A GEOMETRIC ESTIMATE FOR A PERIODIC SCHRÖDINGER OPERATOR

BY
THOMAS FRIEDRICH (BERLIN)

Abstract

We estimate from below by geometric data the eigenvalues of the periodic Sturm-Liouville operator $-4 d^{2} / d s^{2}+\kappa^{2}(s)$ with potential given by the curvature of a closed curve.

1. Introduction. Let $X^{3}(c)$ be a 3 -dimensional space form of constant curvature $c=0$ or 1 and admitting a real Killing spinor with respect to some spin structure. Consider a compact, oriented and immersed surface $M^{2} \subset X^{3}(c)$ with mean curvature H. The spin structure of $X^{3}(c)$ induces a spin structure on M^{2}. Denote by D the corresponding Dirac operator acting on spinor fields defined over the surface M^{2}. The first eigenvalue $\lambda_{1}^{2}(D)$ of the operator D^{2} and the first eigenvalue μ_{1} of the Schrödinger operator $\Delta+H^{2}+c$ are related by the inequality

$$
\lambda_{1}^{2}(D) \leq \mu_{1}\left(\Delta+H^{2}+c\right)
$$

Equality holds if and only if the mean curvature H is constant (see [1], [5]). Moreover, the Killing spinor defines a map $f \mapsto \Phi(f)$ of the space $L^{2}\left(M^{2}\right)$ of functions into the space $L^{2}\left(M^{2} ; S\right)$ of spinors such that

$$
\|D(\Phi(f))\|_{L^{2}}^{2}=\left\langle\Delta f+H^{2} f+c f, f\right\rangle_{L^{2}}
$$

In particular, the above inequality holds for all eigenvalues, i.e.,

$$
\lambda_{k}^{2}(D) \leq \mu_{k}\left(\Delta+H^{2}+c\right)
$$

This inequality was used in order to estimate the first eigenvalue of the Dirac operator defined on special surfaces of Euclidean space (see [1]). On the other hand, in case we know $\lambda_{1}^{2}(D)$, the inequality yields a lower bound for the spectrum of the Schrödinger operator $\Delta+H^{2}+c$. For example, for any Riemannian metric g on the 2-dimensional sphere S^{2} we have the

[^0]inequality
$$
\lambda_{1}^{2}(D) \geq \frac{4 \pi}{\operatorname{vol}\left(S^{2}, g\right)}
$$
(see [2], [6]). Consequently, we obtain
$$
\frac{4 \pi}{\operatorname{vol}\left(M^{2}, g\right)} \leq \mu_{1}\left(\Delta+H^{2}\right)
$$
for any surface $M^{2} \hookrightarrow \mathbb{R}^{3}$ of genus zero in Euclidean space \mathbb{R}^{3}. In this note we present the idea described above and, in particular, we estimate the spectrum of special periodic Schrödinger operators where the potential is given by the curvature κ of a spherical curve.
2. The 1-dimensional case. First of all, let us consider the 1-dimensional case, i.e., a curve γ of length L in a 2-dimensional space form $X^{2}(c)$. Let Φ be a Killing spinor of length one on $X^{2}(c)$:
$$
\nabla_{T} \Phi=\frac{1}{2} c \cdot T \cdot \Phi
$$

The restriction $\varphi=\Phi_{\mid \gamma}$ defines a pair of spinors and the covariant derivative of φ along the curve γ is given by the formula

$$
\nabla_{T}^{\gamma}(\varphi)=\frac{1}{2} c T \cdot \varphi+\frac{1}{2} \kappa_{\mathrm{g}} T \cdot N \cdot \varphi
$$

where T and N are the tangent and the normal vectors of the curve γ and κ_{g} denotes the curvature of the curve γ in $X^{2}(c)$ (see [5]). We compute the 1-dimensional Dirac operator

$$
D(\varphi)=T \cdot \nabla_{T}^{\gamma}(\varphi)=-\frac{1}{2} c \varphi-\frac{1}{2} \kappa_{\mathrm{g}} N \cdot \varphi
$$

Let us represent the Clifford multiplication by the normal vector N :

$$
N=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)
$$

Then we obtain

$$
|D(\varphi)|^{2}=\frac{1}{4}\left(c^{2}+\kappa^{2}\right)|\varphi|^{2}=\frac{1}{4}\left(c^{2}+\kappa_{\mathrm{g}}^{2}\right)
$$

A similar computation for the spinor field $\psi=f \cdot \varphi$ yields the equation

$$
|D \psi|^{2}=|\dot{f}|^{2}+f^{2}\left(\frac{c}{4}+\frac{1}{4} \kappa_{\mathrm{g}}^{2}\right)
$$

Therefore, we obtain

$$
\lambda_{k}^{2}(D) \leq \mu_{k}\left(-\frac{d^{2}}{d s^{2}}+\frac{c}{4}+\frac{1}{4} \kappa_{\mathrm{g}}^{2}\right)
$$

Suppose now that the spin structure on γ induced by the spin structure of $X^{2}(c)$ is non-trivial. Then we have $\lambda_{k+1}^{2}(D)=\left(4 \pi^{2} / L^{2}\right)(k+1 / 2)^{2}$ (see [4]) and, in particular, we obtain

$$
\frac{4 \pi^{2}}{L^{2}}\left(k+\frac{1}{2}\right)^{2} \leq \mu_{k+1}\left(-\frac{d^{2}}{d s^{2}}+\frac{c}{4}+\frac{1}{4} \kappa_{\mathrm{g}}^{2}\right)
$$

THEOREM 1. Let $\gamma \subset \mathbb{R}^{3}$ be a plane or spherical curve and denote by $\kappa^{2}=$ $c+\kappa_{\mathrm{g}}^{2}$ the square of its curvature. Suppose that the induced spin structure on γ is non-trivial, i.e., the tangent vector field has an odd rotation number. Then

$$
\frac{4 \pi^{2}}{L^{2}} \leq \mu_{1}\left(-4 \frac{d^{2}}{d s^{2}}+\kappa^{2}\right)
$$

where μ_{1} is the first eigenvalue of the periodic Sturm-Liouville operator on the interval $[0, L]$. Moreover, equality occurs if and only if the curvature is constant.

Remark. The purely analytic Maz'ya method yields the inequality

$$
\frac{\pi^{2}}{L^{2}} \leq \mu\left(-4 \frac{d^{2}}{d s^{2}}+\kappa^{2}\right)
$$

(private communication of M. Shubin). A better geometric lower bound for the Sturm-Liouville operator $-4 d^{2} / d s^{2}+\kappa^{2}$ with potential defined by the square of the curvature $\kappa(s)$ of a closed curve γ in Euclidean space seems to be unknown. We conjecture that the estimate given in Theorem 1 holds for any closed curve in \mathbb{R}^{3}. Let us compare this inequality with the well known Fenchel-Milnor inequality

$$
2 \pi \leq \oint_{\gamma} \kappa
$$

Thus, by the Cauchy-Schwarz inequality we obtain

$$
\frac{4 \pi^{2}}{L^{2}} \leq \frac{1}{L} \oint_{\gamma} \kappa^{2}
$$

Moreover, using the test function $f \equiv 1$, we have

$$
\mu_{1}\left(-4 \frac{d^{2}}{d s^{2}}+\kappa^{2}\right) \leq \frac{1}{L} \oint_{\gamma} \kappa^{2}
$$

Suppose that γ is a simple curve in \mathbb{R}^{3} and denote by ϱ the minimal number of generators of the fundamental group $\pi_{1}\left(\mathbb{R}^{3} \backslash \gamma\right)$. Then we have

$$
2 \pi \varrho \leq \oint_{\gamma} \kappa
$$

In the spirit of this remark one should be able to prove the stronger inequality

$$
\frac{4 \pi^{2}}{L^{2}} \varrho^{2} \leq \mu_{1}\left(-4 \frac{d^{2}}{d s^{2}}+\kappa^{2}\right)
$$

in case of a simple curve in \mathbb{R}^{3}.
Examples. We calculated the eigenvalue μ_{1} for some classical curves in \mathbb{R}^{3} :
(a) The lemniscate $x=\sin (t), y=\cos (t) \sin (t)$:

$$
4 \pi^{2} / L^{2}=1.06193, \quad \mu_{1}=3.7315, \quad \frac{1}{L} \oint_{\gamma} \kappa^{2}=4.36004 .
$$

(b) The trefoil $x=\sin (3 t) \cos (t), y=\sin (3 t) \sin (t)$:

$$
4 \pi^{2} / L^{2}=0.221, \quad \mu_{1}=5.21, \quad \frac{1}{L} \oint_{\gamma} \kappa^{2}=8.16
$$

(c) Viviani's curve $x=1+\cos (t), y=\sin (2 t), z=2 \sin (t)$:

$$
4 \pi^{2} / L^{2}=0.169071, \quad \mu_{1}=0.5335, \quad \frac{1}{L} \oint_{\gamma} \kappa^{2}=0.567803
$$

(d) The torus knot $x=(8+3 \cos (5 t)) \cos (2 t), y=(8+3 \cos (5 t)) \sin (2 t)$, $z=5 \sin (5 t)$:

$$
4 \pi^{2} / L^{2}=0.00146034, \quad \mu_{1}=0.03232, \quad \frac{1}{L} \oint_{\gamma} \kappa^{2}=0.0333803 .
$$

(e) The spherical spiral $x=\cos (t) \cos (4 t), y=\cos (t) \sin (4 t), z=\sin (t)$:

$$
4 \pi^{2} / L^{2}=0.127036, \quad \mu_{1}=1.744, \quad \frac{1}{L} \oint_{\gamma} \kappa^{2}=4.93147
$$

3. The 2-dimensional Schrödinger operator. For a short curve we prove a similar inequality for the 2-dimensional periodic Schrödinger operator

$$
P_{A, L}=-\left(1+\frac{A^{2}}{L^{2}}\right) \frac{\partial}{\partial t^{2}}-4 \frac{\partial^{2}}{\partial s^{2}}-\frac{4 A}{L} \frac{\partial}{\partial t} \frac{\partial}{\partial s}+\kappa^{2}(s)
$$

defined on $[0,2 \pi] \times[0, L]$. In case $t=$ const one obtains again the inequality for the Sturm-Liouville operator.

Theorem 2. Let $\gamma \subset S^{2} \subset \mathbb{R}^{3}$ be a closed, simple curve of length L bounding a region of area A, and denote by κ its curvature. Then the spectrum of the 2-dimensional periodic Schrödinger operator $P_{A, L}$ is bounded by

$$
\frac{4 \pi^{2}}{L^{2}} \leq \mu_{1}\left(P_{A, L}\right)
$$

Equality holds if and only if the curvature of γ is constant.

In general, let us consider a Riemannian manifold $\left(Y^{n}, g\right)$ of dimension n as well as an S^{1}-principal fibre bundle $\pi: P \rightarrow Y^{n}$ over Y^{n}. Denote by \vec{V} the vertical vector field on P induced by the action of the group S^{1} on the total space P, i.e.,

$$
\vec{V}(p)=\frac{d}{d t}\left(p \cdot e^{i t}\right)_{t=0}, \quad p \in P
$$

A connection Z in the bundle P defines a decomposition of the tangent bundle $T(P)=T^{\mathrm{v}}(P) \oplus T^{\mathrm{h}}(P)$ into its vertical and horizontal subspace. We introduce a Riemannian metric g^{*} on the total space P, requiring that
(a) $g^{*}(\vec{V}, \vec{V})=1$,
(b) $g^{*}\left(T^{\mathrm{v}}, T^{\mathrm{h}}\right)=0$,
(c) the differential $d \pi$ maps $T^{\mathrm{h}}(P)$ isometrically onto $T\left(Y^{n}\right)$.

A closed curve $\gamma:[0, L] \rightarrow Y^{n}$ of length L defines a torus $H(\gamma):=$ $\pi^{-1}(\gamma) \subset P$ and we want to study the isometry class of this flat torus in P. Let $\alpha=e^{i \Theta} \in S^{1}$ be the holonomy of the connection Z along the closed curve γ. Consider a horizontal lift $\widehat{\gamma}:[0, L] \rightarrow P$ of the curve γ. Then

$$
\widehat{\gamma}(L)=\widehat{\gamma}(0) e^{i \Theta}
$$

Consequently, the formula

$$
\Phi(t, s)=\widehat{\gamma}(s) e^{-i \Theta s / L} e^{i t}
$$

defines a parametrization $\Phi:[0,2 \pi] \times[0, L] \rightarrow H(\gamma)$ of the torus $H(\gamma)$. Since

$$
\frac{\partial \Phi}{\partial t}=\vec{V}, \quad \frac{\partial \Phi}{\partial s}=d R_{e^{i t} e^{-i \Theta s / L}}(\dot{\widehat{\gamma}}(s))-\frac{\Theta}{L} \vec{V}
$$

we obtain

$$
g^{*}\left(\frac{\partial \phi}{\partial t}, \frac{\partial \phi}{\partial t}\right)=1, \quad g^{*}\left(\frac{\partial \phi}{\partial t}, \frac{\partial \phi}{\partial s}\right)=-\frac{\Theta}{L}, \quad g^{*}\left(\frac{\partial \phi}{\partial s}, \frac{\partial \phi}{\partial s}\right)=1+\frac{\Theta^{2}}{L^{2}}
$$

i.e., the torus $H(\gamma)$ is isometric to the flat torus $\left(\mathbb{R}^{2} / \Gamma_{0}, g^{*}\right)$, where Γ_{0} is the orthogonal lattice $\Gamma_{0}=2 \pi \cdot \mathbb{Z} \oplus L \cdot \mathbb{Z}$ and the metric g^{*} has the non-diagonal form

$$
g^{*}=\left(\begin{array}{cc}
1 & -\Theta / L \\
-\Theta / L & 1+\Theta^{2} / L^{2}
\end{array}\right)
$$

Using the transformation

$$
x=-\frac{\Theta}{L} s+t, \quad y=s
$$

we see that $H(\gamma)$ is isometric to the flat torus $\left(\mathbb{R}^{2} / \Gamma, d x^{2}+d y^{2}\right)$, where the lattice Γ is generated by the two vectors

$$
v_{1}=\binom{2 \pi}{0}, \quad v_{2}=\binom{\Theta}{L}
$$

In case the closed curve $\gamma:[0, L] \rightarrow Y^{n}$ is the oriented boundary of an oriented compact surface $M^{2} \subset Y^{n}$, we can calculate the holonomy $\alpha=e^{i \Theta}$ along the curve γ. Indeed, let Ω^{Z} be the curvature form of the connection Z. It is a 2-form defined on the manifold Y^{n} with values in the Lie algebra of the group S^{1}, i.e., with values in $i \cdot \mathbb{R}^{1}$. The parameter Θ is given by the integral

$$
\Theta=i \int_{M^{2}} \Omega^{Z}
$$

Let us consider the Hopf fibration $\pi: S^{3} \rightarrow S^{2}$, where

$$
S^{3}=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\}
$$

is the 3 -dimensional sphere of radius 1 . The connection Z is given by the formula

$$
Z=\frac{1}{2}\left\{\bar{z}_{1} d z_{1}-z_{1} d \bar{z}_{1}+\bar{z}_{2} d z_{2}-z_{2} d \bar{z}_{2}\right\}
$$

and its curvature form $\left(\omega=z_{1} / z_{2}\right)$

$$
\Omega^{Z}=-\frac{d \omega \wedge d \bar{\omega}}{\left(1+|\omega|^{2}\right)^{2}}=-\frac{i}{2} d S^{2}
$$

essentially coincides with half the volume form of the unit sphere S^{2} of radius 1. However, the differential $d \pi: T^{\mathrm{h}}\left(S^{3}\right) \rightarrow T\left(S^{2}\right)$ multiplies the length of a vector by two, i.e., the Hopf fibration is a Riemannian submersion in the sense described before if we fix the metric of the sphere $S^{2}(1 / 2)=$ $\left\{x \in \mathbb{R}^{3}:|x|=1 / 2\right\}$ on S^{2}. Consequently, for a closed simple curve $\gamma \subset S^{2}$ bounding a region of area A, the Hopf torus $H(\gamma) \subset S^{3}$ is isometric to the flat torus \mathbb{R}^{2} / Γ and the lattice Γ is generated by the two vectors

$$
v_{1}=\binom{2 \pi}{0}, \quad v_{2}=\binom{A / 2}{L / 2}
$$

The mean curvature H of the torus $H(\gamma) \subset S^{3}$ coincides with the geodesic curvature κ_{g} of the curve $\gamma \subset S^{2} \subset \mathbb{R}^{3}$ (see [7], [8]). We now apply the inequality

$$
\lambda_{1}^{2}(D) \leq \mu_{1}\left(\Delta+H^{2}+1\right)
$$

to the Hopf torus $H(\gamma) \subset S^{3}$. Then we obtain the estimate

$$
\lambda_{1}^{2}(D) \leq \mu_{1}\left(P_{A, L}\right)
$$

where D is the Dirac operator on the flat torus \mathbb{R}^{2} / Γ with respect to the induced spin structure. All spin structures of a 2 -dimensional torus are classified by pairs $\left(\varepsilon_{1}, \varepsilon_{2}\right)$ of numbers $\varepsilon_{i}=0,1$. If γ is a simple curve in S^{2}, the induced spin structure on the Hopf torus $H(\gamma)$ is non-trivial and given by the pair $\left(\varepsilon_{1}, \varepsilon_{2}\right)=(0,1)$. The spectrum of the Dirac operator for all flat tori
is well known (see [4]): The dual lattice Γ^{*} is generated by

$$
v_{1}^{*}=\binom{\frac{1}{2 \pi}}{-\frac{A}{2 \pi L}}, \quad v_{2}^{*}=\binom{0}{\frac{2}{L}}
$$

and the eigenvalues of D^{2} are given by

$$
\begin{aligned}
\lambda^{2}(k, l) & =4 \pi^{2}\left\|k v_{1}^{*}+\left(l+\frac{1}{2}\right) v_{2}^{*}\right\|^{2} \\
& =k^{2}+\frac{4 \pi^{2}}{L^{2}}\left((2 l+1)-k \frac{A}{2 \pi}\right)^{2}
\end{aligned}
$$

We minimize $\lambda^{2}(k, l)$ on the integral lattice \mathbb{Z}^{2}. The isoperimetric inequality $4 \pi A-A^{2} \leq L^{2}$ and $A \leq \operatorname{vol}\left(S^{2}\right)=4 \pi$ show that $\lambda^{2}(k, l)$ attends its minimum at $(k, l)=(0,1)$, i.e.,

$$
\frac{4 \pi^{2}}{L^{2}} \leq \lambda^{2}(k, l)
$$

REMARK. Suppose now that equality holds for some curve $\gamma \subset S^{2}$. We consider the corresponding Hopf torus $H(\gamma) \subset S^{3}$ and then we obtain

$$
\lambda_{1}^{2}(D)=\mu_{1}\left(\Delta+H^{2}+1\right)
$$

Therefore, the mean curvature $H=\kappa$ is constant (see [1], [5]), i.e., γ is a curve on S^{2} of constant curvature κ. Consequently, γ is a circle in a 2-dimensional plane. Denote by r its radius. Then

$$
\kappa^{2}=1 / r^{2}, \quad L=2 \pi r, \quad A=2 \pi\left(1-\sqrt{1-r^{2}}\right)
$$

and the inequality

$$
4 \pi^{2} / L^{2} \leq \kappa^{2}
$$

is an equality for all $r \neq 0$.

REFERENCES

[1] I. Agricola and T. Friedrich, Upper bounds for the first eigenvalue of the Dirac operator on surfaces, J. Geom. Phys. 30 (1999), 1-22.
[2] C. Bär, Lower eigenvalues estimates for Dirac operators, Math. Ann. 293 (1992), 39-46.
[3] T.Friedrich, Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung, Math. Nachr. 97 (1980), 117-146.
[4] -, Zur Abhängigkeit des Dirac-Operators von der Spin-Struktur, Colloq. Math. 48 (1984), 57-62.
[5] -, On the spinor representation of surfaces in Euclidean 3-spaces, J. Geom. Phys. 28 (1998), 143-157.
[6] J. Lott, Eigenvalue bounds for the Dirac operator, Pacific J. Math. 125 (1986), 117-128.
[7] U. Pinkall, Hopf tori in S^{3}, Invent. Math. 81 (1985), 379-386.
[8] T. J. Willmore, Riemannian Geometry, Clarendon Press, Oxford, 1996.

Institut für Mathematik
Humboldt-Universität zu Berlin
Rudower Chaussee 25
D-10099 Berlin, Germany
E-mail: friedric@mathematik.hu-berlin.de

[^0]: 2000 Mathematics Subject Classification: 58G25, 53A05.
 Key words and phrases: Dirac operator, spectrum, surfaces, Schrödinger operators, Fenchel inequality.

 Supported by the SFB 288 of the DFG.

