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ON WEAK TYPE INEQUALITIES FOR

RARE MAXIMAL FUNCTIONS

BY
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Abstract. The properties of rare maximal functions (i.e. Hardy–Littlewood maximal
functions associated with sparse families of intervals) are investigated. A simple crite-
rion allows one to decide if a given rare maximal function satisfies a converse weak type
inequality. The summability properties of rare maximal functions are also considered.

1. Introduction. For a locally integrable function f : Rd → R the
classic Hardy–Littlewood maximal function Mf is defined as

Mf(x) = sup
I∋x

1

|I|

\
I

|f(y)| dy

where the supremum is taken over all bounded cubic intervals I ⊆ R
d con-

taining x. It is well known that the Hardy–Littlewood maximal function does
not map from L to L, but only from L to weak L. In particular, the following
weak type inequality holds for every f ∈ L and arbitrary positive λ:

(1)
cd
λ

\
{x:Mf(x)>λ}

|f | ≤ |{x :Mf(x) > λ}| ≤
Cd

λ

\
{x:Mf(x)>λ}

|f |.

A well known theorem of Hardy and Littlewood [2] states that if f is
supported on the unit cube I

d and f ∈ L log+ L(Id), then Mf ∈ L(Id).
Later, Stein [3] proved that the converse of this theorem also holds: if f ∈ L
and Mf ∈ L(Id), then f ∈ L log+ L(Id).

The proofs of these results are based on the weak type inequalities (1)
stated above, and these, in turn, are proved by using the Vitali and Whitney
covering lemmas.Of course, the covering lemmas depend on properties of the
family of sets to which the argument is applied, thus it is natural to consider
a rare maximal function where the supremum is taken over a restricted set of
intervals, and ask whether these inequalities and Stein’s phenomenon remain
true.
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We shall see that this need not be the case. Indeed, in this note we char-
acterize the rare maximal functions which satisfy the weak type inequality.
We also show that Stein’s phenomenon need not hold for individual func-
tions f , but that rare maximal functions never map an entire Orlicz class
larger than L log+ L into L.

2. Weak type inequalities. For simplicity we restrict ourselves to the
one-dimensional case which is entirely typical. Let l = {lk} where lk ≤ 1,
lk ↓ 0, and let

I = {intervals I ⊂ R : |I| ∈ l}.

We define the rare maximal function Mlf by the formula

Mlf(x) = sup
I∈I, I∋x

1

|I|

\
I

|f(y)| dy.

Define Eλ ≡ {x : Mlf(x) > λ}. For every λ > 0, Eλ is an open set and
is the union of the intervals I such that

|I|−1
\
I

|f | > λ.

Applying a Vitali covering argument to these intervals yields the weak
type inequality

|Eλ| ≤
2

λ

\
Eλ

|f |.

The situation with the converse inequality is quite different.

Theorem 1. Let l = {2−mk} with mk ∈ R
+. The rare maximal function

Mlf satisfies the weak type inequality

1

λ

\
{x:Mlf(x)>λ}

|f | ≤ C|{x :Mlf(x) > λ}|

for some constant C and every f ∈ L if and only if

sup
k

(mk+1 −mk) <∞.

P r o o f. First, we will prove that if supk (mk+1 −mk) = ∞ then there
exists a summable function f such that

sup
λ

λ−1
T
{Mlf>λ}

|f |

|{x :Mlf(x) > λ}|
= ∞.

To do this we use the assumption that supk (mk+1 −mk) = ∞ to induc-
tively define a subsequence {mkn

} as follows: Choose k1 such that mk1+1 −
mk1

> 1. Given mk1
, . . . ,mkn−1

, select kn so that mkn
> 1 +mkn−1+1 and



WEAK TYPE INEQUALITIES 175

mkn+1 −mkn
> n. Let {αj} = {mk1

,mk1+1,mk2
,mk2+1, . . .} and set

f(x) =
∞
∑

k=1

akχ[0;2−αk ](x)

where ak > 0 will be specified later. Observe that {2−αj} is a lacunary
sequence. Since f is a decreasing function for positive x, which vanishes
for negative x, Mlf(−|x|) ≤ Mlf(|x|) and Mlf(x) decreases for positive x.
In particular, for x ∈ [2−αn+1 ; 2−αn ] we have Mlf(x) ≥ Mlf(2

−αn). Also,
notice that

|[2−mkj+1 ; 21−mkj+1 ]| ≥ 2−mn

for all n > kj , and that f is constant on the interval [2−mkj+1 ; 2−mkj ]. It

follows that if x ∈ [21−mkj+1 ; 2−mkj ] then

Mlf(x) =Mlf(2
−mkj ) = 2mkj

2
−mkj\
0

|f(y)| dy.

These observations imply that

[0; 2−mkj+1 ] ⊂ {x > 0 :Mlf(x) > Mlf(2
−mkj )} ⊂ [0; 21−mkj+1 ],

and hence

|{x :Mlf(x) > Mlf(2
−mkj )}| ≤ 22−mkj+1 .

One can show by direct calculation (using the lacunarity of {2−αj}) that

2−αn\
0

|f | ∼
∑

s<n

as2
−αn +

∑

s≥n

as2
−αs .

Thus if n is chosen such that mkj+1 = αn then\
{Mlf(x)>Mlf(2

−mkj )}

|f | ≥
2
−mkj+1\

0

|f | ≥ C
∑

s≥n

as2
−αs .

Furthermore, if we let λ =Mlf(2
−mkj ), then

λ ∼
n−1
∑

s=1

as + 2mkj

∞
∑

s=n

as2
−αs .

Hence

λ−1
T
{Mlf>λ}

|f |

|{x :Mlf(x) > λ}|
≥

C
∑

s≥n as2
−αs

(
∑

s<n as + 2mkj
∑

s≥n as2
−αs)2−mkj+1

≥
C
∑

s≥n as2
−αs(2mkj+1−mkj )

∑

s<n 2
−mkj as +

∑

s≥n as2
−αs

.
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Set now as = 2αs/s2. Then

∞
∑

s=n

as2
−αs =

∞
∑

s=n

1

s2
∼

1

n
.

Since αn−1 = mkj
we have

2−mkj

n−1
∑

s=1

as = 2−mkj

n−1
∑

s=1

2αs

s2
∼ 2−mkj

2αn−1

n2
=

1

n2
= o

(

1

n

)

.

Consequently, for all j ∈ N,

λ−1
T
{Mlf>λ}

|f |

|{x :Mlf(x) > λ}|
≥ C2mkj+1−mkj ≥ C2j ,

and hence

sup
λ

λ−1
T
{Mlf>λ}

|f |

|{x :Mlf(x) > λ}|
= ∞.

Now assume sup(mk+1 −mk)≡c0<∞. Note that Eλ is a disjoint union
of intervals J , so |Eλ| =

∑

|J |. For every such J there is an index k and
intervals J∗ and J∗ such that

J∗ ⊂ J ⊂ J∗, J∗ 6= J, |J∗| = 2−mk , |J∗| = 2−mk+1 .

But J∗ 6⊂ Eλ, hence

|J∗|−1
\
J∗

|f | ≤ λ.

Since mk+1 −mk ≤ c0 for every k,

|Eλ| ≥
∑

|J∗| ≥ 2−c0
∑

|J∗| ≥ 2−c0
∑ 1

λ

\
J∗

|f |

≥ 2−c0
∑ 1

λ

\
J

|f | = 2−c0
1

λ

\
⋃

J

|f | = 2−c0
1

λ

\
Eλ

|f |

and this is the desired inequality.

3. Stein’s phenomenon. Standard arguments show that any rare max-
imal function satisfying the weak type inequality of Theorem 1 has Stein’s
property (cf. [1, 6.1]). In contrast, our next result shows that suitable rare
maximal functions do not.

Theorem 2. There exists a sequence l such that for some f ∈ L(I),
f 6∈ L log+ L(I) but Mlf ∈ L(I).
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P r o o f. We will demonstrate that if {mk} ⊂ N is a strictly increasing
sequence satisfying

sup
k∈N

mk/k = ∞

and l = {2−(mk+3)}, then Stein’s phenomenon does not hold for the rare
maximal function Mlf .

To see this, set Ek = [0; 2−mk ] and Gk = Ek\Ek+1 = (2−mk+1 ; 2−mk ].
Also, set

G+
k = (2−mk+1 ; (2−mk+1 + 2−mk)/2], G−

k = ((2−mk+1 + 2−mk)/2; 2−mk ].

Notice |Gk|≥2−mk−1, while |G+
k | = |G−

k | =
1
2 |Gk|. Choose an increasing

subsequence mni
of mk such that mni

≥ 2ini. Set ak = 0 if k 6∈ {ni} and
ak = 1/mni

if k = ni. Define

f(x) =
∑

k≥1

2mkakχG
+
k
(x).

The function f belongs to L(I) since
∑

k≥1

2mkak|G
+
k | ≤

∑

k≥1

ak ≤
∑

i≥1

2−i <∞.

Next we show that f 6∈ L log+ L(I). For this we first observe that

∑

ak 6=0

|ak log ak| ≤
∑

i≥1

log(2ini)

2ini

<∞.

Now

‖f log+ f‖ =
∑

ak 6=0

2mkak log(2
mkak)|G

+
k |

≥
1

4

∑

ak 6=0

akmk log 2 +
1

4

∑

ak 6=0

ak log ak.

But clearly the first series diverges while the second is convergent. So f 6∈
L log+ L(I).

Now we estimate Mlf . Let x ∈ Gk and I be any interval of length
|I| = 2−mn−3 containing x. If I ∩ G+

k+1 6= ∅, then since the interval Gk is

separated from G+
k+1 by G−

k+1, it follows that |I| ≥ |G−
k+1| ≥ 2−mk+1−2. As

|I| = 2−mn−3 for some n and |I| > 2−mk+1−3 this means that |I| ≥ 2−mk−3.
Thus

1

|I|

\
I

f =
1

|I|

(

∑

j>k, j∈{ni}

\
I∩G

+
j

f +
∑

j≤k, j∈{ni}

\
I∩G

+
j

f
)

≤ 2mk+3
∑

j>k, j∈{ni}

2mjaj |G
+
j |+

∑

j≤k

2mjaj
|G+

j ∩ I|

|I|
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≤ 2mk+3
∑

j>k, j∈{ni}

aj + max
j≤k, j∈{ni}

2mjaj

≤ 2mk+3
∑

j>k, j∈{ni}

aj + 2mβ(k)aβ(k)

where β(k) = ni if k ∈ [ni;ni+1) (with the final inequality holding because
{2mniani

} is an increasing sequence).

Otherwise I ∩G+
j = ∅ for all j > k. Then we have

1

|I|

\
I

f =
1

|I|

∑

j≤k, j∈{ni}

\
I∩G

+
j

f ≤
∑

j≤k, j∈{ni}

2mjaj ≤ max
j≤k, j∈{ni}

2mjaj .

In either case, if x ∈ Gk then

Mlf(x) ≤ 2mk+3
∑

j>k, j∈{ni}

aj + 2mβ(k)aβ(k).

Thus

‖Mlf‖ =
∑

k≥1

\
Gk

Mlf ≤
∑

k≥1

(

2mk+3
∑

j>k, j∈{ni}

aj + 2mβ(k)aβ(k)

)

|Gk|

≤ 8
∑

k≥1

∑

j>k, j∈{ni}

aj +
∑

k≥1

2mβ(k)aβ(k)2
−mk .

By switching the order of summation one can see that
∑

k≥1

∑

j>k, j∈{ni}

aj ≤
∑

j∈{ni}

jaj =
∑

j≥1

njanj
<∞.

Moreover,
∑

k≥1

2mβ(k)aβ(k)2
−mk =

∑

i≥1

2mniani

∑

k∈[ni;ni+1)

2−mk

≤ 2
∑

i≥1

2mniani
2−mni <∞.

Hence Mlf ∈ L(I).

Let us note that the assumption supk(mk+1 −mk) = ∞ is weaker than
supkmk/k = ∞. It would be very interesting to investigate whether the
condition supkmk/k = ∞ is sharp in Theorem 2. Unfortunately, we are not
able to answer this question. If the answer were affirmative it would be a
very unexpected fact.

Finally, we show that in the scale of Orlicz classes Φ(L) it is possible to
prove a weak form of Stein’s phenomenon. Indeed, we have the following
theorem.
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Theorem 3. Let lk ↓ 0 and Φ : [0;∞) → [0;∞) be some increasing

function such that Φ(L)⊂L(I). If Mlf ∈L(I) for all functions f ∈Φ(L)(I),
then Φ(L) ⊂ L log+ L(I).

P r o o f. Assume that Φ(L) 6⊂ L(log+ L). This is equivalent to the as-
sumption that for

ψ(t) ≡
Φ(t)

t log t

there exist bk ↑ ∞ as k → ∞ such that

ψ(bk) ↓ +0 as k → ∞.

We will show how to construct a function f ∈ Φ(L) with Mlf 6∈ L.

Without loss of generality we may assume that lk =2−mk with mk ∈N

and mk ↑ ∞. Let rj(t), j = 0, 1, . . . , denote the standard Rademacher
functions and define

Ek = {t ∈ [0; 1] : rmj
(t) = 1; j = 0, 1, . . . , k}.

Notice that Ek is a union of dyadic-rational intervals of length 2−mk , |Ek| =
2−k and Ek ⊃ Ek+1. Let Gk = Ek\Ek+1. By construction the sets Gk are
pairwise disjoint. Clearly each Gk is a union of dyadic-rational intervals of
length 2−mk+1 and has measure 2−k−1.

Finally, we define the function

f(x) =
∞
∑

k=1

akχGk
(x)

where ak are positive numbers which will be specified later. It is obvious
that \

Φ(f) =
∑

k≥1

Φ(ak)|Gk| =
∑

k≥1

ψ(ak)ak log(ak)2
−k−1.

We will now estimate from below the rare maximal function. Let x ∈ Gk

and let I be the unique dyadic-rational interval which contains x and has
length |I| = 2−mk . Notice I is contained in Ek. The crucial fact is that due
to the dyadic structure of Gj the value of the fraction

|Gj ∩ I1|

|I1|
= 2−j−1+k

does not depend on the concrete choice of mk for j ≥ k. Thus

1

|I|

\
I

f(y) dy =
∞
∑

j=1

1

|I|

\
I

ajχGj
(y) dy ≥

∑

j≥k

aj
|Gj ∩ I|

|I|
=

∑

j≥k

aj2
−j−1+k.
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This means

Mlf(x) ≥
∑

j≥k

aj2
−j−1+kχGk

(x),

and hence

‖Mlf‖ ≥
∑

k≥1

∑

j≥k

aj2
−j−1+k|Gk| ≥

∑

k≥1

∑

j≥k

aj2
−j−1+k2−k−1.

Changing the order of summation we have

‖Mlf‖ ≥
∑

j≥1

∑

k≤j

aj2
−j−2 =

∑

j≥1

aj2
−j−2j.

These calculations show that if we can find ak ≥ 1 such that
∑

k≥1

ak2
−kk = ∞

and
∑

k≥1

ψ(ak)ak log(ak)2
−k <∞,

then f ∈ Φ(L) but Mlf 6∈ L(I).

Without loss of generality we may assume that ψ(bk) ≤ 2−k and bk+1 ≥
2bk. The second assumption ensures that there exists a strictly increasing
sequence {nj} of positive integers such that

2nj

nj

≤ bj <
2nj+1

nj + 1
.

Set ak = bj if nj ≤ k < nj+1. Then it is easy to check that
∑

ak2
−kk

diverges. Furthermore,
∑

k≥1

ψ(ak)ak log(ak)2
−k ≤

∑

j≥1

ψ(bj)bj log(bj)
∑

nj≤k

2−k.

But

bj log bj ≤ C
2nj

nj

log

(

2nj

nj

)

≤ C2nj

and ψ(bj) ≤ 2−j , thus
∑

k≥1

ψ(ak)ak log(ak)2
−k ≤ C

∑

j≥1

ψ(bj) <∞.

Corollary. Let lk ↓ 0 and α be a positive number. If Mlf ∈ L for all

functions f ∈ L(log+ L)α, then α ≥ 1.
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The theorem above shows that there are no conditions in terms of the
growth of the individual function f , except the trivial condition f ∈L log+ L,
which guarantee the summability of the rare maximal operator. However, it
is easy to see that such a condition may be found in terms of the integral
smoothness of f .

Namely, assume that the function f is defined on the unit torus and
introduce the modulus of continuity of f in the standard way:

ω(f ;h) = sup
|t|≤h

‖f(·+ t)− f(·)‖.

Then

Mlf(x) ≤ sup
k≥1

1

lk

lk\
−lk

|f(x+ t)− f(x)| dt+ f(x)

≤
∑

k≥1

1

lk

lk\
−lk

|f(x+ t)− f(x)| dt+ f(x).

Thus

‖Mlf‖ ≤
∑

k≥1

∥

∥

∥

∥

1

lk

lk\
−lk

|f(·+ t)− f(·)| dt

∥

∥

∥

∥

+ ‖f‖

≤ 2
∑

k≥1

1

lk

lk\
0

‖f(·+ t)− f(·)‖ dt+ ‖f‖ ≤ 2
∑

k≥1

ω(f ; lk) + ‖f‖.

Recall that the case lk = 2−k corresponds to the Hardy–Littlewood maximal
function Mf . So the condition

(2)
∑

k≥1

ω(f ; 2−k) <∞

is sufficient for the summability of Mf for the individual function f . Thus
(2) implies that f ∈ L log+ L and this condition is sharp in the sense that for
an arbitrary modulus of continuity ω(δ) with

∑

ω(2−k) = ∞, there exists a
function f such that ω(f ; δ) ≤ ω(δ), while f 6∈ L log+ L (for details see [4]).

Thus there is no improvement of the class of summability for the Hardy–
Littlewood maximal operator of smooth functions. However, if lk is a more
rare sequence, such that (2) is not true, but

(3)
∑

k≥1

ω(f ; lk) <∞,

then (3) is a sufficient condition for the summability of the rare maximal
function for the individual function, which is weaker than the inclusion of f
in L log+ L.
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