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A GEOMETRIC ESTIMATE FOR A PERIODIC
SCHRODINGER OPERATOR

BY

THOMAS FRIEDRICH (BERLIN)

Abstract. We estimate from below by geometric data the eigenvalues of the periodic
Sturm-Liouville operator —4d?/ds? 4+ k2(s) with potential given by the curvature of a
closed curve.

1. Introduction. Let X3(c) be a 3-dimensional space form of constant
curvature ¢ = 0 or 1 and admitting a real Killing spinor with respect to
some spin structure. Consider a compact, oriented and immersed surface
M? C X3(c) with mean curvature H. The spin structure of X3(c) induces a
spin structure on M2. Denote by D the corresponding Dirac operator acting
on spinor fields defined over the surface M?2. The first eigenvalue \?(D) of
the operator D? and the first eigenvalue j; of the Schrodinger operator
A4 H? + c are related by the inequality

M(D) < (A + H? + ).

Equality holds if and only if the mean curvature H is constant (see [1], [5]).
Moreover, the Killing spinor defines a map f — @(f) of the space L*(M?)
of functions into the space L?(M?;S) of spinors such that

ID(@())Z2 = (Af + H*f +cf, e
In particular, the above inequality holds for all eigenvalues, i.e.,
M(D) < up(A+ H? +¢).

This inequality was used in order to estimate the first eigenvalue of the
Dirac operator defined on special surfaces of Euclidean space (see [1]). On
the other hand, in case we know A\?(D), the inequality yields a lower bound
for the spectrum of the Schrodinger operator A + H? + ¢. For example,
for any Riemannian metric g on the 2-dimensional sphere S? we have the
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inequality
a7
(D) > ———
1P) 2 Sise )
(see [2], [6]). Consequently, we obtain
a7
—— < A+ H?
vol(M?2, g) < m(A+HY)

for any surface M? — R3? of genus zero in Euclidean space R3. In this
note we present the idea described above and, in particular, we estimate the
spectrum of special periodic Schrédinger operators where the potential is
given by the curvature k of a spherical curve.

2. The 1-dimensional case. First of all, let us consider the 1-dimensio-
nal case, i.e., a curve 7 of length L in a 2-dimensional space form X?2(c).
Let @ be a Killing spinor of length one on X?(c):

1

The restriction ¢ = @), defines a pair of spinors and the covariant derivative
of ¢ along the curve 7 is given by the formula

1 1
Vile) = 3T+ 5reT-N-o,

where T" and N are the tangent and the normal vectors of the curve v and
kg denotes the curvature of the curve v in X?(c) (see [5]). We compute the
1-dimensional Dirac operator

1 1
D(p) =T -Vi(p) = 50— §ngN - .

Let us represent the Clifford multiplication by the normal vector N:

Then we obtain

1 1
D@ = 7 + Rl = (¢ + 1)

A similar computation for the spinor field ¢ = f - ¢ yields the equation
Do =114 (5 + 12
4 48
Therefore, we obtain

d? c 1
2D) < | == + S 4 k2.
)\k'( )_/J/k» d82 +4+4/€g
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Suppose now that the spin structure on v induced by the spin structure of
X?(c) is non-trivial. Then we have A7 (D) = (472 /L?)(k +1/2)? (see [4])
and, in particular, we obtain

U PN T d2+c+l
Ve g ) =HEH T2 4

THEOREM 1. Let yCR3 be a plane or spherical curve and denote by k* =
c+ Ké the square of its curvature. Suppose that the induced spin structure
on 7 is non-trivial, i.e., the tangent vector field has an odd rotation number.

Then
47 d?
72 < 4F + K2
where py is the first eigenvalue of the periodic Sturm—Liouville operator on

the interval [0, L]. Moreover, equality occurs if and only if the curvature is
constant.

REMARK. The purely analytic Maz’ya method yields the inequality

w2 d?

(private communication of M. Shubin). A better geometric lower bound for
the Sturm-Liouville operator —4d?/ds? + x? with potential defined by the
square of the curvature x(s) of a closed curve ~ in Euclidean space seems to
be unknown. We conjecture that the estimate given in Theorem 1 holds for
any closed curve in R3. Let us compare this inequality with the well known
Fenchel-Milnor inequality
2 < &n
gl
Thus, by the Cauchy—Schwarz inequality we obtain

=<1 §f<
Moreover, using the test function f = 17 we have
d? 1 o
< 4F + K ) ~ z &K

Suppose that v is a simple curve in R? and denote by o the minimal number
of generators of the fundamental group 71 (R? \ 7). Then we have

210 < &n
¥
In the spirit of this remark one should be able to prove the stronger inequal-
ity
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472 d?
FQQ < <—4@ + H2>

in case of a simple curve in R3.

ExaMpPLES. We calculated the eigenvalue p; for some classical curves
in R3:

(a) The lemniscate x = sin(t), y = cos(t) sin(t):

1
42 /L = 1.06193,  uy = 3.7315, 7 §/<;2 = 4.36004.
Y
(b) The trefoil x = sin(3t) cos(t), y = sin(3t) sin(t):

1
Ax? JL? = 0.221, pq =5.21, - § % = 8.16.
vy

(c) Viviani’s curve x = 1 + cos(t), y = sin(2t), z = 2sin(t):
1
L

472 /L? = 0.169071,  py = 0.5335, §m2 = 0.567803.

~

(d) The torus knot x = (8 4+ 3 cos(5t)) cos(2t), y = (8 + 3 cos(bt)) sin(2t),
z = 5sin(5t):

4% /L* = 0.00146034,  p1 = 0.03232, §/<;2 = 0.0333803.

v

SIE

(e) The spherical spiral x = cos(t) cos(4t), y = cos(t) sin(4t), z = sin(¢):

42 /L* = 0.127036, 3 = 1.744, §/<;2 = 4.93147.

v

1
L

3. The 2-dimensional Schrodinger operator. For a short curve we
prove a similar inequality for the 2-dimensional periodic Schrédinger oper-

ator ) )
B A2\ @ 2 44D D |
PAL"(”?)@”@‘T&&” (s)

defined on [0,27] x [0, L]. In case t = const one obtains again the inequality
for the Sturm—Liouville operator.

THEOREM 2. Let v C S? C R? be a closed, simple curve of length L
bounding a region of area A, and denote by k its curvature. Then the spec-
trum of the 2-dimensional periodic Schrédinger operator Pa 1, is bounded by

47
F < Ml(PA,L)-

Equality holds if and only if the curvature of v is constant.
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In general, let us consider a Riemannian manifold (Y, g) of dimension

n as well as an S'-principal fibre bundle 7 : P — Y™ over Y. Denote by 1%
the vertical vector field on P induced by the action of the group S! on the
total space P, i.e.,

N d .
V(p) = it ei=0, pEP

A connection Z in the bundle P defines a decomposition of the tangent
bundle T'(P) = TV(P)®T"(P) into its vertical and horizontal subspace. We
introduce a Riemannian metric ¢* on the total space P, requiring that

(a) g*(V’ V) =1,

(b) g*(TV7Th) =0,

(c) the differential dr maps T"(P) isometrically onto T/(Y™).

A closed curve v : [0,L] — Y™ of length L defines a torus H(y) :=
7~ 1(y) C P and we want to study the isometry class of this flat torus in P.
Let o = €*® € S' be the holonomy of the connection Z along the closed
curve 7. Consider a horizontal lift 7 : [0, L] — P of the curve . Then

S(L) =3(0)e,
Consequently, the formula
B(t, 5) = 7(s)e 1O/ Lt
defines a parametrization @ : [0, 27| x [0, L] — H () of the torus H (). Since
0P 0P O -

a — V, E = dReif,efi(—)s/L (’Y(S)) - ZV’

we obtain

(00 08\ | (00 08\ __© (06 0¢\_, &
I\oacvar )~ 9\oos)” 10 I\esas) T I2

i.e., the torus H(v) is isometric to the flat torus (R?/I}, g*), where Iy is the
orthogonal lattice Iy = 27 Z @ L - Z and the metric g* has the non-diagonal

form
. (1 ~0/L
9 =\-0/L 1+0%/12)"

Using the transformation
Tr = s+t =S
I ’ Yy ’

we see that H(v) is isometric to the flat torus (R?/I",dz? + dy?), where the
lattice I is generated by the two vectors

o-() (0
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In case the closed curve 7 : [0,L] — Y™ is the oriented boundary of an
oriented compact surface M? C Y, we can calculate the holonomy o = e*®
along the curve ~. Indeed, let 2% be the curvature form of the connection Z.
It is a 2-form defined on the manifold Y with values in the Lie algebra of
the group S?, i.e., with values in i - R'. The parameter © is given by the
integral
6=i| 07
MQ

Let us consider the Hopf fibration 7 : S% — S2, where
S ={(21,20) €C*: |z1)* + |=m|* =1}

is the 3-dimensional sphere of radius 1. The connection Z is given by the
formula

J = %{Eldzl — zldil —|—22d22 — ngzz}
and its curvature form (w = 21 /29)
dwNdw i

et 2
(+ WP~ 2%

7 = —
essentially coincides with half the volume form of the unit sphere S? of
radius 1. However, the differential dr : T"(S®) — T(S?) multiplies the
length of a vector by two, i.e., the Hopf fibration is a Riemannian submersion
in the sense described before if we fix the metric of the sphere S?(1/2) =
{x € R?: |x| = 1/2} on S2. Consequently, for a closed simple curve v C S?
bounding a region of area A, the Hopf torus H(y) C S? is isometric to the
flat torus R?/I" and the lattice I" is generated by the two vectors

- (3) ()

The mean curvature H of the torus H(y) C S coincides with the geodesic
curvature kg of the curve v C S? C R3 (see [7], [8]). We now apply the
inequality

M(D) < p(A+H? +1)
to the Hopf torus H(y) C S3. Then we obtain the estimate

MN(D) < pa(Pa,r),

where D is the Dirac operator on the flat torus R?/I" with respect to the
induced spin structure. All spin structures of a 2-dimensional torus are clas-
sified by pairs (g1, e2) of numbers ¢; = 0,1. If v is a simple curve in S?, the
induced spin structure on the Hopf torus H () is non-trivial and given by
the pair (e1,e2) = (0,1). The spectrum of the Dirac operator for all flat tori
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is well known (see [4]): The dual lattice I'* is generated by

! 0

v>1k = 2 s ’U; = 2
A z

- orL L

and the eigenvalues of D? are given by
* 1 *
kvl + <l + 5) vy

2 2
:k2+4i<(2z+1)—kﬁ> .

2
N (k,1) = 4

L? 27
We minimize A\2(k, 1) on the integral lattice Z2. The isoperimetric inequality

4tA — A2 < [? and A < vol(S?) = 4m show that A2(k,l) attends its
minimum at (k,1) = (0,1), i.e.,

REMARK. Suppose now that equality holds for some curve v C S2. We
consider the corresponding Hopf torus H(y) C S® and then we obtain

M(D) = i (A+ H? +1).

Therefore, the mean curvature H = k is constant (see [1], [5]), i.e., v is
a curve on S? of constant curvature x. Consequently, 7 is a circle in a
2-dimensional plane. Denote by r its radius. Then

k*=1/r*, L=2mr, A=21(1-+1-1r2),
and the inequality
42 L2 < K2
is an equality for all r # 0.
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