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Abstract. Given a group G of k-linear automorphisms of a locally bounded k-
category R it is proved that the endomorphism algebra Endgr(B) of a G-atom B is
a local semiprimary ring (Theorem 2.9); consequently, the injective Endg(B)-module
(Endg(B))* is indecomposable (Corollary 3.1) and the socle of the tensor product func-
tor — ®g B* is simple (Theorem 4.4). The problem when the Galois covering reduc-
tion to stabilizers with respect to a set U of periodic G-atoms (defined by the functors
&[] gy mod kGp — mod(R/G) and W : mod(R/G) — [] ;o modkGp) is full
(resp. strictly full) is studied (see Theorems A, B and 6.3).

1. Introduction. The Galois covering technique has been originally
invented for investigation of finite-dimensional algebras of finite representa-
tion type. It reduces the description of mod A to the analogous problem for
the cover A of A, which is usually simpler (see [18, 12, 2, 14]). For the first
generalizations of that method in representation infinite case the reader is
referred to [9] and [8], and in a much more general situation to [10] (see also
[17]). These results had many applications (see [23, 24, 25, 13]). The Ga-
lois coverings were also investigated for matrix problems in [19, 20, 21, 11],
recently in a quite general situation [7]. In [3] a new, a little different ap-
proach of a one-step reduction to representation categories of stabilizers was
proposed. It was formalized in [4], where the scheme of Galois covering re-
duction to stabilizers was introduced. There the important facts concerning
the concept of full Galois covering reduction to stabilizers were formulated
but the proofs were only briefly outlined.

In this paper we present full proofs of the main results in [4]: of
[4, Theorem 3.3|, which states that some natural conditions are sufficient
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for a Galois covering reduction to stabilizers to be full, and of [4, Theo-
rem 5.2|, which is the most important application of the previous one. We
also study rather comprehensively a class of indecomposable locally finite-
dimensional R-modules, called G-atoms. First of all we discuss those prop-
erties of G-atoms which are essential for Galois covering, mainly having in
mind applications in the proofs of the cited theorems, but also in a quite
general context.

Before we formulate our main results, we briefly sketch the situation
we deal with. Let k be a field and R be a locally bounded k-category, i.e.
all objects of R have local endomorphism rings, different objects are non-
isomorphic, and both sums _ pdimgR(z,y) and >_ pdimy R(y, x) are
finite for each x € R. By an R-module we mean a contravariant k-linear
functor from R to the category of k-vector spaces. An R-module M is lo-
cally finite-dimensional (resp. finite-dimensional) if dimy M (zx) is finite for
each © € R (resp. the dimension dimy M = ) _pdimy M(z) of M is fi-
nite). We denote by MOD R the category of all R-modules, and by Mod R
(resp. mod R) the full subcategory formed by all locally finite-dimensional
(resp. finite-dimensional) R-modules. By the support of an object M in
MOD R we mean the full subcategory supp M of R formed by the set
{x € R: M(x) # 0}. We denote by Jgr the Jacobson radical of the cat-
egory Mod R.

For any k-algebra A we denote analogously by MOD A (resp. mod A) the
category of all (resp. all finite-dimensional) right A-modules and by J(A)
the Jacobson radical of A.

Let G be a group of k-linear automorphisms of R acting freely on the set
ob R of all objects of R. Then G acts on the category MOD R by translations
9(—), which assign to each M in MOD R the R-module ¢M = M o g~! and
toeach f: M — N in MOD R the R-homomorphism 9f : IM — 9N given
by the family (f(¢~(z)))zer of k-linear maps. Given M in MOD R the
subgroup

Gu={9€G:M ~ M}
of GG is called the stabilizer of M. We do not assume here that G acts freely on
the set of isoclasses of indecomposable finite-dimensional R-modules (briefly
(ind R)/~), i.e. that G; = {idg} for every indecomposable M in mod R.

We can form the orbit category R = R/G, which is again a locally
bounded k-category (see [12]), and we want to study the module category
mod R in terms of the category Mod R. The tool we have at our disposal is
a pair of functors

F _
MODR =2 MOD R,

where F, : MOD R — MOD R is the “pull-up” functor associated with the
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canonical Galois covering functor F' : R — R, assigning to each X in MOD R
the R-module X o F, and the “push-down” functor Fy : MOD R — MOD R
is the left adjoint to F,.

The classical results from [12] state that if G acts freely on (ind R)/~
then F induces an embedding of the set ((ind R)/~)/G of G-orbits into
(ind R)/=~.

Let H be a subgroup of the stabilizer G of a given M in MOD R. By
an R-action of H on M we mean a family

—1
N:(Mg5M_>g M)QEH

of R-homomorphisms such that . = idys, where e = idg is the unit of H,
and 9;1M92 “flgy = Mgog, for all gi,g2 € H (see [12]). Observe that if H is
a free group then M admits an R-action of H (see [3, Lemma 4.1]). We
denote by Mod” R the category consisting of pairs (M, ), where M is a
locally finite-dimensional R-module and y an R-action of H on M. For any
M = (M, ) and N = (N,v) in Mod” R the space of morphisms from M to
N in Mod R consists of all f € Homp(M, N) such that 9 f - pg =vy- f,
for every ¢ € H, and is denoted by Homg(M ,N). We denote by JE the
ideal Homg NJr of the category Mod” R.

A useful interpretation of mod R is the category ModfG R consisting of
pairs (M, ) in Mod® R such that supp M is contained in a union of finitely
many G-orbits in R (see [3, 12]). The functor F, associating with any X in
mod R the R-module F, X endowed with the trivial R-action of G yields an
equivalence

mod(R) ~ Mod{ R.

We denote by Zx the ideal F; 1 (J5) which constitutes an essential class
of morphisms in mod R. It is clear that Zp is contained in the Jacobson
radical Jg but usually not conversely.

An important role in understanding the nature of objects from ModfG R,
or equivalently mod R, is played by a class of indecomposable locally finite-
dimensional R-modules called G-atoms. Following [4], an indecomposable
B in Mod R (with local endomorphism ring) is called a G-atom if supp B is
contained in a union of finitely many G g-orbits in R.

Denote by A a fixed set of representatives of isoclasses of all G-atoms,
by A, a fixed set of representatives of G-orbits of the induced action of G
on A and by A the set of all B € A such that Endg(B)/J(Endg(B)) ~ k.
Given a subset U C A we set U, = CUN A, (resp. U = SUn A), where U
is the union of all orbits of elements from U in A. For any B € A, denote
by Sp a fixed set of representatives of left cosets of G in GG, containing the
unit e of G.
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One can show that the set of isoclasses of R-modules M in Mod R such
that Gj; = G and supp M/G is finite, is in bijective correspondence with
the set (N“)q of all sequences n = (np)pea, of natural numbers such that
almost all np are zero. This correspondence is given by n +— M, , where

= P (D)

BeA, g€SB

(see Corollary 2.4). In consequence, mod R is equivalent via F, to the full
subcategory of Mod{ R formed by all pairs (M,,, 1), where n € (N4°)y and
i is an arbitrary R-action of G on M,,. Therefore to any X in mod R one
can attach the finite set dss(X), called the direct summand support of X,
consisting of all B € A such that ng is nonzero, where Fo X ~ M,

This notion suggests restricting the investigation of mod R to some of its
parts. For any U C A one can study the full subcategory mody R of mod R
consisting of all X in mod R such that dss(X) C “U.

The set A splits naturally into the disjoint union A = AfU.A> where Af
(resp. A™) is the subset of all finite (dimensional) (resp. infinite (dimen-
sional)) G-atoms. It is well known (see [8, Lemma] and [10, 2.3]) that if G
acts freely on (ind R)/~ then the above splitting induces the splitting

mod R = mod 4+ R V mod 4= R

in the sense explained below.

Let C be a Krull-Schmidt category and Cy, C1, Co and C;, ¢ € I, full
subcategories of C, which are closed under direct sums, direct summands
and isomorphisms. The notation C = C; V Cy (resp. C = \/,.;C;) means
that the set of indecomposable objects in C splits into the disjoint union of
indecomposables in C; and in Cs (resp. in C;, i € I). We denote by [Co] the
ideal of all morphisms in C which factor through an object from Cy. For any
ideal 7 in the category C the restriction of Z to Cy is denoted by Z¢,.

The situation described above will play a model role in the further consid-
erations. In this paper we shall “split off and partially describe” the category
mody R, for some special U C A, also contained in A™.

Following [4] a G-atom B € A is called periodic if it admits an R-action
of Gp (this is always the case if the group G is free). Denote by P the set
of all periodic G-atoms.

Let B be a periodic G-atom B and vg an R-action of a Gg on B. Then
(B,vp) is in ModfGBR and F)\B has the structure of a kG pg-R-bimodule,
which is finitely generated free as a left kGp-module, where kGp is the
group algebra of Gp over k (see [10, 3.6] for the precise definition of this
structure). Consequently, it induces two functors

P8 = — Qkcy FAB : mod kGp — modgR
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and
¥ = (Hgr(B,Fs(-))' : mod R — mod kG
(see [3, 2.3 and 2.4]). Here Hp denotes the factor bimodule Hg/Jr, where
Hr = Hompg(—, -) and Jg is the Jacobson radical of Mod R.
Let U = (U, v) be a pair where U C P, is a subset of periodic G-atoms
and v = (vp)pey a fixed selection of R-actions of Gp on B. We denote by

U . H mod kG — mod R
BeUud

the functor defined by the family (#7)pey and by

P4 mod R — H mod kG g
Beu
the functor induced by the family (¥5)pgcy, where @8 and ¥ are defined
by the pairs (B,vg). Observe that the subcategory Im %Y is contained in
the category [] ., mod kGp. Then the pair ($4, %) of functors
@L{
[ mod kG5 2 mod R
Belu
is called the Galois covering reduction to stabilizers (briefly, GCS-reduction)
with respect to U (in fact with respect to (vp)pewr). It will be used to describe
the category mody R in terms of the module categories of the stabilizer group
algebras.

It is proved in [4, Theorem 2.2] that for any family U of periodic
G-atoms contained in P, (i.e. Endr(B)/J(Endg(B)) ~ k for each B € U)
the functor & : [] Bey ModkGp — mod R is a right quasi-inverse for
U mod R — [z modkGp (therefore faithful) and is a representa-
tion embedding in the sense of [22] (i.e. yields an injection of the set of
isoclasses of indecomposables in [ ] z.,, mod kG p into the set of isoclasses of
indecomposables in mody R).

One can show (see Proposition 6.1) that the ideal Ker W contains the
ideal [mod AO\Z/{)RL and consequently ¥ induces a functor

7Y : mod R/[mod(a,\u)R] — H mod kG g,
Beu
and that @ induces a faithful representation embedding functor
Y : [ modkGp — mod R/[mod4,\u) R
Beu

(@Y is a right quasi-inverse for U4).
Following [4], the GCS-reduction (¢, ¥¥) with respect to U is said to
be full provided ®“ and ¥¥ induce
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(a) a splitting mod R = mody R V mod .\ R,
(b) a bijection between the sets of isoclasses of indecomposables in the
categories [ [z, mod kGp and mody R.

It is shown (see Proposition 6.1) that then:

Ix(X,Y) if X,Y € modyR,

(c) Ker WY (X,Y) = { ' _
Homg(X,Y) if X or Y ¢ modyR,

for any indecomposables X,Y in mod R,

(d) &Y and Y defined above yield a bijection between the sets of iso-
classes of indecomposables in [z, mod kGp and mod R/[mod 4\ R].

The GCS-reducEioni(@u,Q/u) with respect to U is called strictly full
provided the pair (@Y, ¥¥) yields an equivalence of categories.

Note that if the GCS-reduction (@Y, W) is strictly full then it is full
(Im@“ C mody R and [mOd(Ao\U)R]moduR C (jﬁ)moduﬁ).

Let B be a periodic G-atom together with an R-action vg of Gg on B,
and H be a subgroup of G containing Gp. We say that B = (B,vg) splits
(resp. splits properly) an object M = (M, u) in Mod” R provided both
embeddings Jr(B, M) C Homg(B, M) and Jr(M, B) C Homg(B, M) are
splittable (resp. splittable, proper) monomorphisms in MOD (kG )P (for
the precise definition of the left kG p-module structure see 5.1).

Let C be a full subcategory of Mod” R. We say B splits C provided B
splits each M in C.

One of the main results in this paper is the following.

THEOREM A [4, Theorem 3.3]. Let R be a locally bounded k-category
and G C Auti(R) be a group of k-linear automorphisms acting freely on
ob R. Suppose that U C P, is a family of G-atoms together with a selection
(vB)Beu of R-actions of Gg on B such that each (B,vg) splits Mod{ R,
for B € U. Then the Galois covering reduction (4, 0Y) to stabilizers with
respect to U is full. In particular (a)—(d) as above hold.

Following [4], we denote by A' the set of all G-atoms B € A (in fact
infinite G-atoms) such that G p is an infinite cyclic group, and by AY the
subset of all B € A such that Gp has an infinite cyclic subgroup of finite
index. Observe that A!' C P and that for any B € A! the group algebra kG g
is isomorphic to the Laurent polynomial algebra k[T,T~']. It is shown in
[6] that A> coincides with A! provided R is a representation-tame category
over an algebraically closed field and the group G is torsionfree.

For any B € A' we denote by A" (B) the set of all B’ € A" satisfying
the following conditions:
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(a) supp B’ C supp B,
(b) Gpr NGy # {e},
(¢) supp B’ Nsupp B # (.

Here for any subcategory L of R, L denotes the full subcategory of R
consisting of all y € ob R such that R(z,y) or R(y,z) is nonzero for some
x € ob L (see [9]). Note that if (b) and (c) hold then supp B’ N supp B is
infinite since so is Gg N Gp:.

Now we formulate a generalization of [4, Theorem 5.2].

THEOREM B. Let R be a locally bounded k-category, G C Auti(R) be a
group of k-linear automorphisms acting freely on ob R, and U be a subset of
AT, together with a selection {vp}pecy of R-actions of G on B. Assume
that for any B € A" and B’ € AY(B) each R-homomorphism f: B — B’
(resp. f : B" — B) factors through a direct sum of finite-dimensional R-
modules. Then the Galois covering reduction (4, W) to stabilizers with
respect to U is strictly full and the functors &4 : [l pcy mod kG — mod R
and ¥¥ : mod R — [ 5cyy mod kGp defined by the families (@) ey and
(UB) geu induce the following equivalence:

[T mod k[T, 77"] ~ mod R/[mod 4,1y R] ~ mody R/[mod ar R y0,, 7-
BeUu

In particular the functors 1 and WY induce:
(i) a splitting mod R = mody R V mod(Ao\u)R,
(i) a bijection between the isoclasses of indecomposables in mody R and
in [ ey mod k[T, T71].
In case the group G acts freely on (ind R)/~ the above equivalence has
the form
H mod k[T, T~ '] ~ mody R
Beu

where mody R is defined below.

Suppose the group G acts freely on (ind R)/~. We denote by mod; R the
full subcategory of mod R consisting of the R-modules of the first kind, i.e.
those of the form Fy(M) for some M in mod R (see [10, 3, 4]). We denote
by mod R the factor category mod R/[mod; R]. For any subset U C A we
denote by mody R the image of mody R in the factor category mod R.

We will present the full proof of the above theorem, simpler than that
announced in [4].

The major part of the paper is devoted to assembling information on
the behaviour of the categories Mod R and Mod®R indispensable for the
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proofs of the main results. An essential component is formed by the results
describing the properties of various k-additive functors on both categories.

For every k-category C we denote by MOD C the category of C-modules
consisting all contravariant k-linear functors from C to the category of
k-vector spaces (as for locally bounded k-categories). For any M in MOD C
we denote by Soc M the socle of the C-module M.

Given a full subcategory Co of C and a C-module M we denote by M,c,
the Cy-module which is the restriction of M to Cy. If f : M — N is a
C-homomorphism we denote by fic, : Mc, — Nj¢, the Co-homomorphism
which is the restriction of f to Cj.

Let A be a k-algebra. For any m,n € N we denote by M,,,x»(A) the set
of all m x n-matrices with coefficients in A, and by M,,(A) the algebra of
all square n x n-matrices with coefficients in A.

Throughout the paper we use in principle the notation and terminology
established in [10, 3, 4].

The paper is organized as follows. In Section 2 the elementary proper-
ties of the endomorphism (local) algebras of indecomposable locally finite-
dimensional R-modules, in particular G-atoms, are studied. Also, properties
of the Jacobson radical Jg (of the category Mod R) related to the unique-
ness of decomposition into indecomposables in Mod R are discussed. The
main result of this section states that the endomorphism algebra Endg(B)
of a G-atom B is semiprimary and its quotient division algebra has finite
dimension over the basic field (see Theorem 2.9). Section 3 is devoted to
the elementary proof of indecomposability of the injective End g (B)-module
(Endgr(B))* (see Theorem 3.1 and Corollary 3.1). In Section 4 the category
MOD(Mod R)°P is studied. Certain properties of the injective objects in
MOD(Mod R)°P are discussed. In particular it is proved that the dual to
the projective module Hompg(—, B)* and the tensor product functor —® p B*
for any G-atom both have a simple socle (see Theorem 4.4). Section 5 con-
tains a discussion of the various functors considered in the previous section,
which are associated with a G-atom B equipped with an R-action of the
stabilizer G and now treated as functors from Mod® R to MOD(kG 3)°P.
In particular it is proved that the kGp-modules Jr(B, M) and Jr(M, B)
are pure injective for any M in Mod® R (see Theorem 5.2). Section 6 is de-
voted to the proofs of Theorems A and B. A corollary of Theorem B (see
Theorem 6.4) is also formulated.

Some of the results of this paper with the proofs in a very brief outline
were announced in [4]. They were also presented to the Cocoyoc Conference
ICRA VII in Mexico, August 1994, at Paderborn University, June 1994, at
Bielefeld University, July 1994, and at Torunn University in several seminar
talks.
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2. Some remarks on the endomorphism algebras of indecom-
posable locally finite-dimensional modules. In this section we study
the elementary properties of the k-algebra Endg(B), where B is an object
in Ind R, in particular a G-atom. We compare Endr(B) with the endomor-
phism algebras of certain indecomposable finite-dimensional modules. We
also discuss certain properties of the Jacobson radical of the category Mod R,
which are important for the uniqueness of decomposition into a direct sum of
indecomposables in Mod R (see [10, Lemma 2.1] for an algebraically closed
field case). The original proof consists only of hints. Therefore we present
a full proof for an arbitrary field (see Lemmas 2.1, 2.2 and 2.4).

2.1. Any M in Mod R decomposes into a direct sum of indecomposable
submodules.

Proof. Consider the class D of all families (M;);cr of nonzero submod-
ules M; of M having the property that M = @, ; M;. The class D is
naturally ordered by the refinement relation defined as follows: (M;);er <
(M/)irer if and only if there exists a surjection f = fr ;- : I’ — I such that
M, = @i,ef,l(i) M;: for every i € I.

Note that it is enough to show that (D, <) satisfies the assumptions of
the Zorn Lemma since maximal elements of D consist of indecomposable
R-modules. Clearly D is nonempty since {M} is in D. Take any linearly
ordered subset D’ = {(Mim)i(t)el(t) ter of D. Denote by I the inverse limit
of the system {Iy), fI(t’)vl(t)} of sets and maps. For any i = (i(y))ier € I set
M,; = mtET Mi(t) and Iy = {7, el : M, 7& O}

We prove that (M;);c1, belongs to D. For any = € ob R the k-vector
space M (x) is finite-dimensional, therefore there exists ¢, € T such that
in each set [, , = {i € I : i@t,) = J(t,)}> Jta) € L(r,), there is at most
one i with M;(z) # 0 and then obviously M;(x) = M;, ,. Consequently,
Dics, Mi(z) = @i(tz)el(tm> M;, , = M(x) for every z € obR and M =
@Dicr, Mi- Then (M;);er, belongs to D and obviously it is an upper bound
of D'. m

For the uniqueness of the above decomposition see Lemma 2.4.

2.2. LEMMA. Let B be an indecomposable locally finite-dimensional
R-module. Then the endomorphism algebra Endg(B) is local with Jacob-
son radical J(Endg(B)) consisting of all locally nilpotent endomorphisms
f € Endg(B) (in the sense that each f(x) is a nilpotent k-linear endomor-
phism for x € ob R), and the factor k-algebra Endr(B)/J(Endg(B)) has a
finite dimension over k.

Proof. It is enough to show that any f € Endg(B) is either invertible
or locally nilpotent, since locally nilpotent endomorphisms form a two-sided
ideal in Endg(B). By indecomposability of B for any f € Endg(B) there
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exists an irreducible polynomial p € k[t] such that each k[t]-module B(x),
x € ob R, with the k[t]-module structure given by f(x), is isomorphic to a
finite-dimensional direct sum of the form €, y(k[t]/(p™))™™=. Now it is
clear that if p = t then all f(z) are nilpotent, otherwise all are invertible
(also for p of degree higher than 1).

To prove the second assertion note that if a local k-algebra A admits a
k-algebra homomorphism to a finite-dimensional k-algebra then the dimen-
sional dimy(A/J(A)) is finite. Since for any = € supp B, Endy(B(z)) is
a finite-dimensional k-algebra and the projection map m, : Endgr(B) —
Endy(B(x)) is a k-algebra homomorphism, the proof is complete. m

REMARK. (1) J(Endgr(B)) consists of all f € Endg(B) such that f(z)
is nilpotent for at least one = € supp B.

(2) Let Uy (resp. Uz) be a full subcategory of R, B; (resp. Bz) an object
of IndU; (resp. IndUs), and f1 (resp. f2) an endomorphism in Endy, (Bi)
(resp. Endy,(Bs2)). Suppose that Bi(xz) = Ba(z) and fi(z) = fa(x) for
some x € supp By Nsupp By. Then f; € J(Endy,(B;)) if and only if
f2 € J(Endy, (Bs)).

2.3. For simplicity we denote the Jacobson radical Jgr of the category
Mod R by J (see [16] for the precise definition). As an immediate conse-
quence of the above lemma, for any objects B, B’ in Ind R we obtain

J(Endgr(B)) if B=B

ﬂRBU:{mmM&B)ﬁB¢BA

Before studying further properties of the ideal J we recall some defini-
tions.

Let M, N be R-modules. Following [5] a family (f;)icr C Hompg (M, N)
is said to be summable if for each z € obR and m € M(z), f;(x)(m) =0
for almost all ¢ € I. In this case the well defined R-homomorphism f =
Yoierfi : M — N, given by f(xz)(m) = > .. fi(x)(m) for any 2 € R,
m € M(x), is called the sum of the family (f;)icr.

A subspace W of Hompg(M, N) is said to be summably closed if ), ; f;
€ W for any summable family (f;)ic; C W.

An ideal 7 of a full subcategory C of MOD R is said to be summably
closed if the subspace Z(M, N) of Homp (M, N) is summably closed for any
M,N in C.

A trivial example of a summably closed ideal in the category is Mod R is
the ideal Homp(—,?). We will show that also J is a summably closed ideal
in Mod R. The first step is the following.

LEMMA. Let B, B’ be objects in Ind R. Then the subspace J(B,B') of
Hompg(B, B’) is summably closed.
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Proof. By the remarks above it is enough to show that the subspace
J(Endgr(B)) of Endgr(B) is summably closed for each B in Ind R. Take
any summable family (fi)ier C J(Endg(B)). Then for any = € obR,
(Qier fi)(@) = Oliey, fi)(x), where I, = {i € I : fi(x) # 0} is finite.
Therefore by Lemma 2.2 the endomorphism )., f; is locally nilpotent,
since ) ;c; fi € J(Endgr(B)), and it belongs to J(Endg(B)). =

2.4. For any algebra E we denote by u(F) the group of its units and
by E the factor algebra E/J, where J = J(FE). For any m,n € N and
f € Myxn(E) we denote by f the image of f under the canonical projection

T Myxn(E) = Muyxn(E) = Mysen (E) /Mpn (J).
Let B;, i € I, be a family of pairwise nonisomorphic objects in Ind R. For
any i € I we set E; = Endg(B;) and E; = E;/J;, where J; = J(Endgr(B;)).

LEMMA. Let (m;)icr and (n;)icr be sequences of natural numbers such
that the R-modules M = @, ; B;"" and N = @,.; B;" are locally finite-
dimensional. Suppose we are given an R-homomorphism f: M — N with
components fj; : B —>B;Lj, 1,5 € I. Then f is an isomorphism if and only
if m; = n; and fi; € My, (E;) (equivalently f;; € My, (E;)) is invertible
for every i € I.

SUBLEMMA. Let E be a local ring with Jacobson radical J = J(E) and
n be a positive integer. Then

u(M,(E)) + M, (J) C u(M,(E)).

Hence f € u(M,(E)) if and only if f € u(My(E)), and J(M,(E)) =
M, (J).

Proof. It is enough to show that if a = (a; ;)i jer € M, (E) is such that
a;; € u(E) for every i € {1,...,n} and a;; € J for all 4,5 € {1,...,n},
i # j, then a € u(M,(E)). (Note that ¢ +b = ¢(1 + ¢7'b) for any
ceuM,(F)) and b € J(M,,(E)).) Take any matrix a as above. Applying
the Gaussian-row elimination, a can be transformed to an upper triangu-
lar matrix a’ = (a; ;)i jer € Mpn(E) such that ai; € u(M,(E)) for every
i €{1,...,n}. Then a is invertible since a’ is. m

Proof of Lemma. Assume first that f : M — N is an isomorphism. Let an
R-homomorphism g : N — M with components g; ; : B;” — B, i,jel,
be the inverse of f. Then for any i € I, (g, ;) er is a summable family of
R-homomorphisms and therefore we have the equality

idpne = Y _gifi
JeI
of the (i,7)th components of the endomorphisms idy; and gf in Endg(M).
Since ¢;;fji € My(J;) for any j € I\ {i} (B; # B;), each endomor-
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phism g; ;fi; = idpm: — Zi#el gi; [j,i is invertible by the Sublemma and
Lemma 2.3, for ¢ € I. Analogously one shows that f; ;¢;; € u(M,,(E;)) and
therefore each f; ; is invertible. Consequently, the matrix fu € My, xm, (E;)
is invertible and m; = n; for every ¢ € I.

Suppose now that m; = n; for every i € I (then M = N) and that we are
given an R-endomorphism f : M — N with components f;; : B;"" — B;” ,
i,j € I, such that all f;,;’s are invertible.

Assume first that [ is finite. Then applying Gaussian elimination, first
with respect to rows and then with respect to columns, and using the Sub-
lemma we can transform the matrix (f; ;)i jer to (f} ;)i jer such that f;, =0
for all4,j € I, i # j, and f;; € u(My,, (E;)) for every i € I. The endomor-
phism f’ € Endg(M) defined by (f] ;)i jer is invertible and therefore f itself
is invertible.

To prove the general case consider for any x € ob R the endomorphism
fe: @ier, Bi" — @iep, B defined by the family of R-homomorphisms
(fji:B" — B;-Lj)mgm, where I, ={i € I : B"'(z) # 0}. By the first part
of the proof each f, is an isomorphism since I is finite. Consequently, f is
an isomorphism (f(z) = f.(x) for every z € obR). m

COROLLARY. Let M be in Mod R. Then supp M /G is finite and Gy ~
G if and only if M is isomorphic to M,, for some sequence n = (ng)pea, €
(N4)y (see Introduction).

2.5. PROPOSITION. The Jacobson radical J is a summably closed ideal
i Mod R.

By [5, Proposition 3.1] it is enough to show that for any M and N in
Mod R and fixed decompositions M = @, .g Ms and N = @, N; into di-
rect sums of indecomposable submodules (they always exist by Lemma 2.1),

JMN) =[] [] 7 (M, Ny).
sesSteT

Take any f € Hompg(M, N) with components f; s € J(Ms, Ny), s € S,
t € T. We have to show that for any ¢ € Homg(N, M) the endomorphism
idar —gf is invertible (see [16]). Let g have components g5+ € Hompg (Ny, My),
s€ S, teT. Then the (s, s)th component (gf)s s € Homp(Ms, M) of gf
is the sum of the summable family (gs ¢ fi,s)ter and by Lemma 2.3 it belongs
to J(Ms, M) for all s,s" € S. Now idy; —gf is invertible by Lemma 2.4.
Consequently, f € J(M,N). u

COROLLARY. Let My, My and N;, i € I, be indecomposable R-modules
in Mod R. Suppose f: My — N and g : N — My, where N = ,.; N;
(which is not necessarily in Mod R), are R-homomorphisms with compo-
nents f; € Hompg(My, N;) and g; € Homg(N;, M), i € I. Assume that for
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any 1 € I either f; or g; belongs to the Jacobson radical J. Then so does
the composition gf.

Proof. Follows directly from [5, Lemma 1.1(ii)] and the above Proposi-
tion. m

Later we will discuss the analogous question for products in some special
situation (see Lemma 2.8).

2.6. The essential role in further considerations will be played by the
following notion.

DEFINITION. Let B be an object in Ind R and U a finite nontrivial full
subcategory of supp R. A V-module B(Y) = B‘(/U) in Ind V', where V is a
full subcategory of R containing U, is called a V-approzimation of B on U
provided the following two conditions are satisfied:

(1) By ~ By,
2) for any f € Endg(B) there exists f(V) = f(U) € Endy (BY)) such
1%
that fiy = f{y.

The approximation B(Y) is called finite if dimj, B(Y) is finite. If V = R
then the R-module B(Y) is simply called an approzimation of B on U.

PROPOSITION. Let B be in Ind R. Then for any finite full subcategory U
of supp R there exists a finite full subcategory U’ of R containing U which
admits a finite U’ -approximation B[(]l{) of B on U. In particular there exists
a finite approzimation BY) of B on U.

Proof. Take any U as above. By [10, Lemma 4.3 and Corollary 4.4]
(they are also valid if k is not algebraically closed, one has only to check some
details in the proof of [10, Lemma 4.4]) there exist a finite full subcategory
U’ of R and an indecomposable U’-module B’ such that By = Bl’U and
By = B'®B" for some B" in mod U’. It is clear that for any f € Endg(B)
the component f’ : B’ — B’ of the U’-homomorphism fi : Bjyr — By
satisfies fjy = f|’U. The last assertion follows directly from the first by the
existence of the full and faithful functor ¥ : mod U’ — mod R, which is

right quasi-inverse (and left adjoint) to the restriction functor eV :mod R —
modU’. m

REMARK. (1) For any f and f(U) satisfying the condition (2) of Defini-
tion 2.6, f € J(Endg(B)) if and only if f(V) belongs to J(Endy (BY))) (see
Remark 2.2).

(2) The mapping f +— f(U)|U (see Definition 2.6) defines an algebra
homomorphism

Endg(B) — Endy(BY) ).
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(3) The mapping f — f’ (see the proof of Proposition 2.6) induces an
algebra homomorphism

Endp(B) — Endy/ (B')/J(Endy (B'))

(B” has no direct summand isomorphic to B’), and consequently by (1) an
algebra embedding

EndR(B)/J(EHdR(B)) — EndU/ (B’)/J(EndU/ (B/))

2.7. LEMMA. Let B be in Ind R and U be a finite nontrivial full subcat-
egory of supp B. Assume that for an approzimation B' = BU) of B on U
the factor algebra Endg(B’)/J(Endg(B’)) is isomorphic to k. Then so is
Endg(B)/J(Endg(B)).

Proof. Take any f € Endgr(B). By assumption there exist f' €
Endg(B’) and a € k such that fiy = fj; and f' —a-idp € J(Endgr(B')).

Then by Remark 2.2, f —a-idg € J(Endg(B)). This directly implies the
required isomorphism. m

COROLLARY. Let {Cp}nen be an ascending sequence of finite, full,
connected subcategories of R such that R = |J,cyCn, and {Bp}nen
a fundamental sequence w.r.t. {Cp}nen produced by an R-module B in
Ind R (see [10, Definition 4.1]). Assume that for infinitely many n € N the
factor algebra Ende, (B,)/J(Ende, (By)) is isomorphic to k. Then so is
Endg(B)/J(Endgr(B)). In particular this is always the case if k is alge-
braically closed.

Proof. Denote by U the full subcategory formed by {z}, where x is a
fixed object in supp B. By [10, Lemma 4.3 and Corollary 4.4], B,, is a finite
Ch-approximation of B on U for almost all n € N. Then by assumption
there exists n € N such that the finite approximation of B on U of the
form e§ (B,,) (see the proof of Proposition 2.6) satisfies the assumption of

Lemma 2.7. =

2.8. Proposition 2.6 allows us to answer partially the question mentioned
at the end of 2.5.

LEMMA. Let B be in IndR and f : B — [[; B an R-homomorphism
defined by a family of endomorphisms f; € J(Endg(B)), i € I. Then gf €
J(Endgr(B)) for any homomorphism g : [[, B — B.

Proof. Assume first that B is finite-dimensional. Then the ideal J =
J(Endg(B)) is nilpotent so there exists a positive integer m € N such that
Jm=1 £ 0 and J™ = 0. The endomorphism ¢f is annihilated on the right
by J™ ! since f;J™~! = 0 for every i € I. Consequently, gf € J, since
otherwise ¢f is invertible and gfJ™~! # 0.
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Now we consider the general case. Fix a nontrivial finite full subcat-
egory U of suppB. Then there exist U’, B’ and B” as in the proof of
Proposition 2.6. It is easy to see that (9f)v = (¢'f') v, where f': B" —
[I, B’ (resp. ¢’ : [[; B = B’) denotes the appropriate component of the
U/—homomorphism f|U’ : B\U’ — HI BlU/ (resp. g\U’ : HI B'U/ — B\U’)
under the standard identification

1[Bv =1]Bo]]B
1 1 1

(cf. Remark 2.6(3)). Moreover, by assumption all components f/, i € I,
of f’ belong to J(Endy (B’)) (see Remark 2.2) and by the first part of the
proof, ¢'f" € J(Endy/(B’)). Now the assertion follows immediately from
Remark 2.2. m

2.9. The following fact is useful in the proof of the main result of this
section.

LEMMA. Let B be inInd R. Assume that {U;}icy is a family of full, finite
subcategories of supp B such that supp B = {J,c; Us, and {B'}icr a family
of indecomposable R-modules such that each B* = BWi) is a finite approwi-
mation of B on U;. If the sequence {dimy(Endg(B?))}ics is bounded, then
Endg(B) is a semiprimary k-algebra.

Proof. Let n be an upper bound of {dimy (Endg(B?%))};c;. We show that
J(Endg(B))™ = 0. Take any fi1,...,f, € J(Endg(B)) and z in supp B.
By the assumptions there exist i € I and fl(i),..., A= J(Endg(BY))
such that x is in U; and fi(z) = l(i)(ac) for every [ = 1,...,n. It is clear
that J(Endg(B"))™ = 0 and therefore f,,(x) ... fi(x) = 0. Consequently,
froe i =0. m

THEOREM. Let R be a locally bounded k-category and G a group of
k-linear automorphisms acting freely on ob R. Then the endomorphism al-
gebra Endg(B) of any G-atom B is a local, semiprimary k-algebra such that
dimy, Endg(B)/J(Endg(B)) is finite.

Proof. For any z in supp B denote by U, the full subcategory of R
formed by {x}. By Proposition 2.6 there exists a finite approximation B* =
BWW=) of B on U,. Without loss of generality we can assume that 9B* ~ B9®
for any x € supp B and g € G. Then the sequence {dimy Endr(B?)}zesupp B
is bounded, since supp B is a union of a finite number of Gp-orbits in R.
Now the assertion follows directly from Lemmas 2.9 and 2.2. =

3. On indecomposability of (Endg(B))*

3.1. The main aim of this section is to give an elementary short proof of
the following fact.
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THEOREM. Let A be a local k-algebra with J = J(A). If A is semipri-
mary and dimg A/J is finite then the injective right (resp. left) A-module
(4A)* (resp. (Aa)*) has a local endomorphism ring. In particular (4 A)*
(resp. (Aa)*) is indecomposable and it is an injective hull of the unique
(up to isomorphism) simple right (resp. left) A-module.

By Theorem 2.9 we obtain as an immediate consequence the following.

COROLLARY. Let B be a locally finite-dimensional R-module. If B is a
G-atom then the endomorphism algebra of the left (resp. right) Endgr(B)-
module (Endg(B))* is local, and consequently gna,p(Endg(B))* (resp.
(Endr(B))gna,p) 8 indecomposable.

3.2. For the proof of the above result we study some multiplicative struc-
ture on the k-linear space A**, where A is an arbitrary k-algebra. Let
o A" x ATF — A**
be the k-bilinear map given by

(po)(n) = (i)

for p,9 € A** and n € A*, where 1), denotes the k-linear form ¢ (n-—) € A*.
For any vector space V we denote by ey : V. — V** the canonical

embedding. For any k-vector spaces V, W we have mutually inverse k-linear
maps

(=) oew
(a) Homy (V, W™) T Homy (W, V™),

—)*oey
which gives the selfadjointness of the contravariant functor

(—=)* : MOD k — MOD k,

and if A is a k-algebra the adjointness of the pair of functors

*

)
(b) MOD A (<:)> MOD A°P,

LEMMA. (i) A** = (A**,e) is a k-algebra.
(ii) A** is naturally isomorphic to Enda((4A)*).
(iii) The canonical map ex : A — A** is an embedding of k-algebras.

Proof. Applying the A-algebra version of (a) for the A-modules A** and
A, and the natural isomorphism of left A-modules Hom (4 A, M) ~ 4 M,
we obtain the composite k-linear isomorphism

Enda((4A4)*) ©2°%4 Homa (44, (4A)™) 5 A,

which we denote by u. The map u assigns to any s € Enda((4A4)*) the
k-linear form (s(—))(1) on A*. We show that u yields the isomorphism of
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(Enda((4A)*),0) and (A**,e) as k-vector spaces with bilinear forms. The
inverse v of u is given by (v(¢))(n) = ¢, for n € A*. Indeed,

u(v(ep) o v(¥))(n) = ((v(¥) o v(e))(M)(1) = (v(¥)(y))(1)
=Y(py 1) = (Y op)(n)

for any ¢,9 € A** and n € A*. Now (i) and (ii) follow easily. The proof of
(iii) is an easy check on the definitions. m

REMARK. (i) The endomorphism algebra End4((A4)*) of the left
A-module (A4)* is isomorphic to the k-algebra (A°P)**

(ii) The identity map yields an isomorphism of the A-A-bimodules A**
and (A°P)**, where the bimodule structure is given by Lemma 3.2(iii).

3.3. For any subspace V of a k-vector space U we identify the double
dual space V** with its image i**(V**) = {¢ € U** : p(V+) = 0} in U**
via the map ¢** : V** — V** where ¢ : V — U is the canonical embedding
and V+ ={neU*:n(V)=0}.

For any two subspaces V and W of a k-algebra A we denote by V - W
the vector k-subspace of A spanned by all products v - w, where v € V' and
weWw.

LEMMA. V**e W** C (V - W)** for any k-subspaces V' and W of a
k-algebra A.

Proof. Take any ¢ € V** and ¢ € W**. To show that pey € (V-W)**,
equivalently that ¢(i,) = 0 for all n € (V- W)L, it is enough to check that
¥, = ¥(n-—) € A* vanishes on V for every n € (V-W)=L. Indeed, ¥ (n-v) =0
forallv eV and n e (V- W)L, since n-v = n(v-—) vanishes on W. =

COROLLARY. For any two-sided ideal I of A the k-subspace [™* C A** is
a two-sided ideal of the k-algebra A**, and I** is nilpotent if I is. Moreover,
if dimy A/I is finite then the canonical embedding ey : A — A*™* induces
an isomorphism of k-algebras A/I ~ A** /I**.

Proof. The first statement is clear by Lemma 3.3. For the second as-
sertion observe first that (—)** is an exact functor and therefore we have
the natural k-algebra isomorphism (A/I)** ~ A**/I**. Since dimy A/I is
finite the canonical embedding e4,; : A/I — (A/I)** is an isomorphism of
k-algebras and consequently e 4 induces the required isomorphism. m

3.4. PROPOSITION. Let A be a local k-algebra. If A is semiprimary
and dimg A/J(A) is finite then A** is a local, semiprimary k-algebra
(with J(A*) = J(A)*), and A**/J(A**) is a finite-dimensional division
k-algebra isomorphic to A/ J(A).

Proof. By Corollary 3.3 the k-subspace J(A)** is a two-sided, nilpotent
ideal of the k-algebra A**, (J(A) is nilpotent) and A**/J(A)** is a finite-
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dimensional division k-algebra isomorphic to A/J(A). The nilpotency of
J(A)** implies J(A)** C J(A*), since J(A**) is the intersection of all
maximal (left) ideals of A**. On the other hand the ideal J(A)** is maximal
and therefore J(A)** = J(A**). m

3.5. Proof of Theorem 3.1. By Lemma 3.2(ii) and Proposition 3.4 the
k-algebra Enda((4A4)*) is local and therefore the right injective module
(4A)* is indecomposable. Denote by 7 : 4A — 4.5 the canonical projective
cover of the simple left A-module 4S = 4A/4J(A). Since dimy A/J(A) is
finite, the right A-module (45)* is also simple. By indecomposability of
(4A)* the morphism 7* : (45)* — (4A)* yields an injective hull of (4.5)*
and the proof is finished. m

4. Socle of the functors Zgp and 7Tg+. We briefly discuss the functorial
analog of the situation studied in the previous section.

4.1. Let C be an additive k-category. We introduce ak-category structure
C** defined as follows. The class of objects ob C** is by definition obC. For
any two c1,co € obC** we set C**(c1,c2) = C(c1,c2)**. Moreover, for an
object ¢ of C we distinguish the element ec(c ) (ide) € C**(c,c). For any
c1,Co,c3 in ob C** the composition

o:C"™(cg,c3) X C*(c1,c2) = C™(c1,¢3)
in C** is given by the formula

(po)(n) = (i)

where ¢ € C**(ca,c3), ¥ € C**(c1,¢2), n € C(c1,c3)* and 1, is the k-linear
form in C(c1, c3)™* with ¢, (f) = ¥ (n(f - —)) for f € C(c2,c3).

We are going to use C** to describe some injective C-modules. Recall
that as in the case of modules over an algebra we have at our disposal the
pair of contravariant functors

—

_)*
MODC (<:)> MOD C°P,

which are adjoint to each other. The natural isomorphism
(a) Home (M, N*) ~ Homgop (N, M*)
establishing the adjointness is induced, for given M in MODC and N in
MOD C°P, by the pair of k-linear isomorphisms described by 3.2(a).
For an arbitrary object ¢ in C we denote by Z¢ the C-module C(¢, —)* and

by Z. the C°P-module C(—, ¢)*. By the Yoneda Lemma and the isomorphism
(a) both modules Z¢ and Z. are injective.
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LEMMA. (i) C** is an additive k-category.

(ii) C** is canonically isomorphic to the full subcategory of MODC
formed by all injective modules Z€.

(iii) The canonical embeddings ecc, c,) : C(c1,c2) — C**(c1,¢2) induce a
faithful embedding functor e : C — C** of k-categories.

Proof. For any c;, ¢y in obC, by the Yoneda Lemma and (a) we obtain
the composite isomorphism

Home (2, Z%) = Homeon (C(c2, —),C(c1, —)**) = C(c1, c2)™,

which we denote by uc, .,. As in the proof of Lemma 3.2, one shows that
Uey e (WO P) = U, ¢, (W)U, ,(P) for any C-homomorphisms ¢ : T¢ — 7
and ¥ : 7% — 7% in MOD C. Now the assertion follows easily. m

REMARK. (i) For any object ¢ in C the algebra C**(c, c) and the algebra
(C(c,c))* defined in 3.2 coincide.

(ii) The full subcategory of MOD C°P formed by all injective modules of
the form Z. is canonically isomorphic to (C°P)**.

4.2. The following is an analog of Theorem 3.1.

THEOREM. Let C be an additive k-category and ¢ be an object of C.
If A=C(c,c) is a semiprimary, local k-algebra such that dimy A/J(A) is
finite then Ende(Z¢) and Endcer (Z.) have the same properties. In particular
the injective modules Z¢ and Z. are indecomposable.

Proof. Follows directly from Lemma 4.1, Remark 4.1 and Proposi-
tion 3.4. m

4.3. From now on we assume that C = Mod R. We study the properties
of the injective modules TV and Z,; for an indecomposable locally finite-
dimensional R-module M. For any M in Mod R we denote by H™ (resp.
Har) the (Mod R)-module HM /JM (vesp. (Mod R)°P-module H s/ Tnr),
where HM = Homp(—, M) and M = J(—, M) (resp. Har = Homp(M, —)
and Jy = J(M,—)).

LEMMA. Let B be in Ind R. Then

(i) both modules Hp and HP are simple,
(ii) we have the isomorphisms Hy ~ HP and (HB)* ~ Hp.

Proof. (i) Let Modp) R denote the full subcategory of Mod R formed by
all R-modules M’ which have no direct summand isomorphic to B. The def-
inition is correct by the uniqueness of decomposition into indecomposables
(see Lemma 2.4). Consider the functor MOD(Mod R) — MOD Endg(B)
which assigns to each M in MOD(Mod R) the right End g (B)-module M(B).
The restriction of this functor to the full subcategory of MOD(Mod R)
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formed by all M vanishing on Modp) R is full and faithful. We show first
that H? is zero on Modp)R. Note the standard formula

7 o . ) Endg(B)/J(Endgr(B)) if B’ ~ B,
HB(B)_{O if B' £ B,
for any B’ in Ind R (see 2.3). Moreover, since both Homp and J are sum-
mably closed ideals we have the formula

5 (M) ~ [[HP (M)
iel

for any decomposition M = @, ; M; of a locally finite-dimensional R-
module M (see [5, 1.2]). Now it is clear that HB(M') = 0 for any M’ in
Modp)R. Consequently, by the above mentioned equivalence HB is a simple
(Mod R)-module since Endg(B) is a local k-algebra (see Lemma 2.2). Using
analogous arguments one proves that Hp is a simple (Mod R)°P-module.

(ii) Note that #}; vanishes on Mod gy R. The Endg(B)-module H};(B) is
simple since dimy, Endg(B)/J(Endg(B)) is finite by Lemma 2.2. Therefore
it is isomorphic to the Endg(B)-module HZ(B) and by the previous remark
we have the isomorphism H? ~ 77*3. n

4.4. For any N in Mod R°? we denote by Tn the (Mod R)°P-module
— ®pr N, where ®p is the tensor product for R-modules (see [16, 3]).

THEOREM. Let R be a locally bounded k-category and G a group of
k-linear automorphisms acting freely on ob R. Then for any G-atom B the
following hold true:

(i) The injective (Mod R)°P-module Zg = Hompg(—, B)* is indecompos-
able (with a local endomorphism ring).
(ii) Zp is an injective hull of the simple module Hp (~ (HP)*).
(iii) The socle of Tp is simple and isomorphic to Hp.
(iv) The socle of Tg« = — ®@r B* is simple and isomorphic to Hp.

Proof. (i) follows from Theorems 4.2 and 2.9. Denote by 72 : HB —
HB = HB/TB the canonical projection of (Mod R)-modules. Then the dual
morphism (78)* : (HB)* — Ip is an embedding and the assertions (ii) and
(iii) follow from Lemma 4.3 and (i) by general properties of injective objects
in a module category (see [1]).

To show (iv), consider the canonical embedding e : T« < Zp of
(Mod R)°P-modules defined for any M in Mod R by the compositions

M ®pr B* — (M XRnr B*)** ~ HOH]R(M, B**)* ~ HomR(M, B)*

(see [3, Corollary 2.4]). Clearly SocTp« embeds via e into SocZp. Since
I8 is an injective hull of the simple module (HB)* (~ Hp) it follows that
e(Tp+) contains 7*((H?)*), and now (iv) follows from (iii). m
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REMARK. Analogous results hold true for (Mod R)°P-modules.

For any G-atom B we set Cg~ = Tg/SocTp: (=~ e(Tp-)/(7B)*((HB)*);
see proof of Theorem 4.4).

5. Pure-injectivity of J(M, B) and J (B, M)

5.1. From now on we assume that G is a group of k-linear automor-
phisms acting freely on ob R.

Let M and N be R-modules and H be a subgroup of Gy N Gn. Recall
that if p is an R-action of H on M and v is an R-action of H on N, then
we can define the induced group action

(a) Homp(u,v) : H x Homp(M, N) — Hompg(M, N)

by (h, f) = "y - "f - up-1 (see also [3, 2.4]). This defines a left kH-module
structure on Hompg(M, N), where kH is the group algebra of H over k.
Observe that the subspace J (M, N) of Homg(M, N) is a kH-submodule.

Let M be an R-module, N be an R°’-module and H be a subgroup of
GuNGp. If pis an R-action of H on M and v is an R°P-action of H on N,
then we can define the induced group action

(b) ,U,®RV2HXM®RN—>M®RN

by (h,m; ® ng) — pp(ms) @ vp(ng), where h € H, x € obR, m, € M(x)
and n, € N(x) (see also [3, 2.4]). This defines a left kH-module structure
on M ®gr N.

Let M be an R-module (resp. R°P-module) and H be a subgroup of
Gp. If pis an R-action (resp. R°P-action) of H on M then the family of
isomorphisms

_ 1 *
{M* _ h 1(hM)*f (:“‘h*l) h 1]\4>k}h€H

defines an R°P-action (resp. R-action) of H on the R°P-module (resp. R-
module) M*. In the sequel the module M* equipped with this action will
be denoted by M* for simplicity (in contrast to the notation M® from
[3, 2.1]).

We will use the same simplification for the standard left kH-module
structure on the dual space of a left kH-module V', which will be simply
denoted by V*.

Let B be a periodic G-atom (i.e. admitting an R-action of Gpg). If we
fix an R-action v on B then Hp, Jg, Hp, Tp- and Cp~ (resp. HE, J5,
HP) can be regarded as functors from Mod® R to MOD(kG )°P (resp. from
(Mod® R)°P to MOD(kGg)°P). We keep for them the same notation with
the understanding that now B is not just a single module but a pair (B, vg).
The analogous convention will be applied for their duals. Now the canonical
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exact sequences

0—-Jp—>Hp—Hp—0, 0T HP HP =0
and

0— (Hp)* = Hp)* = (TB)* =0, 00— (HE) = (HB) = (TB)" =0

in MOD((Mod R)°P) (resp. in MOD(Mod R)) become exact sequences of
k-linear functors from Mod® R to MOD(kG 5)°P (resp. from (Mod® R)°P to
MOD (kG p)°P). We also have at our disposal an exact sequence

0— (HB)* = Tg- = Cp- = 0

of functors from Mod“R to MOD(kGp)°P (sce definition of Cz- and for
more details proof of Theorem 5.2).

LEMMA. Let B = (B,vp) be a periodic G-atom together with a fizved
R-action of G on B. Suppose that Endgr(B)/J(Endg(B)) ~ k. Then the
functors

(H?)*, Hp : Mod® R — MOD (kG p)°P
and
(Hp)*, H? : (Mod®R)°® — MOD (kG )°P
are isomorphic (cf. Lemma 4.3).

Proof. For simplicity denote the stabilizer Gp by H. Take any M =
(M, p) in Mod®R and consider the bilinear composition map

o : Hompg (M, B) x Hompg (B, M) — Endg(B).

It is not hard to check that o is H-equivariant (with respect to the H-module
structures defined in (a)) in the sense that hi) o h¢p = h(vy¢) for all h € H,
¢ € Hompg(B,M) and ¢ € Homg(M, B). The map o induces a k-bilinear
form
5:HP (M) x Hp(M) — Endgr(B)/J(Endg(B)) ~ k.

It is easy to show that the form & is nondegenerate. Moreover, since End g (B)
=k-idg®J(Endg(B)) and J(Endg(B)) is an H-submodule of Endg(B),
the H-module Endr(B)/J(Endg(B)) is canonically isomorphic to the trivial
character. Consequently, the form & is H-invariant in the sense that hi)oh¢ =
pogforallh€ H, ¢ € Hg(M) and ¢) € HB(M). Therefore the associated
linear isomorphisms HZ(M) — Hp(M)* (resp. Hp(M) — HB(M)*) given
by ¥ + (16 —) (resp. ¢ + (— 5 @)) are H-equivariant and natural with
respect to M, and so they yield the required isomorphism of functors. m

5.2. The main result of this section is the following.

THEOREM. Let R be a locally bounded k-category and G a group of
k-linear automorphisms acting freely on ob R. Suppose that B = (B,vg)
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is a periodic G-atom together with a fized R-action of Gp on B. Then for
any M = (M, ;1) in Mod®R the kG p-submodules JB(M) of HE(M) and
JIs(M) of Hp(M) are pure-injective (= algebraically compact).

Before the proof we need some preparation.

5.3. Let V be a k-linear vector space and V* its dual. The bilinear form
V* x V. — k given by (n,v) — n(v) for v € V and n € V* induces two
operations

4

(_
{subspaces W of V'} (<j) {subspaces F of V*}

defined as follows:
Wt ={neVv*:g(W) =0}, FL:ﬂKern.
nelr

Suppose that A is a k-algebra and V' is a left A-module. Then for any
A-submodule W of V the subspace W+ is an A-submodule of the right
A-module V}, and for any A-submodule F' of V} the subspace F'| is an
A-submodule of 4V.

It is well known that for any subspaces W of V and F of V* we have

(a) (WHL =W, (F)*CF;
moreover, if dimy V' is finite then
(b) (Fu)t =F.

We will formulate another condition on F' implying (b), that is, implying
that ' = W+ (~ (V/W)*) for some subspace W of V.

We start by observing that for the canonical embedding ey : V — V**
and for any subspaces W of V and F of V* we have the equalities

(c) ev(W)L=w+
(of subspaces of V*) and
(d) 6v(FL) :ev(V)ﬁFJ'

(of subspaces of V**). Note that in the definition of F- one should refer to
the operation (—)* induced by the bilinear form V** x V* — k.

LEMMA. Let F be a subspace of V*. If F* is contained in ey (V) then
F=(FL)* (= (ey (F1)Y), and consequently F ~ (V/F\)*.

Proof. Note that by (c) the inclusion F- C ey (V) is equivalent to the
equality F'+ = ey (F| ). Therefore the assumption together with (a) and (c)
yields

F=(F 1= (ev(F))L=(F)" = (ep'(F5)) " m
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REMARK. The inclusion FX C e(V) is not always satisfied even for
subspaces of the form F = W+, where W is a subspace of V. It is not hard
to see that in this situation F1 is contained in ey (V) if and only if dimy V/
is finite.

5.4. Proof of Theorem 5.2. We only prove that J 2 (M) is pure-injective,
the proof for Jp(M) is analogous. It is enough to show that the left kG p-
module JZ (M) is of the form X* for some right kG g-module X (see [15]).
Using the canonical identification

(TB* )* = HB
of k-linear functors from (Mod® R)°? to MOD (kG p)°P (see [3, Lemma 2.4))
we can interpret 77 (M) as a kG p-submodule of (Tp+)*(M) = (M ®p B*)*.
We know from the proof of Theorem 4.4(iv) that e(7p+) contains 7* ((H?)*),
where e is the embedding given by the composition

Ta- = (Tp<)™* ~ (HB) =1p
and (78)* : (HB/JP)* — (HP)* is the dual of the canonical projection
7B HE — HB = HB /TP (both e and (7P)* are morphisms of k-linear
functors from Mod® R to MOD (kG )°P). Evaluating this inclusion at M we
find that J (M, B)* is contained (via the identification (HB)* ~ (Tp-)**)
in epgpp (M ®r B*). Now the existence of the required kG p-module X
(= Cp+(M)) follows immediately from Lemma 5.3. m

REMARK. (1) J(M, B) and J (B, M) are also pure-injective as End g (B)-
modules.

(2) HB(M) and Hp(M) are obviously pure-injective modules over kG p
and Endg(B).

(3) It is not clear when the embeddings of kGp-modules JZ (M)
HE (M) (resp. Jp(M) — Hp(M)) are pure.

COROLLARY. The functors
Jg, (Cp+)* : Mod® R — MOD (kG )°P

are isomorphic. In particular, if Gp is an infinite cyclic group, then the
kG p-module Jp(M) is injective if and only if the finitely generated kG p-
module Cp« (M) is free.

Proof. The first assertion follows immediately from the proof of Theo-
rem 5.2. To prove the second one, fix M in Mod®R. Clearly if the kG-
module Cp+(M) is projective then the kGp-module Jp(M) is injective
(IJg(M) ~ Cp+(M)*). Note also that the kGp-module Cp~(M) is always
finitely generated since so is @, M (v) ® B*(x) (supp B/Gp is finite).

Suppose now that Gp is an infinite cyclic group and the kG p-module
Jp (M) is injective. Then the group algebra kG p is a principal ideal domain
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(~ K[T,T~']). Hence there exist finitely generated kG g-modules F' and T
such that F' is free, dimy T is finite and Cp-(M) =T & F. Thus we obtain
isomorphisms Jp(M) ~ Cp«(M)* ~ F* & T*, and so the finite-dimensional
kG p-module T* is injective. Consequently, T'=0 and Cp«(M) =F. =

6. Proofs of the main results

6.1. Let B=(B,vp) be a periodic G-atom together with a fixed R-action
of G on B. We denote by @7 the functor

Foo (() ' ®krgy FaB) : mod(kGp)°® — Modf R
and by @B the functor
Hp : Mod{ R — mod(kGg)°P.
It is clear that ( )"'oWB o F, = w8 and F, 0 8 o ( )~ = &B, where
()~': MOD(kG)°P — MOD kG is the standard equivalence.

In the proofs we also refer to the alternative description of @B as the
composition of the tensor product functor

— @k B : mod(kG3)°" — ModS” R
and the induction functor
0 =0, : ModS” R — Modf R
(see [3, Proposition 2.3(i)]).

Recall that for any subgroup H of G and every object (B, vg) in Modf{ R
the functor — ®j, B assigns to any G-representation V' in mod(kH)°P the R-
module V ®; B equipped with the “twisted” R-action of H. The induction
functor Ay assigns to an object (N,v) in Modf R the induced structure
Ou(N): the R-module P s, YN, where Sy is a fixed set of representatives

of the set of left cosets G/H, equipped with the standard R-action of G
induced by v (for details see [10, 3]).

LEMMA. Let B = (B,vp) be a G-atom fromi.zo equipped with an
R-action of Gg, and X, Y, Z be objects in mod R. Then the kernel of
the functor WP has the following properties:

(i) ¥B(Z) = 0 for any Z in moda,\(p} R, and consequently Ker ¥?
contains the ideal [moda,\{5})R],
Ix(X,Y) if X,Y € modgpR,
Homp(X,Y) if X orY € mod a,\5})R.
Proof. The assertion (i) and the inclusion Z5(X,Y) C Ker¥?(X,Y) of

(ii) follow immediately from W5 = Hp o F,. The equality Ker¥?(X,Y) =
Homp(X,Y) follows trivially from (i).

(i) Ker¥B(X,Y) = {
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It remains to show Ker¥?(X,Y) C Zx(X,Y). For this purpose it is
enough to prove that for any M = (@geSBQBm,M), N = (@g/esB JBn, v)
in ModfGR and a morphism f € Ker @B, (M, N) the R-homomorphism f =
(fo.9)g" 9655  Dyesy B™ — Dyes, ¢ B" belongs to the Jacobson radical
J = Jr. ,

Clearly the components f, 4 such that g # ¢’ belong to J (9B™, 9 B™) for
9,9 € Sp. Observe that f.. € J(B,9B) since Hp(f) = 0 by assumption.
We show that each f, , belongs to J(9B™,9B") for g € Sp. Since f is a
morphism in ModfGR we have h_lf - pp = vp - f for every h € G. Then for
any ¢g,g; € Sp, looking at the (g7, g)-components of the above equality we
obtain the following equalities in Hompg (9B™, hilgiB"):

Rt (91,9) _ (91,9")
() (h,91,9) z fe1.0: Y = Z v ' S
g1€SB 9'€eSp
where uﬁbgl’g) . 9B™ —y hT 9BM (regp, V,Egl’g) . 9B — M9 Bn) s the
g1, g)-component (resp. (g7, g')-component) of the R-homomorphism
1
b1
e @ (@ o)
gESB g1€SB

respectively

v P g " ( an 913”),
g'€Sp gi€SB
defining the R-action p (resp. v) of Gp. Assume now that ¢ = e and
h =g '. Note that /ngl’g),u;(f’gl) € J for g1 #e and ¢’ #g; also 9f. .€J.
Then (*)(g-1,,4) implies by Lemma 2.3 that V}(Le’g) - fg.g € J. But by

Lemma 2.4, y,(le’g) is an R-isomorphism and therefore f,, € J for every

g € Sp. Consequently, by Proposition 2.5, f€ J. m

PROPOSITION. Let U C P, be a family of periodic G-atoms together with
a selection (vp)peu of R-actions of Gp on B. Then:

(i) Ker W™ contains the ideal [moda,\u) R,

(ii) @Y induces a faithful representation embedding functor

o4 : ] mod kGp — mod R/[mod 4 \u)R]-
Beu

Suppose that the GCS-reduction (®4,W%) (w.r.t. U) is full. Then:

U [ IR(X,Y) if X,Y € modyR,

(i) Ker (X, ¥) = {HomR(X, Y) if X or Y ¢ modyR,

for any indecomposables X,Y in mod R,
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(iv) the functor Y : [] 5, mod kGp — mod R/[mod 4 \u)R] together
with the functor ¥ : mod R/[mod( a,\uyR] = [{ 5y mod kGp induced by
YU yields a bijection between the sets of isoclasses of indecomposables in the
categories [[ gy mod kGp and mod R/[mod(4,\u) R].

Proof. (i) Follows immediately from Lemma 6.1(i).

(i) We know that WYY ~ idjy,_,, mod kG and that Y is a represen-
tation embedding functor (see [4, Proposition 2.3 and Theorem 2.2]). Since
Ker WY contains [mod4,\y)R], the functor ¥ factorizes as

7 : mod R 25 mod R/[mod 4,y B] 2 [ mod kG
BeUu

where II denotes the canonical projection. Consequently,

oY = 19" : [[ mod kGp — mod R/[mod ., \u)R]
Beu

is a representation embedding since ¥ is (note that Im @ C mody R and

(Ker H)moduE C (j}?)modu}?)'
(iii) Note that

(*) mod R = mOd(AO\I/{)R V \/ mOd{B}R.
Beu

Fix a pair X,Y of R-modules. If X and Y do not belong simultaneously to
modg 1 R for any By € U then for each B € U either P (X) or W5 (Y) is
zero (see Lemma 6.1). Consequently, Ker ¥ (X,Y) = Homp(X,Y). Note
that Zp(X,Y) = Hompg(X,Y) provided X is in modypyR and Y is in
modpn R for distinct B, B’ € U. If both X and Y belong to modyg} R
for some B € U then Ker¥¥(X,Y) = Ker¥P(X|Y) = I5(X,Y) (see
Lemma 6.1).

(iv) follows directly from (ii) and from conditions (a), (b) of the definition
of full reduction. m

6.2. Proof of Theorem A. The following fact together with [4, Theo-
rem 2.2] proves that the GCS-reduction (&Y,¥Y) satisfying the assump-
tions of Theorem A is full. (It implies (a) and (b) in the definition of full
GCS-reduction, (c) and (d) follow by Proposition 6.1).

PROPOSITION. Let B = (B,vg) be a periodic G-atom in A with an
R-action vg of Gg on B. Assume that M = (M, 1) is an object in ModS R
such that B = (B,vg) splits properly M. Then PBYB (M) is a direct sum-
mand of M in ModfGR. In particular, if M is an indecomposable object in
Mod€ then ®BWB (M) ~ M.
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Proof. To prove that @BWB(M) (~ (Hp(M) @ B)) is a direct sum-
mand of M we construct a splittable monomorphism # : Hg(M) ®; B — M
in Mod“”R.

The canonical kG pg-module embedding eg(M) : Tg(M) — Hp(M)

— M
splits, hence there exists a kG g-homomorphism Hp(M) “ Hp(M) such
that (M) - iM = id37, (ar), Where

0T BH BHs >0

is the canonical exact sequence in MOD((Mod R)°P). Since eg(M) is proper,
Hp(M) is nonzero and we can simply assume that M is a direct sum
B"™ @ M’, where n is a positive integer and M’ has no direct summand
isomorphic to B. Then " and the canonical Endg(B)-isomorphisms

Hp(M) ~Hp(B")®Hp(M') and Hp(M)~Hg(B")
(Hp(M") = 0) induce a kG g-homomorphism

i= (Z) : Hp(B") — Hp(B") & Hp(M')

such that 72 (B") -i; = idy, (gn)- Here the kG p-module structure on the
domain and codomain of ¢ are induced by the above isomorphisms. Let

i:Hp(B")®xB— M=B"&M

be the morphism in Mod“? R adjoint to i (see [3, Lemma 2.4]). We prove
that 7 is a splittable monomorphism in Mod“? R. For this purpose it is
enough to construct a morphism p in Mod®*? R with domain M such that
p -1 is an R-isomorphism. However, before we construct p, we give a more
detailed description of i.

Denote by w; € Hompg(B, B") the ith standard embedding of B into
B™, by w; the coset of w; in Hp(B") and by ¢! the image is(w;) in
Homg(B,M'") = J(B,M'), where i = 1,...,n. Observe that the equal-
ity mp(B") - i1 = ids,pn) implies the existence of R-homomorphisms
v; € Jr(B,B™) with components {(p{}jzl,m,n in Jr(B,B), i = 1,...,n,
such that i1 (w;) = w; + ¢;.

Note that since Hp(B) ~ k as k-vector spaces, the canonical isomor-
phism Hp(B)" ~ Hp(B") induces an R-isomorphism

(a) B™ ~ Hp(B") @4 B.
Denote by

-/
i = <Z,}) . B" — B" & M’
()
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the composition of the isomorphism (a) and . It is not hard to show that
iy =idgn +¢ and i, = ¢,

where ¢ is defined by the components {(? }ij=1,...n, and ¢’ by the compo-
nents {@}i=1.. n.

The construction of 7 was determined by the fact that wB by definition
is equal to the top Hp of the functor Hp. The construction of p will reflect
the alternative description of % as the socle (Hp)* of the tensor product
functor Tp« (see 4.4).

As before, the canonical kG pg-embedding ¢B(M) : JB(M) — HB(M)
splits and hence there exists a kG g-homomorphism jy : HE (M) — HE (M)
such that w8 (M) - jar = idgs pp), where

-----

0= JESHE T TP 0
is a canonical exact sequence in MOD(Mod R). Consequently, the dual kG -
homomorphism 5%, : HB(M)* — HB(M)* is a splittable epimorphism.
Since HB(M') = 0, we can assume that the codomain of j3, is equal to the
kG p-module HB(B™)*, with the structure given by the dual of the stan-
dard isomorphism H?Z(M) ~ HP(B") induced by the canonical projection
M — B"™. Denote by

p: Tp-(M) = (H")"(B")
the composition of 5%, and the canonical embedding of T~ into (H?)* = Zp
(see 4.4 and 5.4). Note that pis a kG p-epimorphism since the socles of both
functors 7~ and Zp coincide and are equal to (H?)* (see Theorem 4.4).
Let
p: M — Homy(B*, (H?)*(B™))

be the morphism in Mod“Z R adjoint to p (see [3, Lemma 2.4]). We now
analyze p in more detail, in order to prove that p - ¢ is an R-isomorphism.
Denote by p’ the composition

p+ M 5 Homy,(B*, (HP)*(B")) = Homy (HE(B™), B)
in Mod“® R, where the second isomorphism is given by the appropriate
version of the isomorphism 3.2(a) and the fact that B is locally finite-
dimensional. Applying the definitions and a variant of [3, Lemma 2.4] one
shows that p’ has the following factorization:
B" @ M’ "B EM Homy (1P (B™), B) & Hom(HP (M), B)
% Homy, (H?(B™), B).

Here uy : N — Homy(Hompg(N, B), B), for any N in Mod R, denotes the
R-homomorphism adjoint to the canonical map Homg(N, B) @, N — B,
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and v the R-homomorphism given by the pair (Homg/(j1, B), Homy(jz2, B)),
where the k-linear map
j= <j1> 1P (B") —» HP(B") @ HP (M)
2
is the composition of jj; and the canonical Endg(B)-isomorphisms
HE (M) ~HEB(B")oHE(M') and HP (M)~ HE(B™).

Denote by r; € Hompg(B"™, B) the ith standard projection, by 7; the coset
of r; in HB(B™) and by ! the image jo(7;) in Homg(B, M') = J(B, M'),
where i = 1,...,n. Observe that the equality 7% (B") - j; = idgs(p) im-
plies the existence of R-homomorphisms v; € J(B", B) with components
{'Lﬁi }jzl _____ n in j(B,ﬁ) such that j; (ﬂ) = ;.

Note that since HP(B) ~ k as k-vector spaces, the canonical isomor-
phism HZ(B)" ~ HB(B") induces an R-isomorphism
(b) Homy (H?(B™), B) ~ B™.

Denote by
p// — (p/llypg) . Bn@M/ N Bn
the composition of p’ and the isomorphism (b). It is not hard to show that
p{ =idgn +¢ and pi =4,
where 1) is defined by the components {d}f}i,j:l,...,n, and v’ by the compo-
nents {¢.}i=1.. n-

Now by Lemma 2.4 the composition p”i’ is an R-isomorphism, and there-
fore p - ¢ is an isomorphism in ModfG B R. In this way the construction of a
splittable monomorphism 4 : Hp(M) ®x B — M in Mod“? R is finished.
Now applying the Lemma below and [3, Proposition 2.3(i)] we conclude that
HBWB(M) is a direct summand of M in Mod{'R. =

LEMMA. Let H be a subgroup of G, N = (N,v) an object in Modf' R
and M = (M, i) an object in Mod®R. Suppose that N is a direct summand
of the restriction (M, u|H) in Mod? R and that N satisfies the following
condition:

(x)  for any H-atoms B, B" which are direct summands of N each element
g € G such that 9B ~ B’ belongs to H.

Then 0 (N), an R-module with an R-action of G induced by N, is a direct
summand of M in Mod®R.

Proof. Leti: N — M and p : M — N be morphisms in Mod” R
such that pi = idy. Denote by I : 0y (N) — M and P : M — 0y (N) the
morphisms in Mod“ R adjoint to ¢ and p (see [3, Lemma 2.3]). It is enough to
show that PI is an automorphism of the R-module gesy °N. By the very
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definition each (g, g)-component of PI is the identity map idsy = 9idy, for
g € Sy. For any different g1, g2 € Sy, the (g1, g2)-component of PI belongs
to J (9N, 92N) by the condition (x). Now the claim follows immediately from
Lemma 2.4. m

6.3. Following [4, 5] for any M and N in Mod R we define the subspace
Pu(M,N) C Homg(M, N)

to consist of all R-homomorphisms f : M — N having a factorization
through a direct sum of finite-dimensional modules.

Let H be a subgroup of Gy NG . If p is an R-action of H on M and v is

an R-action of H on N, then Pu(M, N) is a kH-submodule of Hompg (M, N)

equipped with the standard structure (see 5.1(a)).
It is easy to see that the subspaces Pu(M, N) define a two-sided ideal

Pu(-,—) C Hompg(-,—)
called the pure-projective ideal of Mod R.

REMARK. For any M, N in Ind R which are not simultaneously finite-
dimensional we have Pu(M,N) C Jr(M,N). If additionally supp M N
supp IV is a disjoint union of pairwise orthogonal finite subcategories then
Pu(M,N)= Jr(M,N).

Proof of Theorem B. We show first that under the assumptions of The-
orem B the GCS-reduction w.r.t. U is full. By Theorem A it is enough to
prove the following.

PROPOSITION. Let B = (B,vg) be a G-atom in A', with an arbitrary
R-action vg of Gp on B, and M = (M,u) an object in ModYR. As-
sume that for any B’ € AV (B) (see Introduction) each R-homomorphism
f: B — B (resp. f: B — B) factors through a direct sum of finite-
dimensional R-modules. Then (B,vp) splits properly (M, ) provided B is
a direct summand of the R-module M.

Proof. Set H=Gp and L = supp B. It is enough to prove that both
kH-modules Jg(M) and JB(M) are injective. We show the injectivity of
Jp (M), the proof of the other case is similar.

Denote by e, : Mod”L — Mod”R the right adjoint functor to the

restriction functor e, : Mod? R — Mod” L. Then by [5, Lemma 2.1] the
canonical morphism M — N in Mod” R induces a kH-isomorphism

(a) Homp(B, M) ~ Hompg(B,N),
where N = e,eq(M). We show that it also induces a kH-isomorphism

(b) J(B,M)~J(B,N).
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Note that by [9, Lemma 2] an R-module B’ in Ind R is isomorphic to B
if and only if B is a direct summand of e,eq(B’). Now fix any decomposi-
tion M = @,; B; into a direct sum of objects in Ind R (see Lemma 2.1).
Then we obtain a decomposition N = P, ; e,ee(B;) into a direct sum of
R-modules (M is a locally finite-dimensional module over the locally
bounded k-category R). The isomorphism (b) now follows by the previous
observation from (a) and the fact that Homp and J are summably closed
ideals (see Proposition 2.5).

Now by [5, Theorem A] it is enough to prove that J (B, N) = Pu(B, N).
Observe that N is an object of Modf R. The support of N is contained in

L and L /H is finite (R is a locally bounded k-category and L/H is finite),

and consequently supp N is contained in a union of finitely many H-orbits
in R. Therefore N has a decomposition N = @ ; B; into a direct sum of
H-atoms. By [5, Theorem A] we obtain

Pu<B, @Bj> = [[ Pu(B, B).

Jj€J JjEJ

JjeJ

Since
In(B. @D B;) = [] Iu(B. B))
jEJ j€J
(J is summably closed) we only have to show that
(%) Pu(B, B;) = J(B, Bj)

for all j € J. Denote by J' the set of all j € J such that supp B; N L is
finite, and by J” the complement of J’ in J. It is clear that by Remark 6.2
we have to consider (x); only for j € J”. Take any H-atom B,, where
Jj € J". We know that supp B;/Hp, is finite and hence supp B;/Gp; is
finite. Consequently, Hg, = Gp N Gp, is infinite since supp B; is infinite.
This implies that B; belongs to AY(B). Thus (%) ; holds by Remark 6.2 and
the assumptions of the proposition. In this way J (B, N) = Pu(B,N) and
consequently the kH-module J (B, M) is injective. m

Now we prove the main assertion of Theorem B, the equivalence

H mod k[T, T~'] ~ mod R/[mod 4,y R] ~ mody R/[mod 4 R]
Beu

modyy R

Since PHYPU ~ idyy,_, modkGy (see [4, Theorem 2.2]) the functors Y and

¥Y induce an equivalence

(©) [ modk[T, 77" ~ mod R/Ker W ~ mody R/ (Ker ¥, a5
BeUud
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(note that Im & C mod; R). Note the following obvious inclusions of ideals:
(d) [mOdAfR] - [mod(Ao\u)R] C Ker o4,

By Proposition 6.1 and the splitting (a) in the definition of full GCS-
reduction the ideals Ker ¥ and [mod,\u)R] can differ only on pairs of
indecomposables from obmody R x obmodyR. Therefore it is enough to
show the inclusion

(e) Imoduﬁ C [mOd.Af R]moduﬁ

where 7 = Zp. Consequently, Proposition 6.1 and (d) yield (Ker %) . »
= [mod 4 R] ;14,7 and Ker W = [mod4,\y)R], which combined with (c)
gives the required equivalence.

To prove (e) take any f € Z(X',X) where X and X’ are indecom-
posable R-modules in mod;,R. Then by the bijection (b) in the defini-
tion of full GCS-reduction there exist isomorphisms u : X — #BUBX
and v’ : X' — ®B'WB X’ for some B, B’ € U. It is enough to show that
fi =uf € [mod 4 R].

To do this we make use of the isomorphism

&8 ~ Homyq, (F\B¥C2 —)

where F)\B*¢2 = Homyg, (FA\B,kGg) (see [3, Corollary 2.1]). Then by
[3, Lemma 2.1 and Proposition 2.5(iii)] we obtain the natural isomorphisms

(f)  Homz(X',#P¥PX) ~ Hompe, (X' @5 FA\B*9E 0B X)
~ Homyg, (Fo X' ®r B*, (WEX)™!) = Hompg, (Ta-(Fo X'), (@B X)71)

(we keep the notation from 5.1). Denote by fi: Toe (FoX') — (WBX)~! the
image of fi; under (f). We now prove that fl factors through Cp+(FeX').
The case B # B’ is clear since then HP(F,X') = 0 (FoX’ € mod;g1R)
and Tp«(FeX') = Cp+(FeX'). Suppose now that B = B’. Since the iso-
morphism (f) is natural w.r.t. the first component, we have a factorization
fi = @ Tp-(Fuof), where @ : Tg-(FoX) — (#BX)~! is the image of u
via (f). Observe that the kG p-homomorphism T« (Fef) : Tp(FeX') —
TB-(FeX) vanishes on the kG g-submodule (H?)*(Fy X') of Tp«(Fs X') since
(HB)*(Fuf)=0 (f € Z(X’, X)). Hence Tz- (F. f) and also f; factor through
Cp+(FeX'). Using now the fact that (f) is natural w.r.t. the second compo-
nent we conclude that f; factors through Homyg, (F\B*92,Cp- (Fo X")71),
which is isomorphic to FyB™ for some m € N by Corollary 5.4 (Jp(FeX')
is injective). Now the slight modification of [3, Lemma 4.4] (replace mod; R
by mod 4 R when the assumption that G acts freely on (ind R)/~ is not
present; the proof remains valid) yields f; € [modsR]. In this way the
proof of (e) and in consequence of the whole Theorem B is finished. m
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6.4. For any subset U C P, and n € N we denote by U(n) the set of all
B € U such that the rank of the free kG p-module F)\ B is just n.

The following fact follows directly from Theorem B by [10, Lemma 2.2]
and [9, Lemma 3 and Proposition 2].

THEOREM [4, Theorem 5.2]. Let R be a locally bounded k-category and
G C Autg(R) be a group of k-linear automorphisms of R acting freely on
(ind R) /=~ such that R is a finite category. Assume R satisfies the following
conditions:

(i) A>* = Al,

(i) J(B1,B2) = Pu(B1,B2) for any By,Bs € A with G, N Gp,
nontrivial.

Then the functors A and WA induce an equivalence

H mod k[T, T~ '] ~ mod R,
BeAge

and R is tame if and only if R is tame and all sets A°(n), n € N, are
finite.
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