 (1994), 73–77.
- [CS] E. Christensen and A. M. Sinclair, Representations of completely bounded multilinear operators, J. Funct. Anal. 72 (1987), 151–181.
- [D] A. M. Davie, Quotient algebras of uniform algebras, J. London Math. Soc. 7 (1973), 31–40.
- [GMc] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Grundlehren Math. Wiss. 238, Springer, New York, 1979.
- [GS1] C. C. Graham and B. M. Schreiber, Bimeasure algebras on LCA groups, Pacific J. Math. 115 (1984), 91–127.
- [GS2] —, —, Sets of interpolation for Fourier transforms of bimeasures, Colloq. Math. 51 (1987), 149–154.
- [GS3] —, —, Projections in spaces of bimeasures, Canad. Math. Bull. 31 (1988), 19–25.
- [G] A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. Sao Paulo 8 (1956), 1–79.
- [LP] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in \mathcal{L}_p -spaces and their applications, Studia Math. 29 (1968), 275–326.
- [R] W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-227.
- [V] N. Th. Varopoulos, On an inequality of von Neumann and an application of the metric theory of tensor products to operators theory, J. Funct. Anal. 16 (1974), 83–100.
- [Y] K. Ylinen, Noncommutative Fourier transforms of bounded bilinear forms and completely bounded multilinear operators, ibid. 79 (1988), 144–165.
- [ZS] G. Zhao and B. M. Schreiber, Algebras of multilinear forms on groups, in: Contemp. Math. 189, Amer. Math. Soc., 1995, 497-511.

Department of Computer Science and Mathematics Box 70, Arkansas State University State University, AR 72467, U.S.A.

> Received 6 November 1998; revised 6 April 1999

(3653)