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Abstract. Given a group G of k-linear automorphisms of a locally bounded k-
category R it is proved that the endomorphism algebra EndR(B) of a G-atom B is
a local semiprimary ring (Theorem 2.9); consequently, the injective EndR(B)-module
(EndR(B))∗ is indecomposable (Corollary 3.1) and the socle of the tensor product func-
tor − ⊗R B∗ is simple (Theorem 4.4). The problem when the Galois covering reduc-
tion to stabilizers with respect to a set U of periodic G-atoms (defined by the functors
ΦU :

∐
B∈U mod kGB → mod(R/G) and ΨU : mod(R/G) →

∏
B∈U mod kGB) is full

(resp. strictly full) is studied (see Theorems A, B and 6.3).

1. Introduction. The Galois covering technique has been originally
invented for investigation of finite-dimensional algebras of finite representa-
tion type. It reduces the description of modΛ to the analogous problem for
the cover Λ̃ of Λ, which is usually simpler (see [18, 12, 2, 14]). For the first
generalizations of that method in representation infinite case the reader is
referred to [9] and [8], and in a much more general situation to [10] (see also
[17]). These results had many applications (see [23, 24, 25, 13]). The Ga-
lois coverings were also investigated for matrix problems in [19, 20, 21, 11],
recently in a quite general situation [7]. In [3] a new, a little different ap-
proach of a one-step reduction to representation categories of stabilizers was
proposed. It was formalized in [4], where the scheme of Galois covering re-
duction to stabilizers was introduced. There the important facts concerning
the concept of full Galois covering reduction to stabilizers were formulated
but the proofs were only briefly outlined.

In this paper we present full proofs of the main results in [4]: of
[4, Theorem 3.3], which states that some natural conditions are sufficient

2000 Mathematics Subject Classification: 16G60, 16G20.
Key words and phrases: Galois covering, locally finite-dimensional module, tame.
Supported by Polish KBN Grant 2 P03A 007 12.

[231]



232 P. DOWBOR

for a Galois covering reduction to stabilizers to be full, and of [4, Theo-
rem 5.2], which is the most important application of the previous one. We
also study rather comprehensively a class of indecomposable locally finite-
dimensional R-modules, called G-atoms. First of all we discuss those prop-
erties of G-atoms which are essential for Galois covering, mainly having in
mind applications in the proofs of the cited theorems, but also in a quite
general context.

Before we formulate our main results, we briefly sketch the situation
we deal with. Let k be a field and R be a locally bounded k-category , i.e.
all objects of R have local endomorphism rings, different objects are non-
isomorphic, and both sums

∑
y∈R dimkR(x, y) and

∑
y∈R dimk R(y, x) are

finite for each x ∈ R. By an R-module we mean a contravariant k-linear
functor from R to the category of k-vector spaces. An R-module M is lo-
cally finite-dimensional (resp. finite-dimensional) if dimkM(x) is finite for
each x ∈ R (resp. the dimension dimkM =

∑
x∈R dimkM(x) of M is fi-

nite). We denote by MODR the category of all R-modules, and by ModR
(resp. modR) the full subcategory formed by all locally finite-dimensional
(resp. finite-dimensional) R-modules. By the support of an object M in
MODR we mean the full subcategory suppM of R formed by the set
{x ∈ R : M(x) 6= 0}. We denote by JR the Jacobson radical of the cat-
egory ModR.

For any k-algebra A we denote analogously by MODA (resp. modA) the
category of all (resp. all finite-dimensional) right A-modules and by J(A)
the Jacobson radical of A.

Let G be a group of k-linear automorphisms of R acting freely on the set
obR of all objects of R. Then G acts on the category MODR by translations
g(−), which assign to each M in MODR the R-module gM = M ◦ g−1 and
to each f : M → N in MODR the R-homomorphism gf : gM → gN given
by the family (f(g−1(x)))x∈R of k-linear maps. Given M in MODR the
subgroup

GM = {g ∈ G : gM 'M}
of G is called the stabilizer of M . We do not assume here that G acts freely on
the set of isoclasses of indecomposable finite-dimensional R-modules (briefly
(indR)/'), i.e. that GM = {idR} for every indecomposable M in modR.

We can form the orbit category R = R/G, which is again a locally
bounded k-category (see [12]), and we want to study the module category
modR in terms of the category ModR. The tool we have at our disposal is
a pair of functors

MODR
Fλ−→←−
F•

MODR,

where F• : MODR → MODR is the “pull-up” functor associated with the
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canonical Galois covering functor F : R→ R, assigning to each X in MODR
the R-module X ◦F , and the “push-down” functor Fλ : MODR→ MODR
is the left adjoint to F•.

The classical results from [12] state that if G acts freely on (indR)/'
then Fλ induces an embedding of the set ((indR)/')/G of G-orbits into
(indR)/'.

Let H be a subgroup of the stabilizer GM of a given M in MODR. By
an R-action of H on M we mean a family

µ = (µg : M → g−1

M)g∈H

of R-homomorphisms such that µe = idM , where e = idR is the unit of H,

and g−1
1 µg2 · µg1 = µg2g1 for all g1, g2 ∈ H (see [12]). Observe that if H is

a free group then M admits an R-action of H (see [3, Lemma 4.1]). We
denote by ModHR the category consisting of pairs (M,µ), where M is a
locally finite-dimensional R-module and µ an R-action of H on M . For any
M = (M,µ) and N = (N, ν) in ModHR the space of morphisms from M to

N in ModHR consists of all f ∈ HomR(M,N) such that g−1

f · µg = νg · f ,

for every g ∈ H, and is denoted by HomH
R (M,N). We denote by JHR the

ideal HomH
R ∩JR of the category ModHR.

A useful interpretation of modR is the category ModGf R consisting of
pairs (M,µ) in ModGR such that suppM is contained in a union of finitely
many G-orbits in R (see [3, 12]). The functor F• associating with any X in
modR the R-module F•X endowed with the trivial R-action of G yields an
equivalence

mod(R) ' ModGf R.

We denote by IR the ideal F−1• (JGR ) which constitutes an essential class
of morphisms in modR. It is clear that IR is contained in the Jacobson
radical JR but usually not conversely.

An important role in understanding the nature of objects from ModGf R,
or equivalently modR, is played by a class of indecomposable locally finite-
dimensional R-modules called G-atoms. Following [4], an indecomposable
B in ModR (with local endomorphism ring) is called a G-atom if suppB is
contained in a union of finitely many GB-orbits in R.

Denote by A a fixed set of representatives of isoclasses of all G-atoms,
by Ao a fixed set of representatives of G-orbits of the induced action of G
on A and by A the set of all B ∈ A such that EndR(B)/J(EndR(B)) ' k.
Given a subset U ⊂ A we set Uo = GU ∩Ao (resp. U = GU ∩A), where GU
is the union of all orbits of elements from U in A. For any B ∈ A, denote
by SB a fixed set of representatives of left cosets of GB in G, containing the
unit e of G.
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One can show that the set of isoclasses of R-modules M in ModR such
that GM = G and suppM/G is finite, is in bijective correspondence with
the set (NAo)0 of all sequences n = (nB)B∈Ao

of natural numbers such that
almost all nB are zero. This correspondence is given by n 7→Mn, where

Mn =
⊕
B∈Ao

( ⊕
g∈SB

g(BnB )
)

(see Corollary 2.4). In consequence, modR is equivalent via F• to the full
subcategory of ModGf R formed by all pairs (Mn, µ), where n ∈ (NAo)0 and
µ is an arbitrary R-action of G on Mn. Therefore to any X in modR one
can attach the finite set dss(X), called the direct summand support of X,
consisting of all B ∈ A such that nB is nonzero, where F•X 'Mn.

This notion suggests restricting the investigation of modR to some of its
parts. For any U ⊂ A one can study the full subcategory modUR of modR
consisting of all X in modR such that dss(X) ⊂ GU .

The set A splits naturally into the disjoint union A = Af ∪A∞ where Af

(resp. A∞) is the subset of all finite (dimensional) (resp. infinite (dimen-
sional)) G-atoms. It is well known (see [8, Lemma] and [10, 2.3]) that if G
acts freely on (indR)/' then the above splitting induces the splitting

modR = modAfR ∨modA∞R

in the sense explained below.

Let C be a Krull–Schmidt category and C0, C1, C2 and Ci, i ∈ I, full
subcategories of C, which are closed under direct sums, direct summands
and isomorphisms. The notation C = C1 ∨ C2 (resp. C =

∨
i∈I Ci) means

that the set of indecomposable objects in C splits into the disjoint union of
indecomposables in C1 and in C2 (resp. in Ci, i ∈ I). We denote by [C0] the
ideal of all morphisms in C which factor through an object from C0. For any
ideal I in the category C the restriction of I to C0 is denoted by IC0 .

The situation described above will play a model role in the further consid-
erations. In this paper we shall “split off and partially describe” the category
modUR, for some special U ⊂ A, also contained in A∞.

Following [4] a G-atom B ∈ A is called periodic if it admits an R-action
of GB (this is always the case if the group GB is free). Denote by P the set
of all periodic G-atoms.

Let B be a periodic G-atom B and νB an R-action of a GB on B. Then
(B, νB) is in ModGBf R and FλB has the structure of a kGB-R-bimodule,
which is finitely generated free as a left kGB-module, where kGB is the
group algebra of GB over k (see [10, 3.6] for the precise definition of this
structure). Consequently, it induces two functors

ΦB = −⊗kGB FλB : mod kGB → modBR
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and

ΨB = (HR(B,F•(−))−1 : modR→ mod kGB

(see [3, 2.3 and 2.4]). Here HR denotes the factor bimodule HR/JR, where
HR = HomR(−, · ) and JR is the Jacobson radical of ModR.

Let U = (U , ν) be a pair where U ⊂ Po is a subset of periodic G-atoms
and ν = (νB)B∈U a fixed selection of R-actions of GB on B. We denote by

ΦU :
∐
B∈U

mod kGB → modR

the functor defined by the family (ΦB)B∈U and by

ΨU : modR→
∏
B∈U

mod kGB

the functor induced by the family (ΨB)B∈U , where ΦB and ΨB are defined
by the pairs (B, νB). Observe that the subcategory ImΨU is contained in
the category

∐
B∈U mod kGB . Then the pair (ΦU , ΨU ) of functors∐

B∈U
mod kGB

ΦU−→←−
ΨU

modR

is called the Galois covering reduction to stabilizers (briefly, GCS-reduction)
with respect to U (in fact with respect to (νB)B∈U ). It will be used to describe
the category modUR in terms of the module categories of the stabilizer group
algebras.

It is proved in [4, Theorem 2.2] that for any family U of periodic
G-atoms contained in Po (i.e. EndR(B)/J (EndR(B)) ' k for each B ∈ U)
the functor ΦU :

∐
B∈U mod kGB → modR is a right quasi-inverse for

ΨU : modR →
∏
B∈U mod kGB (therefore faithful) and is a representa-

tion embedding in the sense of [22] (i.e. yields an injection of the set of
isoclasses of indecomposables in

∐
B∈U mod kGB into the set of isoclasses of

indecomposables in modUR).
One can show (see Proposition 6.1) that the ideal KerΨU contains the

ideal [mod(Ao\U)R], and consequently ΨU induces a functor

Ψ U : modR/[mod(Ao\U)R]→
∐
B∈U

mod kGB ,

and that ΦU induces a faithful representation embedding functor

ΦU :
∐
B∈U

mod kGB → modR/[mod(Ao\U)R]

(ΦU is a right quasi-inverse for Ψ U ).
Following [4], the GCS-reduction (ΦU , ΨU ) with respect to U is said to

be full provided ΦU and ΨU induce
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(a) a splitting modR = modUR ∨mod(Ao\U)R,

(b) a bijection between the sets of isoclasses of indecomposables in the
categories

∐
B∈U mod kGB and modUR.

It is shown (see Proposition 6.1) that then:

(c) KerΨU (X,Y ) =

{
IR(X,Y ) if X,Y ∈ modUR,

HomR(X,Y ) if X or Y 6∈ modUR,

for any indecomposables X,Y in modR,

(d) ΦU and Ψ U defined above yield a bijection between the sets of iso-
classes of indecomposables in

∐
B∈U mod kGB and modR/[mod(Ao\U)R].

The GCS-reduction (ΦU , ΨU ) with respect to U is called strictly full
provided the pair (ΦU , Ψ U ) yields an equivalence of categories.

Note that if the GCS-reduction (ΦU , ΨU ) is strictly full then it is full
(ImΦU ⊂ modUR and [mod(Ao\U)R]modUR

⊂ (JR)modUR
).

Let B be a periodic G-atom together with an R-action νB of GB on B,
and H be a subgroup of G containing GB . We say that B = (B, νB) splits
(resp. splits properly) an object M = (M,µ) in ModHR provided both
embeddings JR(B,M) ⊂ HomR(B,M) and JR(M,B) ⊂ HomR(B,M) are
splittable (resp. splittable, proper) monomorphisms in MOD(kGB)op (for
the precise definition of the left kGB-module structure see 5.1).

Let C be a full subcategory of ModHR. We say B splits C provided B
splits each M in C.

One of the main results in this paper is the following.

Theorem A [4, Theorem 3.3]. Let R be a locally bounded k-category
and G ⊂ Autk(R) be a group of k-linear automorphisms acting freely on
obR. Suppose that U ⊂ Po is a family of G-atoms together with a selection
(νB)B∈U of R-actions of GB on B such that each (B, νB) splits ModGf R,
for B ∈ U . Then the Galois covering reduction (ΦU , ΨU ) to stabilizers with
respect to U is full. In particular (a)–(d) as above hold.

Following [4], we denote by A1 the set of all G-atoms B ∈ A (in fact
infinite G-atoms) such that GB is an infinite cyclic group, and by A1′ the
subset of all B ∈ A∞ such that GB has an infinite cyclic subgroup of finite
index. Observe thatA1 ⊂ P and that for any B ∈ A1 the group algebra kGB
is isomorphic to the Laurent polynomial algebra k[T, T−1]. It is shown in
[6] that A∞ coincides with A1 provided R is a representation-tame category
over an algebraically closed field and the group G is torsionfree.

For any B ∈ A1 we denote by A1′(B) the set of all B′ ∈ A1′ satisfying
the following conditions:
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(a) suppB′ ⊂ ̂̂
suppB,

(b) GB′ ∩GB 6= {e},
(c) suppB′ ∩ suppB 6= ∅.

Here for any subcategory L of R, L̂ denotes the full subcategory of R
consisting of all y ∈ obR such that R(x, y) or R(y, x) is nonzero for some
x ∈ obL (see [9]). Note that if (b) and (c) hold then suppB′ ∩ suppB is
infinite since so is GB ∩GB′ .

Now we formulate a generalization of [4, Theorem 5.2].

Theorem B. Let R be a locally bounded k-category , G ⊂ Autk(R) be a
group of k-linear automorphisms acting freely on obR, and U be a subset of
A1

o together with a selection {νB}B∈U of R-actions of GB on B. Assume
that for any B ∈ A1 and B′ ∈ A1′(B) each R-homomorphism f : B → B′

(resp. f : B′ → B) factors through a direct sum of finite-dimensional R-
modules. Then the Galois covering reduction (ΦU , ΨU ) to stabilizers with
respect to U is strictly full and the functors ΦU :

∐
B∈U mod kGB → modR

and ΨU : modR →
∏
B∈U mod kGB defined by the families (ΦB)B∈U and

(ΨB)B∈U induce the following equivalence:∐
B∈U

mod k[T, T−1] ' modR/[mod(Ao\U)R] ' modUR/[modAfR]modUR
.

In particular the functors ΦU and ΨU induce:

(i) a splitting modR = modUR ∨mod(Ao\U)R,

(ii) a bijection between the isoclasses of indecomposables in modUR and
in
∐
B∈U mod k[T, T−1].

In case the group G acts freely on (indR)/' the above equivalence has
the form ∐

B∈U
mod k[T, T−1] ' modUR

where modUR is defined below.

Suppose the group G acts freely on (indR)/'. We denote by mod1R the
full subcategory of modR consisting of the R-modules of the first kind, i.e.
those of the form Fλ(M) for some M in modR (see [10, 3, 4]). We denote
by modR the factor category modR/[mod1R]. For any subset U ⊂ A we

denote by modUR the image of modUR in the factor category modR.

We will present the full proof of the above theorem, simpler than that
announced in [4].

The major part of the paper is devoted to assembling information on
the behaviour of the categories ModR and ModGR indispensable for the
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proofs of the main results. An essential component is formed by the results
describing the properties of various k-additive functors on both categories.

For every k-category C we denote by MOD C the category of C-modules
consisting all contravariant k-linear functors from C to the category of
k-vector spaces (as for locally bounded k-categories). For any M in MOD C
we denote by SocM the socle of the C-module M .

Given a full subcategory C0 of C and a C-module M we denote by M|C0
the C0-module which is the restriction of M to C0. If f : M → N is a
C-homomorphism we denote by f|C0 : M|C0 → N|C0 the C0-homomorphism
which is the restriction of f to C0.

Let A be a k-algebra. For any m,n ∈ N we denote by Mm×n(A) the set
of all m × n-matrices with coefficients in A, and by Mn(A) the algebra of
all square n× n-matrices with coefficients in A.

Throughout the paper we use in principle the notation and terminology
established in [10, 3, 4].

The paper is organized as follows. In Section 2 the elementary proper-
ties of the endomorphism (local) algebras of indecomposable locally finite-
dimensional R-modules, in particular G-atoms, are studied. Also, properties
of the Jacobson radical JR (of the category ModR) related to the unique-
ness of decomposition into indecomposables in ModR are discussed. The
main result of this section states that the endomorphism algebra EndR(B)
of a G-atom B is semiprimary and its quotient division algebra has finite
dimension over the basic field (see Theorem 2.9). Section 3 is devoted to
the elementary proof of indecomposability of the injective EndR(B)-module
(EndR(B))∗ (see Theorem 3.1 and Corollary 3.1). In Section 4 the category
MOD(ModR)op is studied. Certain properties of the injective objects in
MOD(ModR)op are discussed. In particular it is proved that the dual to
the projective module HomR(−, B)∗ and the tensor product functor −⊗RB∗
for any G-atom both have a simple socle (see Theorem 4.4). Section 5 con-
tains a discussion of the various functors considered in the previous section,
which are associated with a G-atom B equipped with an R-action of the
stabilizer GB and now treated as functors from ModGR to MOD(kGB)op.
In particular it is proved that the kGB-modules JR(B,M) and JR(M,B)
are pure injective for any M in ModGR (see Theorem 5.2). Section 6 is de-
voted to the proofs of Theorems A and B. A corollary of Theorem B (see
Theorem 6.4) is also formulated.

Some of the results of this paper with the proofs in a very brief outline
were announced in [4]. They were also presented to the Cocoyoc Conference
ICRA VII in Mexico, August 1994, at Paderborn University, June 1994, at
Bielefeld University, July 1994, and at Toruń University in several seminar
talks.
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2. Some remarks on the endomorphism algebras of indecom-
posable locally finite-dimensional modules. In this section we study
the elementary properties of the k-algebra EndR(B), where B is an object
in IndR, in particular a G-atom. We compare EndR(B) with the endomor-
phism algebras of certain indecomposable finite-dimensional modules. We
also discuss certain properties of the Jacobson radical of the category ModR,
which are important for the uniqueness of decomposition into a direct sum of
indecomposables in ModR (see [10, Lemma 2.1] for an algebraically closed
field case). The original proof consists only of hints. Therefore we present
a full proof for an arbitrary field (see Lemmas 2.1, 2.2 and 2.4).

2.1. Any M in ModR decomposes into a direct sum of indecomposable
submodules.

P r o o f. Consider the class D of all families (Mi)i∈I of nonzero submod-
ules Mi of M having the property that M =

⊕
i∈IMi. The class D is

naturally ordered by the refinement relation defined as follows: (Mi)i∈I ≤
(M ′i′)i′∈I′ if and only if there exists a surjection f = fI,I′ : I ′ → I such that
Mi =

⊕
i′∈f−1(i)Mi′ for every i ∈ I.

Note that it is enough to show that (D,≤) satisfies the assumptions of
the Zorn Lemma since maximal elements of D consist of indecomposable
R-modules. Clearly D is nonempty since {M} is in D. Take any linearly
ordered subset D′ = {(Mi(t))i(t)∈I(t)}t∈T of D. Denote by I the inverse limit
of the system {I(t), fI(t′),I(t)} of sets and maps. For any i = (i(t))t∈T ∈ I set

Mi =
⋂
t∈T Mi(t) and I0 = {i ∈ I : Mi 6= 0}.

We prove that (Mi)i∈I0 belongs to D. For any x ∈ obR the k-vector
space M(x) is finite-dimensional, therefore there exists tx ∈ T such that
in each set Ij(tx)

= {i ∈ I0 : i(tx) = j(tx)}, j(tx) ∈ I(tx), there is at most
one i with Mi(x) 6= 0 and then obviously Mi(x) = Mi(tx)

. Consequently,⊕
i∈I0 Mi(x) =

⊕
i(tx)∈I(tx)

Mi(tx)
= M(x) for every x ∈ obR and M =⊕

i∈I0 Mi. Then (Mi)i∈I0 belongs to D and obviously it is an upper bound
of D′.

For the uniqueness of the above decomposition see Lemma 2.4.

2.2. Lemma. Let B be an indecomposable locally finite-dimensional
R-module. Then the endomorphism algebra EndR(B) is local with Jacob-
son radical J(EndR(B)) consisting of all locally nilpotent endomorphisms
f ∈ EndR(B) (in the sense that each f(x) is a nilpotent k-linear endomor-
phism for x ∈ obR), and the factor k-algebra EndR(B)/J(EndR(B)) has a
finite dimension over k.

P r o o f. It is enough to show that any f ∈ EndR(B) is either invertible
or locally nilpotent, since locally nilpotent endomorphisms form a two-sided
ideal in EndR(B). By indecomposability of B for any f ∈ EndR(B) there
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exists an irreducible polynomial p ∈ k[t] such that each k[t]-module B(x),
x ∈ obR, with the k[t]-module structure given by f(x), is isomorphic to a
finite-dimensional direct sum of the form

⊕
n∈N(k[t]/(pn))mn,x . Now it is

clear that if p = t then all f(x) are nilpotent, otherwise all are invertible
(also for p of degree higher than 1).

To prove the second assertion note that if a local k-algebra A admits a
k-algebra homomorphism to a finite-dimensional k-algebra then the dimen-
sional dimk(A/J(A)) is finite. Since for any x ∈ suppB, Endk(B(x)) is
a finite-dimensional k-algebra and the projection map πx : EndR(B) →
Endk(B(x)) is a k-algebra homomorphism, the proof is complete.

Remark. (1) J(EndR(B)) consists of all f ∈ EndR(B) such that f(x)
is nilpotent for at least one x ∈ suppB.

(2) Let U1 (resp. U2) be a full subcategory of R, B1 (resp. B2) an object
of IndU1 (resp. IndU2), and f1 (resp. f2) an endomorphism in EndU1(B1)
(resp. EndU2(B2)). Suppose that B1(x) = B2(x) and f1(x) = f2(x) for
some x ∈ suppB1 ∩ suppB2. Then f1 ∈ J(EndU1

(B1)) if and only if
f2 ∈ J(EndU2

(B2)).

2.3. For simplicity we denote the Jacobson radical JR of the category
ModR by J (see [16] for the precise definition). As an immediate conse-
quence of the above lemma, for any objects B,B′ in IndR we obtain

J (B,B′) =

{
J(EndR(B)) if B = B′

HomR(B,B) if B 6' B′.

Before studying further properties of the ideal J we recall some defini-
tions.

Let M , N be R-modules. Following [5] a family (fi)i∈I ⊂ HomR(M,N)
is said to be summable if for each x ∈ obR and m ∈ M(x), fi(x)(m) = 0
for almost all i ∈ I. In this case the well defined R-homomorphism f =∑
i∈I fi : M → N , given by f(x)(m) =

∑
i∈I fi(x)(m) for any x ∈ R,

m ∈M(x), is called the sum of the family (fi)i∈I .

A subspace W of HomR(M,N) is said to be summably closed if
∑
i∈I fi

∈W for any summable family (fi)i∈I ⊂W .

An ideal I of a full subcategory C of MODR is said to be summably
closed if the subspace I(M,N) of HomR(M,N) is summably closed for any
M,N in C.

A trivial example of a summably closed ideal in the category is ModR is
the ideal HomR(−, ?). We will show that also J is a summably closed ideal
in ModR. The first step is the following.

Lemma. Let B,B′ be objects in IndR. Then the subspace J (B,B′) of
HomR(B,B′) is summably closed.
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P r o o f. By the remarks above it is enough to show that the subspace
J(EndR(B)) of EndR(B) is summably closed for each B in IndR. Take
any summable family (fi)i∈I ⊂ J(EndR(B)). Then for any x ∈ obR,
(
∑
i∈I fi)(x) = (

∑
i∈Ix fi)(x), where Ix = {i ∈ I : fi(x) 6= 0} is finite.

Therefore by Lemma 2.2 the endomorphism
∑
i∈I fi is locally nilpotent,

since
∑
i∈Ix fi ∈ J(EndR(B)), and it belongs to J(EndR(B)).

2.4. For any algebra E we denote by u(E) the group of its units and
by E the factor algebra E/J , where J = J(E). For any m,n ∈ N and
f ∈ Mm×n(E) we denote by f the image of f under the canonical projection

π : Mm×n(E)→ Mm×n(E) ' Mm×n(E)/Mm×n(J).

Let Bi, i ∈ I, be a family of pairwise nonisomorphic objects in IndR. For
any i ∈ I we set Ei = EndR(Bi) and Ei = Ei/Ji, where Ji = J(EndR(Bi)).

Lemma. Let (mi)i∈I and (ni)i∈I be sequences of natural numbers such
that the R-modules M =

⊕
i∈I B

mi
i and N =

⊕
i∈I B

ni
i are locally finite-

dimensional. Suppose we are given an R-homomorphism f : M → N with
components fj,i : Bmii →B

nj
j , i, j ∈ I. Then f is an isomorphism if and only

if mi = ni and f i,i ∈ Mmi(Ei) (equivalently fi,i ∈ Mmi(Ei)) is invertible
for every i ∈ I.

Sublemma. Let E be a local ring with Jacobson radical J = J(E) and
n be a positive integer. Then

u(Mn(E)) + Mn(J) ⊂ u(Mn(E)).

Hence f ∈ u(Mn(E)) if and only if f ∈ u(Mn(E)), and J(Mn(E)) =
Mn(J).

P r o o f. It is enough to show that if a = (ai,j)i,j∈I ∈ Mn(E) is such that
ai,i ∈ u(E) for every i ∈ {1, . . . , n} and ai,j ∈ J for all i, j ∈ {1, . . . , n},
i 6= j, then a ∈ u(Mn(E)). (Note that c + b = c(1 + c−1b) for any
c ∈ u(Mn(E)) and b ∈ J(Mn(E)).) Take any matrix a as above. Applying
the Gaussian-row elimination, a can be transformed to an upper triangu-
lar matrix a′ = (a′i,j)i,j∈I ∈ Mn(E) such that a′i,i ∈ u(Mn(E)) for every
i ∈ {1, . . . , n}. Then a is invertible since a′ is.

Proof of Lemma. Assume first that f : M→N is an isomorphism. Let an
R-homomorphism g : N → M with components gi,j : B

nj
j → Bmii , i, j ∈ I,

be the inverse of f . Then for any i ∈ I, (gi,jfj,i)j∈I is a summable family of
R-homomorphisms and therefore we have the equality

idBmi =
∑
j∈I

gi,jfj,i

of the (i, i)th components of the endomorphisms idM and gf in EndR(M).
Since gi,jfj,i ∈ Mn(Ji) for any j ∈ I \ {i} (Bj 6' Bi), each endomor-
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phism gi,ifi,i = idBmi −
∑
i 6=j∈I gi,jfj,i is invertible by the Sublemma and

Lemma 2.3, for i ∈ I. Analogously one shows that fi,igi,i ∈ u(Mni(Ei)) and
therefore each fi,i is invertible. Consequently, the matrix f i,i ∈ Mni×mi(Ei)
is invertible and mi = ni for every i ∈ I.

Suppose now that mi = ni for every i ∈ I (then M = N) and that we are
given an R-endomorphism f : M → N with components fj,i : Bmii → B

nj
j ,

i, j ∈ I, such that all f i,i’s are invertible.

Assume first that I is finite. Then applying Gaussian elimination, first
with respect to rows and then with respect to columns, and using the Sub-
lemma we can transform the matrix (fj,i)i,j∈I to (f ′j,i)i,j∈I such that f ′j,i = 0
for all i, j ∈ I, i 6= j, and f ′i,i ∈ u(Mmi(Ei)) for every i ∈ I. The endomor-
phism f ′ ∈ EndR(M) defined by (f ′j,i)i,j∈I is invertible and therefore f itself
is invertible.

To prove the general case consider for any x ∈ obR the endomorphism
fx :

⊕
i∈Ix B

mi
i →

⊕
i∈Ix B

mi
i defined by the family of R-homomorphisms

(fj,i : Bmii → B
nj
j )i,j∈Ix , where Ix={i ∈ I : Bmii (x) 6= 0}. By the first part

of the proof each fx is an isomorphism since Ix is finite. Consequently, f is
an isomorphism (f(x) = fx(x) for every x ∈ obR).

Corollary. Let M be in ModR. Then suppM/G is finite and GM '
G if and only if M is isomorphic to Mn for some sequence n = (nB)B∈Ao

∈
(NAo)0 (see Introduction).

2.5. Proposition. The Jacobson radical J is a summably closed ideal
in ModR.

By [5, Proposition 3.1] it is enough to show that for any M and N in
ModR and fixed decompositions M =

⊕
s∈SMs and N =

⊕
t∈T Nt into di-

rect sums of indecomposable submodules (they always exist by Lemma 2.1),

J (M,N) =
∏
s∈S

∏
t∈T
J (Ms, Nt).

Take any f ∈ HomR(M,N) with components ft,s ∈ J (Ms, Nt), s ∈ S,
t ∈ T . We have to show that for any g ∈ HomR(N,M) the endomorphism
idM −gf is invertible (see [16]). Let g have components gs,t∈HomR(Nt,Ms),
s ∈ S, t ∈ T . Then the (s′, s)th component (gf)s′,s ∈ HomR(Ms,Ms′) of gf
is the sum of the summable family (gs′,tft,s)t∈T and by Lemma 2.3 it belongs
to J (Ms,Ms′) for all s, s′ ∈ S. Now idM −gf is invertible by Lemma 2.4.
Consequently, f ∈ J (M,N).

Corollary. Let M1,M2 and Ni, i ∈ I, be indecomposable R-modules
in ModR. Suppose f : M1 → N and g : N → M2, where N =

⊕
i∈I Ni

(which is not necessarily in ModR), are R-homomorphisms with compo-
nents fi ∈ HomR(M1, Ni) and gi ∈ HomR(Ni,M2), i ∈ I. Assume that for
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any i ∈ I either fi or gi belongs to the Jacobson radical J . Then so does
the composition gf .

P r o o f. Follows directly from [5, Lemma 1.1(ii)] and the above Proposi-
tion.

Later we will discuss the analogous question for products in some special
situation (see Lemma 2.8).

2.6. The essential role in further considerations will be played by the
following notion.

Definition. Let B be an object in IndR and U a finite nontrivial full

subcategory of suppR. A V -module B(U) = B
(U)
V in IndV , where V is a

full subcategory of R containing U , is called a V -approximation of B on U
provided the following two conditions are satisfied:

(1) B|U ' B(U)
|U ,

(2) for any f ∈ EndR(B) there exists f (U) = f
(U)
V ∈ EndV (B(U)) such

that f|U = f (U)
|U .

The approximation B(U) is called finite if dimk B
(U) is finite. If V = R

then the R-module B(U) is simply called an approximation of B on U .

Proposition. Let B be in IndR. Then for any finite full subcategory U
of suppR there exists a finite full subcategory U ′ of R containing U which

admits a finite U ′-approximation B
(U)
U ′ of B on U . In particular there exists

a finite approximation B(U) of B on U .

P r o o f. Take any U as above. By [10, Lemma 4.3 and Corollary 4.4]
(they are also valid if k is not algebraically closed, one has only to check some
details in the proof of [10, Lemma 4.4]) there exist a finite full subcategory
U ′ of R and an indecomposable U ′-module B′ such that B|U = B′|U and

B|U ′ = B′⊕B′′ for some B′′ in modU ′. It is clear that for any f ∈ EndR(B)
the component f ′ : B′ → B′ of the U ′-homomorphism f|U ′ : B|U ′ → B|U ′
satisfies f|U = f ′|U . The last assertion follows directly from the first by the

existence of the full and faithful functor eU
′

λ : modU ′ → modR, which is

right quasi-inverse (and left adjoint) to the restriction functor eU
′

• : modR→
modU ′.

Remark. (1) For any f and f (U) satisfying the condition (2) of Defini-
tion 2.6, f ∈ J(EndR(B)) if and only if f (U) belongs to J(EndV (B(U))) (see
Remark 2.2).

(2) The mapping f 7→ f (U)
|U (see Definition 2.6) defines an algebra

homomorphism

EndR(B)→ EndU (B(U)
|U ).
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(3) The mapping f 7→ f ′ (see the proof of Proposition 2.6) induces an
algebra homomorphism

EndR(B)→ EndU ′(B
′)/J(EndU ′(B

′))

(B′′ has no direct summand isomorphic to B′), and consequently by (1) an
algebra embedding

EndR(B)/J(EndR(B)) ↪→ EndU ′(B
′)/J(EndU ′(B

′)).

2.7. Lemma. Let B be in IndR and U be a finite nontrivial full subcat-
egory of suppB. Assume that for an approximation B′ = B(U) of B on U
the factor algebra EndR(B′)/J(EndR(B′)) is isomorphic to k. Then so is
EndR(B)/J(EndR(B)).

P r o o f. Take any f ∈ EndR(B). By assumption there exist f ′ ∈
EndR(B′) and a ∈ k such that f|U = f ′|U and f ′ − a · idB′ ∈ J(EndR(B′)).

Then by Remark 2.2, f−a · idB ∈ J(EndR(B)). This directly implies the
required isomorphism.

Corollary. Let {Cn}n∈N be an ascending sequence of finite, full ,
connected subcategories of R such that R =

⋃
n∈N Cn, and {Bn}n∈N

a fundamental sequence w.r.t. {Cn}n∈N produced by an R-module B in
IndR (see [10, Definition 4.1]). Assume that for infinitely many n ∈ N the
factor algebra EndCn(Bn)/J(EndCn(Bn)) is isomorphic to k. Then so is
EndR(B)/J(EndR(B)). In particular this is always the case if k is alge-
braically closed.

P r o o f. Denote by U the full subcategory formed by {x}, where x is a
fixed object in suppB. By [10, Lemma 4.3 and Corollary 4.4], Bn is a finite
Cn-approximation of B on U for almost all n ∈ N. Then by assumption
there exists n ∈ N such that the finite approximation of B on U of the
form eCnλ (Bn) (see the proof of Proposition 2.6) satisfies the assumption of
Lemma 2.7.

2.8. Proposition 2.6 allows us to answer partially the question mentioned
at the end of 2.5.

Lemma. Let B be in IndR and f : B →
∏
I B an R-homomorphism

defined by a family of endomorphisms fi ∈ J(EndR(B)), i ∈ I. Then gf ∈
J(EndR(B)) for any homomorphism g :

∏
I B → B.

P r o o f. Assume first that B is finite-dimensional. Then the ideal J =
J(EndR(B)) is nilpotent so there exists a positive integer m ∈ N such that
Jm−1 6= 0 and Jm = 0. The endomorphism gf is annihilated on the right
by Jm−1 since fiJ

m−1 = 0 for every i ∈ I. Consequently, gf ∈ J , since
otherwise gf is invertible and gfJm−1 6= 0.
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Now we consider the general case. Fix a nontrivial finite full subcat-
egory U of suppB. Then there exist U ′, B′ and B′′ as in the proof of
Proposition 2.6. It is easy to see that (gf)|U = (g′f ′)|U , where f ′ : B′ →∏
I B
′ (resp. g′ :

∏
I B
′ → B′) denotes the appropriate component of the

U ′-homomorphism f|U ′ : B|U ′ →
∏
I B|U ′ (resp. g|U ′ :

∏
I B|U ′ → B|U ′)

under the standard identification∏
I

B|U ′ =
∏
I

B′ ⊕
∏
I

B′′

(cf. Remark 2.6(3)). Moreover, by assumption all components f ′i , i ∈ I,
of f ′ belong to J(EndU ′(B

′)) (see Remark 2.2) and by the first part of the
proof, g′f ′ ∈ J(EndU ′(B

′)). Now the assertion follows immediately from
Remark 2.2.

2.9. The following fact is useful in the proof of the main result of this
section.

Lemma. Let B be in IndR. Assume that {Ui}i∈I is a family of full , finite
subcategories of suppB such that suppB =

⋃
i∈I Ui, and {Bi}i∈I a family

of indecomposable R-modules such that each Bi = B(Ui) is a finite approxi-
mation of B on Ui. If the sequence {dimk(EndR(Bi))}i∈I is bounded , then
EndR(B) is a semiprimary k-algebra.

P r o o f. Letn be an upper bound of {dimk(EndR(Bi))}i∈I . We show that
J(EndR(B))n = 0. Take any f1, . . . , fn ∈ J(EndR(B)) and x in suppB.

By the assumptions there exist i ∈ I and f
(i)
1 , . . . , f

(i)
n ∈ J(EndR(Bi))

such that x is in Ui and fl(x) = f
(i)
l (x) for every l = 1, . . . , n. It is clear

that J(EndR(Bi))n = 0 and therefore fn(x) · . . . · f1(x) = 0. Consequently,
fn · . . . · f1 = 0.

Theorem. Let R be a locally bounded k-category and G a group of
k-linear automorphisms acting freely on obR. Then the endomorphism al-
gebra EndR(B) of any G-atom B is a local , semiprimary k-algebra such that
dimk EndR(B)/J(EndR(B)) is finite.

P r o o f. For any x in suppB denote by Ux the full subcategory of R
formed by {x}. By Proposition 2.6 there exists a finite approximation Bx =
B(Ux) of B on Ux. Without loss of generality we can assume that gBx ' Bgx
for any x∈suppB and g∈GB . Then the sequence {dimk EndR(Bx)}x∈suppB
is bounded, since suppB is a union of a finite number of GB-orbits in R.
Now the assertion follows directly from Lemmas 2.9 and 2.2.

3. On indecomposability of (EndR(B))∗

3.1. The main aim of this section is to give an elementary short proof of
the following fact.
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Theorem. Let A be a local k-algebra with J = J(A). If A is semipri-
mary and dimk A/J is finite then the injective right (resp. left) A-module
(AA)∗ (resp. (AA)∗) has a local endomorphism ring. In particular (AA)∗

(resp. (AA)∗) is indecomposable and it is an injective hull of the unique
(up to isomorphism) simple right (resp. left) A-module.

By Theorem 2.9 we obtain as an immediate consequence the following.

Corollary. Let B be a locally finite-dimensional R-module. If B is a
G-atom then the endomorphism algebra of the left (resp. right) EndR(B)-
module (EndR(B))∗ is local , and consequently EndRB(EndR(B))∗ (resp.
(EndR(B))∗EndRB

) is indecomposable.

3.2. For the proof of the above result we study some multiplicative struc-
ture on the k-linear space A∗∗, where A is an arbitrary k-algebra. Let

• : A∗∗ ×A∗∗ → A∗∗

be the k-bilinear map given by

(ϕ • ψ)(η) = ϕ(ψη)

for ϕ,ψ ∈ A∗∗ and η ∈ A∗, where ψη denotes the k-linear form ψ(η ·−) ∈ A∗.
For any vector space V we denote by eV : V → V ∗∗ the canonical

embedding. For any k-vector spaces V,W we have mutually inverse k-linear
maps

(a) Homk(V,W ∗)
(−)∗◦eW−−−−→←−−−−
(−)∗◦eV

Homk(W,V ∗),

which gives the selfadjointness of the contravariant functor

(−)∗ : MOD k → MOD k,

and if A is a k-algebra the adjointness of the pair of functors

(b) MODA
(−)∗−→←−
(−)∗

MODAop.

Lemma. (i) A∗∗ = (A∗∗, •) is a k-algebra.
(ii) A∗∗ is naturally isomorphic to EndA((AA)∗).

(iii) The canonical map eA : A→ A∗∗ is an embedding of k-algebras.

P r o o f. Applying the A-algebra version of (a) for the A-modules A∗∗ and
A, and the natural isomorphism of left A-modules HomA(AA,M) ' AM ,
we obtain the composite k-linear isomorphism

EndA((AA)∗)
(−)∗◦eA−−−−→ HomA(AA, (AA)∗∗)

∼→ A∗∗,

which we denote by u. The map u assigns to any s ∈ EndA((AA)∗) the
k-linear form (s(−))(1) on A∗. We show that u yields the isomorphism of
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(EndA((AA)∗), ◦) and (A∗∗, •) as k-vector spaces with bilinear forms. The
inverse v of u is given by (v(ϕ))(η) = ϕη for η ∈ A∗. Indeed,

u(v(ϕ) ◦ v(ψ))(η) = ((v(ψ) ◦ v(ϕ))(η))(1) = (v(ψ)(ϕη))(1)

= ψ(ϕη · 1) = (ψ ◦ ϕ)(η)

for any ϕ,ψ ∈ A∗∗ and η ∈ A∗. Now (i) and (ii) follow easily. The proof of
(iii) is an easy check on the definitions.

Remark. (i) The endomorphism algebra EndA((AA)∗) of the left
A-module (AA)∗ is isomorphic to the k-algebra (Aop)∗∗.

(ii) The identity map yields an isomorphism of the A-A-bimodules A∗∗

and (Aop)∗∗, where the bimodule structure is given by Lemma 3.2(iii).

3.3. For any subspace V of a k-vector space U we identify the double
dual space V ∗∗ with its image i∗∗(V ∗∗) = {ϕ ∈ U∗∗ : ϕ(V ⊥) = 0} in U∗∗

via the map i∗∗ : V ∗∗ → V ∗∗, where i : V → U is the canonical embedding
and V ⊥ = {η ∈ U∗ : η(V ) = 0}.

For any two subspaces V and W of a k-algebra A we denote by V ·W
the vector k-subspace of A spanned by all products v · w, where v ∈ V and
w ∈W .

Lemma. V ∗∗ • W ∗∗ ⊂ (V · W )∗∗ for any k-subspaces V and W of a
k-algebra A.

P r o o f. Take any ϕ ∈ V ∗∗ and ψ ∈W ∗∗. To show that ϕ•ψ ∈ (V ·W )∗∗,
equivalently that ϕ(ψη) = 0 for all η ∈ (V ·W )⊥, it is enough to check that
ψη = ψ(η ·−) ∈ A∗ vanishes on V for every η ∈ (V ·W )⊥. Indeed, ψ(η ·v) = 0
for all v ∈ V and η ∈ (V ·W )⊥, since η · v = η(v · −) vanishes on W .

Corollary. For any two-sided ideal I of A the k-subspace I∗∗ ⊂ A∗∗ is
a two-sided ideal of the k-algebra A∗∗, and I∗∗ is nilpotent if I is. Moreover ,
if dimk A/I is finite then the canonical embedding eA : A → A∗∗ induces
an isomorphism of k-algebras A/I ' A∗∗/I∗∗.

P r o o f. The first statement is clear by Lemma 3.3. For the second as-
sertion observe first that (−)∗∗ is an exact functor and therefore we have
the natural k-algebra isomorphism (A/I)∗∗ ' A∗∗/I∗∗. Since dimk A/I is
finite the canonical embedding eA/I : A/I → (A/I)∗∗ is an isomorphism of
k-algebras and consequently eA induces the required isomorphism.

3.4. Proposition. Let A be a local k-algebra. If A is semiprimary
and dimk A/J(A) is finite then A∗∗ is a local , semiprimary k-algebra
(with J(A∗∗) = J(A)∗∗), and A∗∗/J(A∗∗) is a finite-dimensional division
k-algebra isomorphic to A/J(A).

P r o o f. By Corollary 3.3 the k-subspace J(A)∗∗ is a two-sided, nilpotent
ideal of the k-algebra A∗∗, (J(A) is nilpotent) and A∗∗/J(A)∗∗ is a finite-
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dimensional division k-algebra isomorphic to A/J(A). The nilpotency of
J(A)∗∗ implies J(A)∗∗ ⊂ J(A∗∗), since J(A∗∗) is the intersection of all
maximal (left) ideals of A∗∗. On the other hand the ideal J(A)∗∗ is maximal
and therefore J(A)∗∗ = J(A∗∗).

3.5. Proof of Theorem 3.1. By Lemma 3.2(ii) and Proposition 3.4 the
k-algebra EndA((AA)∗) is local and therefore the right injective module
(AA)∗ is indecomposable. Denote by π : AA→ AS the canonical projective
cover of the simple left A-module AS = AA/AJ(A). Since dimk A/J(A) is
finite, the right A-module (AS)∗ is also simple. By indecomposability of
(AA)∗ the morphism π∗ : (AS)∗ → (AA)∗ yields an injective hull of (AS)∗

and the proof is finished.

4. Socle of the functors IB and TB∗ . We briefly discuss the functorial
analog of the situation studied in the previous section.

4.1. Let C be an additive k-category. We introduce ak-category structure
C∗∗ defined as follows. The class of objects ob C∗∗ is by definition ob C. For
any two c1, c2 ∈ ob C∗∗ we set C∗∗(c1, c2) = C(c1, c2)∗∗. Moreover, for an
object c of C we distinguish the element eC(c,c)(idc) ∈ C∗∗(c, c). For any
c1, c2, c3 in ob C∗∗ the composition

◦ : C∗∗(c2, c3)× C∗∗(c1, c2)→ C∗∗(c1, c3)

in C∗∗ is given by the formula

(ϕ ◦ ψ)(η) = ϕ(ψη)

where ϕ ∈ C∗∗(c2, c3), ψ ∈ C∗∗(c1, c2), η ∈ C(c1, c3)∗ and ψη is the k-linear
form in C(c1, c3)∗∗ with ψη(f) = ψ(η(f · −)) for f ∈ C(c2, c3).

We are going to use C∗∗ to describe some injective C-modules. Recall
that as in the case of modules over an algebra we have at our disposal the
pair of contravariant functors

MOD C
(−)∗−→←−
(−)∗

MOD Cop,

which are adjoint to each other. The natural isomorphism

(a) HomC(M,N ∗) ' HomCop(N ,M∗)

establishing the adjointness is induced, for given M in MOD C and N in
MOD Cop, by the pair of k-linear isomorphisms described by 3.2(a).

For an arbitrary object c in C we denote by Ic the C-module C(c,−)∗ and
by Ic the Cop-module C(−, c)∗. By the Yoneda Lemma and the isomorphism
(a) both modules Ic and Ic are injective.
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Lemma. (i) C∗∗ is an additive k-category.

(ii) C∗∗ is canonically isomorphic to the full subcategory of MOD C
formed by all injective modules Ic.

(iii) The canonical embeddings eC(c1,c2) : C(c1, c2)→ C∗∗(c1, c2) induce a
faithful embedding functor e : C → C∗∗ of k-categories.

P r o o f. For any c1, c2 in ob C, by the Yoneda Lemma and (a) we obtain
the composite isomorphism

HomC(Ic1 , Ic2)
∼→ HomCop(C(c2,−), C(c1,−)∗∗)

∼→ C(c1, c2)∗∗,

which we denote by uc1,c2 . As in the proof of Lemma 3.2, one shows that
uc1,c3(Ψ ◦Φ) = uc,c(Ψ)◦uc,c(Φ) for any C-homomorphisms Φ : Ic → Ic
and Ψ : Ic → Ic in MOD C. Now the assertion follows easily.

Remark. (i) For any object c in C the algebra C∗∗(c, c) and the algebra
(C(c, c))∗∗ defined in 3.2 coincide.

(ii) The full subcategory of MOD Cop formed by all injective modules of
the form Ic is canonically isomorphic to (Cop)∗∗.

4.2. The following is an analog of Theorem 3.1.

Theorem. Let C be an additive k-category and c be an object of C.
If A = C(c, c) is a semiprimary , local k-algebra such that dimk A/J(A) is
finite then EndC(Ic) and EndCop(Ic) have the same properties. In particular
the injective modules Ic and Ic are indecomposable.

P r o o f. Follows directly from Lemma 4.1, Remark 4.1 and Proposi-
tion 3.4.

4.3. From now on we assume that C = ModR. We study the properties
of the injective modules IM and IM for an indecomposable locally finite-
dimensional R-module M . For any M in ModR we denote by HM (resp.
HM ) the (ModR)-module HM/JM (resp. (ModR)op-module HM/JM ),
where HM = HomR(−,M) and JM = J (−,M) (resp. HM = HomR(M,−)
and JM = J (M,−)).

Lemma. Let B be in IndR. Then

(i) both modules HB and HB are simple,

(ii) we have the isomorphisms H∗B ' HB and (HB)∗ ' HB.

P r o o f. (i) Let Mod(B)R denote the full subcategory of ModR formed by
all R-modules M ′ which have no direct summand isomorphic to B. The def-
inition is correct by the uniqueness of decomposition into indecomposables
(see Lemma 2.4). Consider the functor MOD(ModR) → MOD EndR(B)
which assigns to eachM in MOD(ModR) the right EndR(B)-moduleM(B).
The restriction of this functor to the full subcategory of MOD(ModR)
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formed by all M vanishing on Mod(B)R is full and faithful. We show first

that HB is zero on Mod(B)R. Note the standard formula

HB(B′) '
{

EndR(B)/J(EndR(B)) if B′ ' B,
0 if B′ 6' B,

for any B′ in IndR (see 2.3). Moreover, since both HomR and J are sum-
mably closed ideals we have the formula

HB(M) '
∏
i∈I
HB(Mi)

for any decomposition M =
⊕

i∈IMi of a locally finite-dimensional R-

module M (see [5, 1.2]). Now it is clear that HB(M ′) = 0 for any M ′ in
Mod(B)R. Consequently, by the above mentioned equivalenceHB is a simple
(ModR)-module since EndR(B) is a local k -algebra (see Lemma 2.2). Using
analogous arguments one proves that HB is a simple (ModR)op-module.

(ii) Note thatH∗B vanishes on Mod(B)R. The EndR(B)-moduleH∗B(B) is
simple since dimk EndR(B)/J(EndR(B)) is finite by Lemma 2.2. Therefore
it is isomorphic to the EndR(B)-module HB(B) and by the previous remark
we have the isomorphism HB ' H∗B .

4.4. For any N in ModRop we denote by TN the (ModR)op-module
−⊗R N , where ⊗R is the tensor product for R-modules (see [16, 3]).

Theorem. Let R be a locally bounded k-category and G a group of
k-linear automorphisms acting freely on obR. Then for any G-atom B the
following hold true:

(i) The injective (ModR)op-module IB = HomR(−, B)∗ is indecompos-
able (with a local endomorphism ring).

(ii) IB is an injective hull of the simple module HB (' (HB)∗).
(iii) The socle of IB is simple and isomorphic to HB.
(iv) The socle of TB∗ = −⊗R B∗ is simple and isomorphic to HB.

P r o o f. (i) follows from Theorems 4.2 and 2.9. Denote by πB : HB →
HB = HB/J B the canonical projection of (ModR)-modules. Then the dual
morphism (πB)∗ : (HB)∗ → IB is an embedding and the assertions (ii) and
(iii) follow from Lemma 4.3 and (i) by general properties of injective objects
in a module category (see [1]).

To show (iv), consider the canonical embedding e : TB∗ ↪→ IB of
(ModR)op-modules defined for any M in ModR by the compositions

M ⊗R B∗ ↪→ (M ⊗R B∗)∗∗ ' HomR(M,B∗∗)∗ ' HomR(M,B)∗

(see [3, Corollary 2.4]). Clearly Soc TB∗ embeds via e into Soc IB . Since
IB is an injective hull of the simple module (HB)∗ (' HB) it follows that
e(TB∗) contains π∗((HB)∗), and now (iv) follows from (iii).
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Remark. Analogous results hold true for (ModR)op-modules.

For any G-atom B we set CB∗ = TB∗/SocTB∗ (' e(TB∗)/(πB)∗((HB)∗);
see proof of Theorem 4.4).

5. Pure-injectivity of J (M,B) and J (B,M)

5.1. From now on we assume that G is a group of k-linear automor-
phisms acting freely on obR.

Let M and N be R-modules and H be a subgroup of GM ∩GN . Recall
that if µ is an R-action of H on M and ν is an R-action of H on N , then
we can define the induced group action

(a) HomR(µ, ν) : H ×HomR(M,N)→ HomR(M,N)

by (h, f) 7→ hνh · hf · µh−1 (see also [3, 2.4]). This defines a left kH-module
structure on HomR(M,N), where kH is the group algebra of H over k.
Observe that the subspace J (M,N) of HomR(M,N) is a kH-submodule.

Let M be an R-module, N be an Rop-module and H be a subgroup of
GM ∩GN . If µ is an R-action of H on M and ν is an Rop-action of H on N ,
then we can define the induced group action

(b) µ⊗R ν : H ×M ⊗R N →M ⊗R N
by (h,mx ⊗ nx) 7→ µh(mx) ⊗ νh(nx), where h ∈ H, x ∈ obR, mx ∈ M(x)
and nx ∈ N(x) (see also [3, 2.4]). This defines a left kH-module structure
on M ⊗R N .

Let M be an R-module (resp. Rop-module) and H be a subgroup of
GM . If µ is an R-action (resp. Rop-action) of H on M then the family of
isomorphisms

{M∗ = h−1

(hM)∗f
h−1

(µh−1 )
∗

−−−−−−→ h−1

M∗}h∈H
defines an Rop-action (resp. R-action) of H on the Rop-module (resp. R-
module) M∗. In the sequel the module M∗ equipped with this action will
be denoted by M∗ for simplicity (in contrast to the notation M~ from
[3, 2.1]).

We will use the same simplification for the standard left kH-module
structure on the dual space of a left kH-module V , which will be simply
denoted by V ∗.

Let B be a periodic G-atom (i.e. admitting an R-action of GB). If we
fix an R-action νB on B then HB , JB , HB , TB∗ and CB∗ (resp. HB , J B ,
HB) can be regarded as functors from ModGR to MOD(kGB)op (resp. from
(ModGR)op to MOD(kGB)op). We keep for them the same notation with
the understanding that now B is not just a single module but a pair (B, νB).
The analogous convention will be applied for their duals. Now the canonical
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exact sequences

0→ JB → HB → HB → 0, 0→ J B → HB → HB → 0

and

0→ (HB)∗ → (HB)∗ → (JB)∗ → 0, 0→ (HB)∗ → (HB)∗ → (J B)∗ → 0

in MOD((ModR)op) (resp. in MOD(ModR)) become exact sequences of
k-linear functors from ModGR to MOD(kGB)op (resp. from (ModGR)op to
MOD(kGB)op). We also have at our disposal an exact sequence

0→ (HB)∗ → TB∗ → CB∗ → 0

of functors from ModGR to MOD(kGB)op (see definition of CB∗ and for
more details proof of Theorem 5.2).

Lemma. Let B = (B, νB) be a periodic G-atom together with a fixed
R-action of GB on B. Suppose that EndR(B)/J(EndR(B)) ' k. Then the
functors

(HB)∗,HB : ModGR→ MOD(kGB)op

and

(HB)∗,HB : (ModGR)op → MOD(kGB)op

are isomorphic (cf. Lemma 4.3).

P r o o f. For simplicity denote the stabilizer GB by H. Take any M =
(M,µ) in ModGR and consider the bilinear composition map

◦ : HomR(M,B)×HomR(B,M)→ EndR(B).

It is not hard to check that ◦ is H-equivariant (with respect to the H-module
structures defined in (a)) in the sense that hψ ◦ hφ = h(ψφ) for all h ∈ H,
φ ∈ HomR(B,M) and ψ ∈ HomR(M,B). The map ◦ induces a k-bilinear
form

◦̄ : HB(M)×HB(M)→ EndR(B)/J(EndR(B)) ' k.
It is easy to show that the form ◦̄ is nondegenerate. Moreover, since EndR(B)
= k · idB ⊕J(EndR(B)) and J(EndR(B)) is an H-submodule of EndR(B),
theH-module EndR(B)/J(EndR(B)) is canonically isomorphic to the trivial
character. Consequently, the form ◦̄ isH-invariant in the sense that hψ◦̄hφ=
ψ ◦̄ φ for all h ∈ H, φ ∈ HB(M) and ψ ∈ HB(M). Therefore the associated
linear isomorphisms HB(M)→ HB(M)∗ (resp. HB(M)→ HB(M)∗) given
by ψ 7→ (ψ ◦̄ −) (resp. φ 7→ (− ◦̄ φ)) are H-equivariant and natural with
respect to M , and so they yield the required isomorphism of functors.

5.2. The main result of this section is the following.

Theorem. Let R be a locally bounded k-category and G a group of
k-linear automorphisms acting freely on obR. Suppose that B = (B, νB)



REDUCTION TO STABILIZERS 253

is a periodic G-atom together with a fixed R-action of GB on B. Then for
any M = (M,µ) in ModGR the kGB-submodules J B(M) of HB(M) and
JB(M) of HB(M) are pure-injective (= algebraically compact).

Before the proof we need some preparation.

5.3. Let V be a k-linear vector space and V ∗ its dual. The bilinear form
V ∗ × V → k given by (η, v) 7→ η(v) for v ∈ V and η ∈ V ∗ induces two
operations

{subspaces W of V }
(−)⊥−→←−
(−)⊥

{subspaces F of V ∗}

defined as follows:

W⊥ = {η ∈ V ∗ : η(W ) = 0}, F⊥ =
⋂
η∈F

Ker η.

Suppose that A is a k-algebra and V is a left A-module. Then for any
A-submodule W of V the subspace W⊥ is an A-submodule of the right
A-module V ∗A, and for any A-submodule F of V ∗A the subspace F⊥ is an
A-submodule of AV .

It is well known that for any subspaces W of V and F of V ∗ we have

(a) (W⊥)⊥ = W, (F⊥)⊥ ⊂ F ;

moreover, if dimk V is finite then

(b) (F⊥)⊥ = F.

We will formulate another condition on F implying (b), that is, implying
that F = W⊥ (' (V/W )∗) for some subspace W of V .

We start by observing that for the canonical embedding eV : V → V ∗∗

and for any subspaces W of V and F of V ∗ we have the equalities

(c) eV (W )⊥ = W⊥

(of subspaces of V ∗) and

(d) eV (F⊥) = eV (V ) ∩ F⊥

(of subspaces of V ∗∗). Note that in the definition of F⊥ one should refer to
the operation (−)⊥ induced by the bilinear form V ∗∗ × V ∗ → k.

Lemma. Let F be a subspace of V ∗. If F⊥ is contained in eV (V ) then
F = (F⊥)⊥ (= (e−1V (F⊥))⊥), and consequently F ' (V/F⊥)∗.

P r o o f. Note that by (c) the inclusion F⊥ ⊂ eV (V ) is equivalent to the
equality F⊥ = eV (F⊥). Therefore the assumption together with (a) and (c)
yields

F = (F⊥)⊥ = (eV (F⊥))⊥ = (F⊥)⊥ = (e−1V (F⊥))⊥.



254 P. DOWBOR

Remark. The inclusion F⊥ ⊂ e(V ) is not always satisfied even for
subspaces of the form F = W⊥, where W is a subspace of V . It is not hard
to see that in this situation F⊥ is contained in eV (V ) if and only if dimk V
is finite.

5.4. Proof of Theorem 5.2. We only prove that J B(M) is pure-injective,
the proof for JB(M) is analogous. It is enough to show that the left kGB-
module J B(M) is of the form X∗ for some right kGB-module X (see [15]).
Using the canonical identification

(TB∗)∗ ' HB

of k-linear functors from (ModGR)op to MOD(kGB)op (see [3, Lemma 2.4])
we can interpret J B(M) as a kGB-submodule of (TB∗)∗(M) = (M⊗RB∗)∗.
We know from the proof of Theorem 4.4(iv) that e(TB∗) contains π∗((HB)∗),
where e is the embedding given by the composition

TB∗ ↪→ (TB∗)∗∗ ' (HB)∗ = IB
and (πB)∗ : (HB/J B)∗ → (HB)∗ is the dual of the canonical projection
πB : HB → HB = HB/J B (both e and (πB)∗ are morphisms of k-linear
functors from ModGR to MOD(kGB)op). Evaluating this inclusion at M we
find that J (M,B)⊥ is contained (via the identification (HB)∗ ' (TB∗)∗∗)
in eM⊗RB∗(M ⊗R B∗). Now the existence of the required kGB-module X
(= CB∗(M)) follows immediately from Lemma 5.3.

Remark. (1) J (M,B) and J (B,M) are also pure-injective as EndR(B)-
modules.

(2) HB(M) and HB(M) are obviously pure-injective modules over kGB
and EndR(B).

(3) It is not clear when the embeddings of kGB-modules J B(M) ↪→
HB(M) (resp. JB(M) ↪→ HB(M)) are pure.

Corollary. The functors

JB , (CB∗)∗ : ModGR→ MOD(kGB)op

are isomorphic. In particular , if GB is an infinite cyclic group, then the
kGB-module JB(M) is injective if and only if the finitely generated kGB-
module CB∗(M) is free.

P r o o f. The first assertion follows immediately from the proof of Theo-
rem 5.2. To prove the second one, fix M in ModGR. Clearly if the kGB-
module CB∗(M) is projective then the kGB-module JB(M) is injective
(JB(M) ' CB∗(M)∗). Note also that the kGB-module CB∗(M) is always
finitely generated since so is

⊕
x∈RM(x)⊗B∗(x) (suppB/GB is finite).

Suppose now that GB is an infinite cyclic group and the kGB-module
JB(M) is injective. Then the group algebra kGB is a principal ideal domain
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(' K[T, T−1]). Hence there exist finitely generated kGB-modules F and T
such that F is free, dimk T is finite and CB∗(M) = T ⊕ F . Thus we obtain
isomorphisms JB(M) ' CB∗(M)∗ ' F ∗ ⊕ T ∗, and so the finite-dimensional
kGB-module T ∗ is injective. Consequently, T = 0 and CB∗(M) = F .

6. Proofs of the main results

6.1. Let B=(B, νB) be a periodic G-atom together with a fixed R-action

of GB on B. We denote by Φ̃B the functor

F• ◦ (( )−1 ⊗kGB FλB) : mod(kGB)op → ModGf R

and by Ψ̃B the functor

HB : ModGf R→ mod(kGB)op.

It is clear that ( )−1 ◦ Ψ̃B ◦ F• = ΨB and F• ◦ ΦB ◦ ( )−1 = Φ̃B , where
( )−1 : MOD(kG)op → MOD kG is the standard equivalence.

In the proofs we also refer to the alternative description of Φ̃B as the
composition of the tensor product functor

−⊗k B : mod(kGB)op → ModGBf R

and the induction functor

θ = θGB : ModGBf R→ ModGf R

(see [3, Proposition 2.3(i)]).
Recall that for any subgroup H of G and every object (B, νB) in ModHf R

the functor −⊗kB assigns to any G-representation V in mod(kH)op the R-
module V ⊗k B equipped with the “twisted” R-action of H. The induction
functor θH assigns to an object (N, ν) in ModHf R the induced structure
θH(N): the R-module

⊕
g∈SH

gN , where SH is a fixed set of representatives
of the set of left cosets G/H, equipped with the standard R-action of G
induced by ν (for details see [10, 3]).

Lemma. Let B = (B, νB) be a G-atom from Ao equipped with an
R-action of GB , and X, Y , Z be objects in modR. Then the kernel of
the functor ΨB has the following properties:

(i) ΨB(Z) = 0 for any Z in mod(Ao\{B})R, and consequently KerΨB

contains the ideal [mod(Ao\{B})R],

(ii) KerΨB(X,Y ) =

{
IR(X,Y ) if X,Y ∈ mod{B}R,

HomR(X,Y ) if X or Y ∈ mod(Ao\{B})R.

P r o o f. The assertion (i) and the inclusion IR(X,Y ) ⊂ KerΨB(X,Y ) of
(ii) follow immediately from ΨB = HB ◦ F•. The equality KerΨB(X,Y ) =
HomR(X,Y ) follows trivially from (i).
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It remains to show KerΨB(X,Y ) ⊂ IR(X,Y ). For this purpose it is

enough to prove that for any M = (
⊕

g∈SB
gBm, µ), N = (

⊕
g′∈SB

g′Bn, ν)

in ModGf R and a morphism f ∈ Ker Ψ̃B(M,N) the R-homomorphism f =
(fg′,g)g′,g∈SB :

⊕
g∈SB

gBm →
⊕

g′∈SB
g′Bn belongs to the Jacobson radical

J = JR.
Clearly the components fg′,g such that g 6= g′ belong to J (gBm, g

′
Bn) for

g, g′ ∈ SB . Observe that fe,e ∈ J (gB, g
′
B) since HB(f) = 0 by assumption.

We show that each fg,g belongs to J (gBm, gBn) for g ∈ SB . Since f is a

morphism in ModGf R we have h−1

f · µh = νh · f for every h ∈ G. Then for
any g, g′1 ∈ SB , looking at the (g′1, g)-components of the above equality we

obtain the following equalities in HomR(gBm, h
−1g′1Bn):

(∗)(h,g′1,g)
∑
g1∈SB

h−1

fg′1,g1 · µ
(g1,g)
h =

∑
g′∈SB

ν
(g′1,g

′)
h · fg′,g

where µ
(g1,g)
h : gBm → h−1g1Bm (resp. ν

(g′1,g
′)

h : g′Bn → h−1g′1Bn) is the
(g1, g)-component (resp. (g′1, g

′)-component) of the R-homomorphism

µh :
⊕
g∈SB

gBm →
h−1( ⊕

g1∈SB

g1Bm
)
,

respectively

νh :
⊕
g′∈SB

g′Bn →
h−1( ⊕

g′1∈SB

g′1Bn
)
,

defining the R-action µ (resp. ν) of GB . Assume now that g′1 = e and

h= g−1. Note that µ
(g1,g)
h , ν

(e,g′)
h ∈ J for g1 6= e and g′ 6= g; also gfe,e∈J .

Then (∗)(g−1,e,g) implies by Lemma 2.3 that ν
(e,g)
h · fg,g ∈ J . But by

Lemma 2.4, ν
(e,g)
h is an R-isomorphism and therefore fg,g ∈ J for every

g ∈ SB . Consequently, by Proposition 2.5, f ∈ J .

Proposition. Let U ⊂ Po be a family of periodic G-atoms together with
a selection (νB)B∈U of R-actions of GB on B. Then:

(i) KerΨU contains the ideal [mod(Ao\U)R],
(ii) ΦU induces a faithful representation embedding functor

ΦU :
∐
B∈U

mod kGB → modR/[mod(Ao\U)R].

Suppose that the GCS-reduction (ΦU , ΨU ) (w.r.t. U) is full. Then:

(iii) KerΨU (X,Y ) =

{
IR(X,Y ) if X,Y ∈ modUR,
HomR(X,Y ) if X or Y 6∈ modUR,

for any indecomposables X,Y in modR,
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(iv) the functor ΦU :
∐
B∈U mod kGB → modR/[mod(Ao\U)R] together

with the functor Ψ U : modR/[mod(Ao\U)R] →
∐
B∈U mod kGB induced by

ΨU yields a bijection between the sets of isoclasses of indecomposables in the
categories

∐
B∈U mod kGB and modR/[mod(Ao\U)R].

P r o o f. (i) Follows immediately from Lemma 6.1(i).

(ii) We know that ΨUΦU ' id∐
B∈U mod kGB and that ΦU is a represen-

tation embedding functor (see [4, Proposition 2.3 and Theorem 2.2]). Since
KerΨU contains [mod(Ao\U)R], the functor ΨU factorizes as

ΨU : modR
Π→ modR/[mod(Ao\U)R]

Ψ U−→
∐
B∈U

mod kGB

where Π denotes the canonical projection. Consequently,

ΦU = ΠΦU :
∐
B∈U

mod kGB → modR/[mod(Ao\U)R]

is a representation embedding since ΦU is (note that ImΦU ⊂ modUR and
(KerΠ)modUR

⊂ (JR)modUR
).

(iii) Note that

(∗) modR = mod(Ao\U)R ∨
∨
B∈U

mod{B}R.

Fix a pair X,Y of R-modules. If X and Y do not belong simultaneously to
mod{B0}R for any B0 ∈ U then for each B ∈ U either ΨB(X) or ΨB(Y ) is
zero (see Lemma 6.1). Consequently, KerΨU (X,Y ) = HomR(X,Y ). Note

that IR(X,Y ) = HomR(X,Y ) provided X is in mod{B}R and Y is in

mod{B′}R for distinct B,B′ ∈ U . If both X and Y belong to mod{B}R
for some B ∈ U then KerΨU (X,Y ) = KerΨB(X,Y ) = IR(X,Y ) (see
Lemma 6.1).

(iv) follows directly from (ii) and from conditions (a), (b) of the definition
of full reduction.

6.2. Proof of Theorem A. The following fact together with [4, Theo-
rem 2.2] proves that the GCS-reduction (ΦU , ΨU ) satisfying the assump-
tions of Theorem A is full. (It implies (a) and (b) in the definition of full
GCS-reduction, (c) and (d) follow by Proposition 6.1).

Proposition. Let B = (B, νB) be a periodic G-atom in A with an
R-action νB of GB on B. Assume that M = (M,µ) is an object in ModGf R

such that B = (B, νB) splits properly M . Then Φ̃BΨ̃B(M) is a direct sum-
mand of M in ModGf R. In particular , if M is an indecomposable object in

ModGf then Φ̃BΨ̃B(M) 'M .
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P r o o f. To prove that Φ̃BΨ̃B(M) (' θ(HB(M)⊗k B)) is a direct sum-
mand of M we construct a splittable monomorphism i : HB(M)⊗kB →M
in ModGBR.

The canonical kGB-module embedding εB(M) : JB(M) → HB(M)

splits, hence there exists a kGB-homomorphism HB(M)
iM→ HB(M) such

that πB(M) · iM = idHB(M), where

0→ JB
εB→ HB

πB→ HB → 0

is the canonical exact sequence in MOD((ModR)op). Since εB(M) is proper,
HB(M) is nonzero and we can simply assume that M is a direct sum
Bn⊕M ′, where n is a positive integer and M ′ has no direct summand
isomorphic to B. Then iM and the canonical EndR(B)-isomorphisms

HB(M) ' HB(Bn)⊕HB(M ′) and HB(M) ' HB(Bn)

(HB(M ′) = 0) induce a kGB-homomorphism

i =

(
i1
i2

)
: HB(Bn)→ HB(Bn)⊕HB(M ′)

such that πB(Bn) · i1 = idHB(Bn). Here the kGB-module structure on the
domain and codomain of i are induced by the above isomorphisms. Let

ĩ : HB(Bn)⊗k B →M = Bn⊕M ′

be the morphism in ModGBR adjoint to i (see [3, Lemma 2.4]). We prove

that ĩ is a splittable monomorphism in ModGBR. For this purpose it is
enough to construct a morphism p̃ in ModGBR with domain M such that
p̃ · ĩ is an R-isomorphism. However, before we construct p̃, we give a more
detailed description of ĩ.

Denote by wi ∈ HomR(B,Bn) the ith standard embedding of B into
Bn, by wi the coset of wi in HB(Bn) and by ϕ′i the image i2(wi) in
HomR(B,M ′) = J (B,M ′), where i = 1, . . . , n. Observe that the equal-
ity πB(Bn) · i1 = idHB(Bn) implies the existence of R-homomorphisms

ϕi ∈ JR(B,Bn) with components {ϕji}j=1,...,n in JR(B,B), i = 1, . . . , n,
such that i1(wi) = wi + ϕi.

Note that since HB(B) ' k as k-vector spaces, the canonical isomor-
phism HB(B)n ' HB(Bn) induces an R-isomorphism

(a) Bn ' HB(Bn)⊗k B.

Denote by

i′ =

(
i′1
i′2

)
: Bn → Bn⊕M ′
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the composition of the isomorphism (a) and ĩ. It is not hard to show that

i′1 = idBn +ϕ and i′2 = ϕ′,

where ϕ is defined by the components {ϕji}i,j=1,...,n, and ϕ′ by the compo-
nents {ϕ′i}i=1,...,n.

The construction of ĩ was determined by the fact that Ψ̃B by definition
is equal to the top HB of the functor HB . The construction of p̃ will reflect
the alternative description of Ψ̃B as the socle (HB)∗ of the tensor product
functor TB∗ (see 4.4).

As before, the canonical kGB-embedding εB(M) : J B(M) → HB(M)
splits and hence there exists a kGB-homomorphism jM : HB(M)→ HB(M)
such that πB(M) · jM = idHB(M), where

0→ J B εB→ HB πB→ HB → 0

is a canonical exact sequence in MOD(ModR). Consequently, the dual kGB-
homomorphism j∗M : HB(M)∗ → HB(M)∗ is a splittable epimorphism.
Since HB(M ′) = 0, we can assume that the codomain of j∗M is equal to the
kGB-module HB(Bn)∗, with the structure given by the dual of the stan-
dard isomorphism HB(M) ' HB(Bn) induced by the canonical projection
M → Bn. Denote by

p : TB∗(M)→ (HB)∗(Bn)

the composition of j∗M and the canonical embedding of TB∗ into (HB)∗ = IB
(see 4.4 and 5.4). Note that p is a kGB-epimorphism since the socles of both
functors TB∗ and IB coincide and are equal to (HB)∗ (see Theorem 4.4).
Let

p̃ : M → Homk(B∗, (HB)∗(Bn))

be the morphism in ModGBR adjoint to p (see [3, Lemma 2.4]). We now

analyze p̃ in more detail, in order to prove that p̃ · ĩ is an R-isomorphism.
Denote by p′ the composition

p′ : M
p̃→ Homk(B∗, (HB)∗(Bn))

∼→ Homk(HB(Bn), B)

in ModGBR, where the second isomorphism is given by the appropriate
version of the isomorphism 3.2(a) and the fact that B is locally finite-
dimensional. Applying the definitions and a variant of [3, Lemma 2.4] one
shows that p′ has the following factorization:

Bn⊕M ′ uBn ⊕uM′−−−−−−→ Homk(HB(Bn), B)⊕Hom(HB(M ′), B)
v→ Homk(HB(Bn), B).

Here uN : N → Homk(HomR(N,B), B), for any N in ModR, denotes the
R-homomorphism adjoint to the canonical map HomR(N,B) ⊗k N → B,
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and v the R-homomorphism given by the pair (Homk(j1, B),Homk(j2, B)),
where the k-linear map

j =

(
j1
j2

)
: HB(Bn)→ HB(Bn)⊕HB(M ′)

is the composition of jM and the canonical EndR(B)-isomorphisms

HB(M) ' HB(Bn)⊕HB(M ′) and HB(M) ' HB(Bn).

Denote by ri ∈ HomR(Bn, B) the ith standard projection, by ri the coset
of ri in HB(Bn) and by ψ′i the image j2(ri) in HomR(B,M ′) = J (B,M ′),
where i = 1, . . . , n. Observe that the equality πB(Bn) · j1 = idHB(M) im-
plies the existence of R-homomorphisms ψi ∈ J (Bn, B) with components
{ψji }j=1,...,n in J (B,B) such that j1(ri) = ψi.

Note that since HB(B) ' k as k-vector spaces, the canonical isomor-
phism HB(B)n ' HB(Bn) induces an R-isomorphism

(b) Homk(HB(Bn), B) ' Bn.
Denote by

p′′ = (p′′1 , p
′′
2) : Bn⊕M ′ → Bn

the composition of p′ and the isomorphism (b). It is not hard to show that

p′′1 = idBn +ψ and p′′2 = ψ′,

where ψ is defined by the components {ψji }i,j=1,...,n, and ψ′ by the compo-
nents {ψ′i}i=1,...,n.

Now by Lemma 2.4 the composition p′′i′ is an R-isomorphism, and there-
fore p̃ · ĩ is an isomorphism in ModGBf R. In this way the construction of a

splittable monomorphism i : HB(M) ⊗k B → M in ModGBR is finished.
Now applying the Lemma below and [3, Proposition 2.3(i)] we conclude that

Φ̃BΨ̃B(M) is a direct summand of M in ModGf R.

Lemma. Let H be a subgroup of G, N = (N, ν) an object in ModHf R
and M = (M,µ) an object in ModGR. Suppose that N is a direct summand
of the restriction (M,µ|H) in ModHR and that N satisfies the following
condition:

(∗) for any H-atoms B,B′ which are direct summands of N each element
g ∈ G such that gB ' B′ belongs to H.

Then θH(N), an R-module with an R-action of G induced by N , is a direct
summand of M in ModGR.

P r o o f. Let i : N → M and p : M → N be morphisms in ModHR
such that pi = idN . Denote by I : θH(N) → M and P : M → θH(N) the
morphisms in ModGR adjoint to i and p (see [3, Lemma 2.3]). It is enough to
show that PI is an automorphism of the R-module

⊕
g∈SH

gN . By the very
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definition each (g, g)-component of PI is the identity map idgN = g idN , for
g ∈ SH . For any different g1, g2 ∈ SH , the (g1, g2)-component of PI belongs
to J (g1N, g2N) by the condition (∗). Now the claim follows immediately from
Lemma 2.4.

6.3. Following [4, 5] for any M and N in ModR we define the subspace

Pu(M,N) ⊆ HomR(M,N)

to consist of all R-homomorphisms f : M → N having a factorization
through a direct sum of finite-dimensional modules.

Let H be a subgroup of GM ∩GN . If µ is an R-action of H on M and ν is
an R-action of H on N , then Pu(M,N) is a kH-submodule of HomR(M,N)
equipped with the standard structure (see 5.1(a)).

It is easy to see that the subspaces Pu(M,N) define a two-sided ideal

Pu( · ,−) ⊆ HomR( · ,−)

called the pure-projective ideal of ModR.

Remark. For any M , N in IndR which are not simultaneously finite-
dimensional we have Pu(M,N) ⊂ JR(M,N). If additionally suppM ∩
suppN is a disjoint union of pairwise orthogonal finite subcategories then
Pu(M,N) = JR(M,N).

Proof of Theorem B. We show first that under the assumptions of The-
orem B the GCS-reduction w.r.t. U is full. By Theorem A it is enough to
prove the following.

Proposition. Let B = (B, νB) be a G-atom in A1, with an arbitrary
R-action νB of GB on B, and M = (M,µ) an object in ModGf R. As-
sume that for any B′ ∈ A1′(B) (see Introduction) each R-homomorphism
f : B → B′ (resp. f : B′ → B) factors through a direct sum of finite-
dimensional R-modules. Then (B, νB) splits properly (M,µ) provided B is
a direct summand of the R-module M .

P r o o f. Set H = GB and L = suppB. It is enough to prove that both
kH-modules JB(M) and J B(M) are injective. We show the injectivity of
JB(M), the proof of the other case is similar.

Denote by e% : ModH L̂ → ModHR the right adjoint functor to the

restriction functor e• : ModHR → ModH L̂. Then by [5, Lemma 2.1] the
canonical morphism M → N in ModHR induces a kH-isomorphism

(a) HomR(B,M) ' HomR(B,N),

where N = e%e•(M). We show that it also induces a kH-isomorphism

(b) J (B,M) ' J (B,N).
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Note that by [9, Lemma 2] an R-module B′ in IndR is isomorphic to B
if and only if B is a direct summand of e%e•(B

′). Now fix any decomposi-
tion M =

⊕
i∈I B

′
i into a direct sum of objects in IndR (see Lemma 2.1).

Then we obtain a decomposition N =
⊕

i∈I e%e•(B
′
i) into a direct sum of

R-modules (M is a locally finite-dimensional module over the locally
bounded k-category R). The isomorphism (b) now follows by the previous
observation from (a) and the fact that HomR and J are summably closed
ideals (see Proposition 2.5).

Now by [5, Theorem A] it is enough to prove that J (B,N) = Pu(B,N).
Observe that N is an object of ModHf R. The support of N is contained in̂̂
L and

̂̂
L/H is finite (R is a locally bounded k-category and L/H is finite),

and consequently suppN is contained in a union of finitely many H-orbits
in R. Therefore N has a decomposition N =

⊕
j∈J Bj into a direct sum of

H-atoms. By [5, Theorem A] we obtain

Pu
(
B,
⊕
j∈J

Bj

)
=
∏
j∈J
Pu(B,Bj).

Since

JR
(
B,
⊕
j∈J

Bj

)
=
∏
j∈J
JR(B,Bj)

(J is summably closed) we only have to show that

(∗)j Pu(B,Bj) = J (B,Bj)

for all j ∈ J . Denote by J ′ the set of all j ∈ J such that suppBj ∩ L is
finite, and by J ′′ the complement of J ′ in J . It is clear that by Remark 6.2
we have to consider (∗)j only for j ∈ J ′′. Take any H-atom Bj , where
j ∈ J ′′. We know that suppBj/HBj is finite and hence suppBj/GBj is
finite. Consequently, HBj = GB ∩ GBj is infinite since suppBj is infinite.

This implies that Bj belongs to A1′(B). Thus (∗)j holds by Remark 6.2 and
the assumptions of the proposition. In this way J (B,N) = Pu(B,N) and
consequently the kH-module J (B,M) is injective.

Now we prove the main assertion of Theorem B, the equivalence∐
B∈U

mod k[T, T−1] ' modR/[mod(Ao\U)R] ' modUR/[modAfR]modUR
.

Since ΨUΦU ' id∐
B∈U mod kGB (see [4, Theorem 2.2]) the functors ΦU and

ΨU induce an equivalence

(c)
∐
B∈U

mod k[T, T−1] ' modR/KerΨU ' modUR/(KerΨU )modUR
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(note that ImΦU ⊂ modUR). Note the following obvious inclusions of ideals:

(d) [modAfR] ⊂ [mod(Ao\U)R] ⊂ KerΨU .

By Proposition 6.1 and the splitting (a) in the definition of full GCS-
reduction the ideals KerΨU and [mod(Ao\U)R] can differ only on pairs of

indecomposables from ob modUR × ob modUR. Therefore it is enough to
show the inclusion

(e) ImodUR
⊂ [modAfR]modUR

where I = IR. Consequently, Proposition 6.1 and (d) yield (KerΨU )modUR

= [modAfR]modUR
and KerΨU = [mod(Ao\U)R], which combined with (c)

gives the required equivalence.

To prove (e) take any f ∈ I(X ′, X) where X and X ′ are indecom-
posable R-modules in modUR. Then by the bijection (b) in the defini-
tion of full GCS-reduction there exist isomorphisms u : X → ΦBΨBX
and u′ : X ′ → ΦB

′
ΨB
′
X ′ for some B,B′ ∈ U . It is enough to show that

f1 = uf ∈ [modAfR].

To do this we make use of the isomorphism

ΦB ' HomkGB (FλB
kGB ,−)

where FλB
kGB = HomkGB (FλB, kGB) (see [3, Corollary 2.1]). Then by

[3, Lemma 2.1 and Proposition 2.5(iii)] we obtain the natural isomorphisms

(f) HomR(X ′, ΦBΨBX) ' HomkGB (X ′ ⊗R FλB
kGB , ΨBX)

' HomkGB (F•X
′ ⊗R B∗, (ΨBX)−1) = HomkGB (TB∗(F•X ′), (ΨBX)−1)

(we keep the notation from 5.1). Denote by f̃1 : TB∗(F•X ′)→ (ΨBX)−1 the

image of f1 under (f). We now prove that f̃1 factors through CB∗(F•X ′).
The case B 6= B′ is clear since then HB(F•X

′) = 0 (F•X
′ ∈ mod{B′}R)

and TB∗(F•X ′) = CB∗(F•X ′). Suppose now that B = B′. Since the iso-
morphism (f) is natural w.r.t. the first component, we have a factorization

f̃1 = ũ · TB∗(F•f), where ũ : TB∗(F•X) → (ΨBX)−1 is the image of u
via (f). Observe that the kGB-homomorphism TB∗(F•f) : TB∗(F•X ′) →
TB∗(F•X) vanishes on the kGB-submodule (HB)∗(F•X

′) of TB∗(F•X ′) since

(HB)∗(F•f)=0 (f ∈ I(X ′, X)). Hence TB∗(F•f) and also f̃1 factor through
CB∗(F•X ′). Using now the fact that (f) is natural w.r.t. the second compo-
nent we conclude that f1 factors through HomkGB (FλB

kGB , CB∗(F•X ′)−1),
which is isomorphic to FλB

m for some m ∈ N by Corollary 5.4 (JB(F•X
′)

is injective). Now the slight modification of [3, Lemma 4.4] (replace mod1R
by modAfR when the assumption that G acts freely on (indR)/' is not
present; the proof remains valid) yields f1 ∈ [modAfR]. In this way the
proof of (e) and in consequence of the whole Theorem B is finished.
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6.4. For any subset U ⊂ Po and n ∈ N we denote by U(n) the set of all
B ∈ U such that the rank of the free kGB-module FλB is just n.

The following fact follows directly from Theorem B by [10, Lemma 2.2]
and [9, Lemma 3 and Proposition 2].

Theorem [4, Theorem 5.2]. Let R be a locally bounded k-category and
G ⊂ Autk(R) be a group of k-linear automorphisms of R acting freely on
(indR)/' such that R is a finite category. Assume R satisfies the following
conditions:

(i) A∞ = A1,

(ii) J (B1, B2) = Pu(B1, B2) for any B1, B2 ∈ A∞ with GB1
∩ GB2

nontrivial.

Then the functors ΦA
∞
o and ΨA

∞
o induce an equivalence∐

B∈A∞o

mod k[T, T−1] ' modR,

and R is tame if and only if R is tame and all sets A∞o (n), n ∈ N, are
finite.
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