on Some formula in connected cocommutative HOPF ALGEBRAS OVER A FIELD OF CHARACTERISTIC 0

PIOTR WIŚNIEWSKI (TORUŃ)

Abstract

Let H be a cocommutative connected Hopf algebra, where K is a field of characteristic zero. Let $H^{+}=\operatorname{Ker} \varepsilon$ and $h^{+}=h-\varepsilon(h)$ for $h \in H$. We prove that $d_{h}=\sum_{r=1}^{\infty}\left((-1)^{r+1} / r\right) \sum h_{1}^{+} \ldots h_{r}^{+}$is primitive, where $\sum h_{1} \otimes \ldots \otimes h_{r}=\Delta_{r-1}(h)$.

1. Introduction. Let K be a field of characteristic 0 . In [2] it is proved that if $D=\left(D_{0}, D_{1}, \ldots\right)$ is a higher derivation of a commutative algebra A, then the linear maps

$$
d_{n}=\sum_{r=1}^{n} \frac{(-1)^{r+1}}{r} \sum_{\substack{i_{1}+\ldots+i_{r}=n \\ i_{1}, \ldots, i_{r}>0}} D_{i_{1}} \ldots D_{i_{r}}, \quad n \geq 1
$$

are derivations of A.
Inspired by this result we prove the following:
Theorem. Let H be a connected, cocommutative Hopf algebra over K with comultiplication $\Delta: H \rightarrow H \otimes H$ and counity $\varepsilon: H \rightarrow K$, let $H^{+}=$ $\operatorname{Ker} \varepsilon$, and let $h^{+}=h-\varepsilon(h)$ for $h \in H$. Then for any $h \in H^{+}$the element

$$
d_{h}=\sum_{r=1}^{\infty} \frac{(-1)^{r+1}}{r} \sum h_{1}^{+} \ldots h_{r}^{+}
$$

is primitive, where $\sum h_{1} \otimes \ldots \otimes h_{r}=\Delta_{r-1}(h)$ (the infinite sum has only a finite number of non-zero summands).

As consequences of this theorem one gets:
1.1. Corollary. Let H be as in the Theorem, and let A be an arbitrary (not necessarily commutative) H-module algebra. Then for any $h \in H^{+}$the linear $\operatorname{map} \widetilde{d}_{h}: A \rightarrow A, \widetilde{d}_{h}(a)=d_{h} a$, is a derivation of A.

Corollary 1.1 gives us Saymeh's above-mentioned result for the connected and cocommutative Hopf algebra $H=K\left\langle x_{0}, x_{1}, \ldots\right\rangle, x_{0}=1, \Delta\left(x_{n}\right)$

[^0]$=\sum_{i+j=n} x_{i} \otimes x_{j}, \varepsilon\left(x_{i}\right)=\delta_{i, 0}$, where the antipode is given by the inductive formula: $S\left(x_{0}\right)=x_{0}, S\left(x_{n}\right)=-\sum_{i+j=n-1} x_{i+1} S\left(x_{j}\right)\left(d_{n}=d_{h}\right.$ for $h=x_{n}$, $n \geq 1$).
1.2. Corollary ([3, 13.0.1], [1, 5.6.5]). Every connected, cocommutative Hopf algebra over a field of characteristic 0 is isomorphic to the universal enveloping algebra $U(L)$, where L is the Lie algebra of all primitive elements in H.

Throughout the paper K is a fixed field of characteristic 0 and H denotes a connected Hopf algebra over K with comultiplication $\Delta: H \rightarrow H \otimes H$ and counity $\varepsilon: H \rightarrow K$. Connectedness of H means that $K 1_{H}$ is the unique simple subcoalgebra of $H([1],[3])$. The ideal $\operatorname{Ker} \varepsilon$ will be denoted by H^{+}. We define the maps $\Delta_{n}: H \rightarrow H^{\otimes n+1}, n \geq 0$, by induction: $\Delta_{0}=\mathrm{id}, \Delta_{n}=$ $(\Delta \otimes \mathrm{id} \otimes \ldots \otimes \mathrm{id}) \Delta_{n-1}, n>0$. Moreover, we write $\Delta_{n}(h)=\sum h_{1} \otimes \ldots \otimes h_{n+1}$. In particular, $\Delta(h)=\sum h_{1} \otimes h_{2}$.

As usual, \mathbb{Z} stands for the set of rational integers.
2. Results. Let $H_{0} \subset H_{1} \subset \ldots$ be the coradical filtration of H [3, 9.1], and let $H_{n}^{+}=H_{n} \cap H^{+}$. For every $h \in H$ we have the unique decomposition $h=\varepsilon(h)+h^{+}$, where $\varepsilon(h) \in H_{0}, h^{+} \in H^{+}$.

If $h \in H^{+}$, then we know that $\Delta(h)=h \otimes 1+1 \otimes h+f$, where $f \in H_{n-1}^{+} \otimes H_{n-1}^{+}($this is a simple consequence of [3, Corollary 9.1.7]).

Let $D: H \rightarrow H \otimes H$ denote the linear map defined by $D(h)=1 \otimes h+h \otimes 1$. Observe that D is not coassociative. Using D we define the map $\Delta^{+}: H \rightarrow$ $H \otimes H$ via $\Delta^{+}=\Delta-D$. Observe that $\Delta^{+}(h)=\sum h_{1}^{+} \otimes h_{2}^{+}$for $h \in H^{+}$.
2.1. Lemma. The map Δ^{+}is coassociative, i.e.,

$$
\left(\Delta^{+} \otimes \mathrm{id}\right) \Delta^{+}=\left(\mathrm{id} \otimes \Delta^{+}\right) \Delta^{+} .
$$

Moreover, if Δ is cocommutative, then so is Δ^{+}.
Proof. For the first part, observe that since Δ is coassociative, it is enough to show that $L=R$, where

$$
\begin{aligned}
& L=\left(\Delta^{+} \otimes \mathrm{id}\right) \Delta^{+}-(\Delta \otimes \mathrm{id}) \Delta=(\Delta \otimes \mathrm{id}) D+(D \otimes \mathrm{id}) \Delta-(D \otimes \mathrm{id}) D, \\
& R=\left(\mathrm{id} \otimes \Delta^{+}\right) \Delta^{+}-(\mathrm{id} \otimes \Delta) \Delta=(\mathrm{id} \otimes \Delta) D+(\mathrm{id} \otimes D) \Delta-(\mathrm{id} \otimes D) D .
\end{aligned}
$$

We have

$$
\begin{aligned}
L(h)= & (\Delta \otimes \mathrm{id})(h \otimes 1+1 \otimes h) \\
& +(D \otimes \mathrm{id})\left(\sum h_{1} \otimes h_{2}\right)-(D \otimes \mathrm{id})(h \otimes 1+1 \otimes h) \\
= & \sum h_{1} \otimes h_{2} \otimes 1+\sum h_{1} \otimes 1 \otimes h_{2} \\
& +\sum 1 \otimes h_{1} \otimes h_{2}-h \otimes 1 \otimes 1-1 \otimes h \otimes 1-1 \otimes 1 \otimes h
\end{aligned}
$$

$$
\begin{aligned}
= & \left(h \otimes 1 \otimes 1+\sum 1 \otimes h_{1} \otimes h_{2}\right) \\
& +\left(\sum h_{1} \otimes h_{2} \otimes 1+\sum h_{1} \otimes 1 \otimes h_{2}\right) \\
& -(h \otimes 2 \otimes 1+1 \otimes h \otimes 1+1 \otimes 1 \otimes h) \\
= & (\mathrm{id} \otimes \Delta)(h \otimes 1+1 \otimes h) \\
& +(\mathrm{id} \otimes D)\left(\sum h_{1} \otimes h_{2}\right)-(\mathrm{id} \otimes D)(h \otimes 1+1 \otimes h) \\
= & R(h)
\end{aligned}
$$

If Δ is cocommutative, then cocommutativity of Δ^{+}is obtained directly from the definition.

Now we define the linear maps $\Delta_{n}^{+}: H \rightarrow H^{\otimes n+1}$ by the inductive formula

$$
\Delta_{0}^{+}=\mathrm{id}, \quad \Delta_{n}^{+}=\left(\Delta^{+} \otimes \mathrm{id} \otimes \ldots \otimes \mathrm{id}\right) \Delta_{n-1}^{+}, \quad n \geq 1
$$

It is easy to see that if $h \in H^{+}$, then $\Delta_{n}^{+}(h)=\sum h_{1}^{+} \otimes \ldots \otimes h_{n+1}^{+}$. Assume that $h \in H_{n}^{+}$. Then using the inclusions $\Delta\left(H_{n}\right) \subset \sum_{i+j=n} H_{i} \otimes H_{j}$ [3, 9.1.7] we have $\Delta_{r}(h) \in \sum_{i_{1}+\ldots+i_{r+1}=n} H_{i_{1}} \otimes \ldots \otimes H_{i_{r+1}}$ for every $r \geq 0$. Hence
$\Delta_{r}^{+}(h)=\sum h_{1}^{+} \otimes \ldots \otimes h_{r+1}^{+} \in \sum_{i_{1}+\ldots+i_{r+1}=n} H_{i_{1}}^{+} \otimes \ldots \otimes H_{i_{r+1}}^{+} \quad$ for all $r \geq 0$,
which implies that $\Delta_{r}^{+}(h)=0$ for all $r \geq n$, because $H_{0}^{+}=0$.
From now on, we assume that H is cocommutative.
Definition. Let t, e, s be integers. We define the non-negative integers $Q_{t, e, s}$ by

$$
Q_{t, e, s}=\binom{t}{e}\binom{e}{t-s}
$$

where $\binom{u}{v}=0$ for $u<0$ or $v<0$ or $u<v$. It is obvious that $Q_{t, e, s} \neq 0$ if and only if t, e, s satisfy the conditions: $t \geq 0,0 \leq e \leq t, 0 \leq s \leq t, t \leq e+s$.
2.2. Lemma. Let t, e, s be integers.
(1) If $t>0$, then $Q_{t, e, s}=Q_{t-1, e-1, s}+Q_{t-1, e, s-1}+Q_{t-1, e-1, s-1}$.
(2) If $F: \mathbb{Z}^{3} \rightarrow \mathbb{Z}$ is a function satisfying the conditions:
(a) $F(x, y, z)=0$ for integers x, y, z which do not satisfy one of the conditions: $t \geq 0,0 \leq e \leq t, 0 \leq s \leq t, e+s \geq t$,
(b) $F(0,0,0)=1, F(0, y, z)=0$, provided $y \neq 0$ or $z \neq 0$,
(c) $F(x, y, z)=F(x-1, y-1, z+F(x-1, y, z-1))$

$$
+F(x-1, y-1, z-1)
$$

then $F(t, e, s)=Q_{t, e, s}$ for all $t, e, s \in \mathbb{Z}$.

Proof. (1) First we notice that $Q_{0,0,0}=1$. Now let $t>0$. If e, s do not satisfy one of the conditions: $0 \leq e \leq t, 0 \leq s \leq t, t \leq e+s$, then clearly $Q_{t, e, s}=Q_{t-1, e-1, s}=Q_{t-1, e, s-1}=Q_{t-1, e-1, s-1}=0$ and equality (1) is obvious. Now, assume that $0 \leq e \leq t, 0 \leq s \leq t, t=e+s$. Then

$$
\begin{gathered}
Q_{t-1, e-1, s-1}=0, \quad Q_{t, e, s}=\binom{t}{e} \\
Q_{t-1, e-1, s}=\binom{t-1}{e-1}, \quad Q_{t-1, e, s-1}=\binom{t-1}{e}
\end{gathered}
$$

and the equality $Q_{t, e, s}=Q_{t-1, e-1, s}+Q_{t-1, e, s-1}+Q_{t-1, e-1, s-1}$ is the well known property of the Newton symbols.

The second case is $0 \leq e \leq t, 0 \leq s \leq t, t<e+s$. In this situation

$$
\begin{aligned}
& Q_{t-1, e-1, s}+Q_{t-1, e, s-1}+Q_{t-1, e-1, s-1} \\
&=\binom{t-1}{e-1}\binom{e-1}{t-1-s}+\binom{t-1}{e}\binom{e}{t-s}+\binom{t-1}{e-1}\binom{e-1}{t-s} \\
&= \frac{(t-1)!}{(t-e)!(t-1-s)!(e-t+s)!} \\
&+\frac{(t-1)!}{(t-1-e)!(t-s)!(e-t+s)!}+\frac{(t-1)!}{(t-e)!(t-s)!(e-1-t+s)!} \\
&= \frac{(t-1)!((t-s)+(t-e)+(e-t+s))}{(t-e)!(t-s)!(e+s-t)!}=\frac{t!}{(t-e)!(t-s)!(e+s-t)!} \\
&=\binom{t}{e}\binom{e}{t-s}=Q_{t, e, s .}
\end{aligned}
$$

(2) If $x<0$, then $F(x, y, z)=0=Q_{x, y, z}$. If $x=0$ and $y \neq 0$ or $z \neq 0$, then $F(x, y, z)=0=Q_{x, y, z}$ and $F(0,0,0)=Q_{0,0,0}$. Now we show the equality $F(x, y, z)=Q_{x, y, z}$ for $x>0$. We proceed by induction on x. Assume that $F(x, y, z)=Q_{x, y, z}$ for a fixed $x \geq 0$ and all y, z. Then

$$
\begin{aligned}
F(x+1, y, z) & =F(x, y-1, z)+F(x, y, z-1)+F(x, y-1, z-1) \\
& =Q_{x, y-1, z}+Q_{x, y, z-1}+Q_{x, y-1, z-1}=Q_{x+1, y, z}
\end{aligned}
$$

by the inductive assumption and part (1) of the lemma.
2.3. Lemma. For all integers $e, s>0$,

$$
\sum_{p=0}^{s}(-1)^{p}\binom{e+p-1}{p}\binom{e}{s-p}=0
$$

Proof. This is equality (35) in [4, Chap. 2].
2.4. Theorem. If $h \in H^{+}$, then

$$
d=\sum_{r=1}^{\infty} \frac{(-1)^{r+1}}{r} \sum h_{1}^{+} \ldots h_{r}^{+}
$$

is a primitive element in H, where $\sum h_{1}^{+} \otimes \ldots \otimes h_{r}^{+}=\Delta_{r-1}^{+}(h)$.
Proof. Obviously, $h \in H_{n}^{+}$for some $n \geq 0$. We have to show that $\Delta(d)=1 \otimes d+d \otimes 1$. We will use the following notation:

$$
\begin{aligned}
f_{i} & =\sum h_{1}^{+} \ldots h_{i}^{+} \\
h_{k, l, m} & =\sum \Delta\left(h_{1}^{+} \ldots h_{k}^{+}\right)\left(h_{k+1}^{+} \ldots h_{k+l}^{+} \otimes h_{k+l+1}^{+} \ldots h_{k+l+m}^{+}\right) \\
g_{i, j} & =\sum h_{1}^{+} \ldots h_{i}^{+} \otimes h_{i+1}^{+} \ldots h_{i+j}^{+} .
\end{aligned}
$$

Clearly, $h_{k, 0,0}=\Delta\left(f_{k}\right), h_{0, l, m}=g_{l, m}$, and $d=\sum_{r=1}^{n}\left((-1)^{r+1} / r\right) f_{r}$, because $\Delta_{r}^{+}(h)=0$ for $r \geq n$. Now we show the following equality:
(*)

$$
h_{k, l, m}=h_{k-1, l+1, m}+h_{k-1, l, m+1}+h_{k-1, l+1, m+1} .
$$

One knows that $\Delta(h)=h \otimes 1+1 \otimes h+\sum h_{1}^{+} \otimes h_{2}^{+}$and that Δ^{+}is cocommutative. Hence

$$
\begin{aligned}
& \sum \Delta\left(h_{1}^{+} \ldots h_{k}^{+}\right)\left(h_{k+1}^{+} \ldots h_{k+l}^{+} \otimes h_{k+l+1}^{+} \ldots h_{k+l+m}^{+}\right) \\
&= \sum \Delta\left(h_{1}^{+} \ldots h_{k-1}^{+}\right)\left(h_{k}^{+} \ldots h_{k+l}^{+} \otimes h_{k+l+1}^{+} \ldots h_{k+l+m}^{+}\right) \\
&+\sum \Delta\left(h_{1}^{+} \ldots h_{k-1}^{+}\right)\left(h_{k+1}^{+} \ldots h_{k+l}^{+} \otimes h_{k}^{+} h_{k+l+1}^{+} \ldots h_{k+l+m}^{+}\right) \\
&+\sum \Delta\left(h_{1}^{+} \ldots h_{k-1}^{+}\right)\left(h_{k}^{+} h_{k+2}^{+} \ldots h_{k+l+1}^{+} \otimes h_{k+1}^{+} h_{k+l+2}^{+} \ldots h_{k+l+m+1}^{+}\right) \\
&= \sum \Delta\left(h_{1}^{+} \ldots h_{k-1}^{+}\right)\left(h_{k}^{+} \ldots h_{k+l}^{+} \otimes h_{k+l+1}^{+} \ldots h_{k+l+m}^{+}\right) \\
&+\sum \Delta\left(h_{1}^{+} \ldots h_{k-1}^{+}\right)\left(h_{k}^{+} \ldots h_{k+l-1}^{+} \otimes h_{k+l}^{+} \ldots h_{k+l+m}^{+}\right) \\
&+\sum \Delta\left(h_{1}^{+} \ldots h_{k-1}^{+}\right)\left(h_{k}^{+} \ldots h_{k+l}^{+} \otimes h_{k+l+1}^{+} \ldots h_{k+l+m+1}^{+}\right)
\end{aligned}
$$

which proves $(*)$.
Next we apply $(*)$ to prove by induction on t that

$$
\begin{equation*}
h_{k, l, m}=\sum_{\substack{0 \leq e, s \leq t \\ e+s \geq t}} Q_{t, e, s} h_{k-t, l+e, m+s} \quad \text { for all } t \leq k . \tag{**}
\end{equation*}
$$

If $t=0$, then it is obvious. Assume that $(* *)$ is true for some $t<k$. From $(*)$ it follows that

$$
\begin{aligned}
& h_{k, l, m} \sum_{\substack{0 \leq e, s \leq t \\
e+s \geq t}} Q_{t, e, s}\left(h_{k-t-1, l+e+1, m+s}+h_{k-t-1, l+e, m+s+1}+h_{k-t-1, l+e+1, m+s+1}\right) \\
& =\sum_{\substack{0 \leq e, s \leq t \\
e+s \geq t}} Q_{t, e, s} h_{k-t-1, l+e+1, m+s} \\
& \quad+\sum_{\substack{0 \leq e, s \leq t}} Q_{t, e, s} h_{k-t-1, l+e, m+s+1}+\sum_{\substack{0 \leq e, s \leq t \\
e+s \geq t}} Q_{t, e, s} h_{k-t-1, l+e+1, m+s+1} \\
& =\sum_{\substack{0 \leq s \leq t \\
e+s \geq t \\
e+s \leq t+1}} Q_{t, e-1, s} h_{k-t-1, l+e, m+s} \\
& \quad+\sum_{\substack{0 \leq e \leq t \\
1 \leq s \leq t+1 \\
e+s \geq t+1}} Q_{t, e, s-1} h_{k-t-1, l+e, m+s}+\sum_{\substack{1 \leq e \\
s \leq t+1 \\
e+s \geq t+2}} Q_{t, e-1, s-1} h_{k-t-1, l+e, m+s} .
\end{aligned}
$$

But

$$
\sum_{\substack{0 \leq s \leq t \\ 1 \leq e \leq t+1 \\ e+s \geq t+1}} Q_{t, e-1, s} h_{k-t-1, l+e, m+s}=\sum_{\substack{0 \leq e, s \leq t+1 \\ e+s \geq t+1}} Q_{t, e-1, s} h_{k-t-1, l+e, m+s},
$$

because $Q_{t,-1, s}=Q_{t, e-1, t+1}=0$. Further,

$$
\sum_{\substack{0 \leq e \leq t \\ 1 \leq s \leq t+1 \\ e+s \geq t+1}} Q_{t, e, s-1} h_{k-t-1, l+e, m+s}=\sum_{\substack{0 \leq e, s \leq t+1 \\ e+s \geq t+1}} Q_{t, e, s-1} h_{k-t-1, l+e, m+s},
$$

because $Q_{t, e,-1}=Q_{t, t+1, s-1}=0$, and

$$
\sum_{\substack{1 \leq e, s \leq t+1 \\ e+s \leq t+2}} Q_{t, e-1, s-1} h_{k-t-1, l+e, m+s}=\sum_{\substack{0 \leq e, s \leq t+1 \\ e+s \geq t+1}} Q_{t, e-1, s-1} h_{k-t-1, l+e, m+s},
$$

because $Q_{t, e-1, s-1}=0$ if e, s satisfy one of the conditions $e=0, s=0$, $e+s=t+1$.

Hence

$$
h_{k, l, m}=\sum_{\substack{0 \leq e, s \leq t+1 \\ e s \geq t+1}}\left(Q_{t, e-1, s}+Q_{t, e, s-1}+Q_{t, e-1, s-1}\right) h_{k-t-1, l+e, m+s} .
$$

By Lemma 2.2, $Q_{t+1, e, s}=Q_{t, e-1, s}+Q_{t, e, s-1}+Q_{t, e-1, s-1}$, whence

$$
h_{k, l, m}=\sum_{\substack{0 \leq e, s \leq t+1 \\ e+s \geq t+1}} Q_{t, e, s} h_{k-t-1, l+e, m+s},
$$

which proves $(* *)$.

Now using $(* *)$ for $t=k, l=m=0$ and the definition of $Q_{t, e, s}$, we have

$$
h_{k, 0,0}=\sum_{\substack{0 \leq e, s \leq k \\ e+s \geq k}}\binom{k}{e}\binom{e}{k-s} h_{0, e, s},
$$

whence

$$
\Delta\left(f_{k}\right)=h_{k, 0,0}=\sum_{\substack{0 \leq e, s \leq k \\ e+s \geq k}}\binom{k}{e}\binom{e}{k-s} g_{e, s}
$$

because $h_{0, e, s}=g_{e, s}$. It follows that

$$
\Delta(d)=\sum_{r=1}^{n} \frac{(-1)^{r+1}}{r} \Delta\left(f_{r}\right)=\sum_{r=1}^{n} \frac{(-1)^{r+1}}{r} \sum_{\substack{0 \leq e, s \leq r \\ e+s \geq r}}\binom{r}{e}\binom{e}{r-s} g_{e, s}
$$

Denote by $w_{e, s}$ the coefficient at $g_{e, s}$ in the above sum. If $e, s \geq 1$ and $e+s \leq n$, then we have, for $p=r-e$,

$$
\begin{aligned}
w_{e, s} & =\sum_{p=0}^{s} \frac{(-1)^{e+p+1}}{e+p}\binom{e+p}{e}\binom{e}{e+p-s} \\
& =\sum_{p=0}^{s} \frac{(-1)^{e+p+1}}{e+p}\binom{e+p}{e}\binom{e}{s-p}
\end{aligned}
$$

Since

$$
\frac{1}{e+p}\binom{e+p}{p}=\frac{(e+p-1)!(e+p)}{(e+p) e(e-1)!p!}=\frac{1}{e}\binom{e+p-1}{p}
$$

we get

$$
w_{e, s}=\frac{(-1)^{e+1}}{e} \sum_{p=0}^{s}(-1)^{p}\binom{e+p-1}{p}\binom{e}{s-p}=0
$$

by Lemma 2.3. Thus we have shown that $w_{e, s}=0$ for $e, s \geq 1, e+s \leq n$. If $e+s>n$, then clearly $g_{e, s}=0$, as $\Delta_{n}^{+}(h)=0$. The last case is $e=0$ or $s=0$, but then it is obvious that $w_{0, s}=(-1)^{s+1} / s, w_{e, 0}=(-1)^{e+1} / e$.
Consequently we have

$$
\Delta(d)=\sum_{r=1}^{n} \frac{(-1)^{r+1}}{r}\left(g_{r, 0}+g_{0, r}\right)=d \otimes 1+1 \otimes d
$$

2.5. Corollary. If $h \in H_{n}^{+}$, then

$$
d=\sum_{r=1}^{\infty} \frac{(-1)^{r+1}}{r} \sum h_{1}^{+} \ldots h_{r}^{+}=\sum_{r=1}^{n} \frac{(-1)^{r+1}}{r} \sum h_{1}^{+} \ldots h_{r}^{+}
$$

2.6. Corollary. The Hopf algebra H is generated, as an algebra, by the set $P(H)$ of all primitive elements in H.

Proof. Let $A \subset H$ be the subalgebra of H generated by $P(H)$. We need only show that $H_{n}^{+} \subset A$ for all $n \geq 1$. This will be done by induction on n. Clearly, $H_{1}^{+}=P(H) \subset A$. Assume that $H_{n-1}^{+} \subset A$ and take an $h \in H_{n}^{+}$. From the theorem above we know that

$$
d=\sum_{r=1}^{n} \frac{(-1)^{r+1}}{r} \sum h_{1}^{+} \ldots h_{r}^{+} \in P(H) \subset A .
$$

Hence by the induction assumption,

$$
e=\sum_{r=2}^{n} \frac{(-1)^{r+1}}{r} \sum h_{1}^{+} \ldots h_{r}^{+} \in A
$$

because $\sum h_{1}^{+} \otimes \ldots \otimes h_{r}^{+}=\Delta_{r-1}^{+}(h) \in \sum_{i_{1}+\ldots+i_{r}=n} H_{i_{1}}^{+} \otimes \ldots \otimes+H_{i_{r}}^{+}$, and $H_{0}^{+}=0$. This implies that $h=d-e \in A$, and consequently $A=H$.
2.7. Corollary ([3, 13.0.1], [1, 5.6.5]). The Hopf algebra H is isomorphic to the universal enveloping Hopf algebra $U(L)$, where L is the Lie algebra of all primitive elements in H with $[x, y]=x y-y x$.

Proof. Let $f: U(L) \rightarrow H$ be the morphism of Hopf algebras induced by the inclusion $L \subset H(f(y)=y$ for $y \in L)$. Since, as we showed above in Corollary 2.6, H is generated by L, we see that f is surjective. Let $P(U(L))$ denote the set of all primitive elements in $U(L)$. From the $\mathrm{P}-\mathrm{B}-\mathrm{W}$ theorem it easily follows that the natural map $L \rightarrow U(L)$ induces an isomorphism $L \approx P(U(L))$. Hence, in view of $[3,11.0 .1], f$ is injective.

Example. Let H be the Hopf algebra defined as follows:

$$
\begin{gathered}
H=K\left\langle x_{0}, x_{1}, \ldots\right\rangle, \quad x_{0}=1 \quad\left(\text { the free algebra on } x_{1}, x_{2}, \ldots\right), \\
\Delta\left(x_{n}\right)=\sum_{i+j=n} x_{i} \otimes x_{j}, \quad \varepsilon\left(x_{n}\right)=\delta_{n, 0}
\end{gathered}
$$

The antipode S is given by the inductive formula

$$
S\left(x_{0}\right)=x_{0}=1, \quad S\left(x_{n+1}\right)=-\sum_{i+j=n} x_{i+1} S\left(x_{j}\right), \quad n \geq 0
$$

It is not difficult to show, using $[3,11.0 .2,11.0 .6,9.0 .1$, (b), Exercise (4), p. 182], that H is connected.

Observe that an action of H on an algebra A is nothing else than a higher derivation $\left(D_{0}, D_{1}, \ldots\right)$ of $A\left(D_{i}(a)=x_{i} a, i \geq 0\right)$. Let us apply Theorem 2.4 to $h=x_{n}, n \geq 1$. Since

$$
\Delta_{r-1}^{+}(h)=\sum_{\substack{i_{1}+\ldots+i_{r}=n \\ i_{1}, \ldots, i_{r}>0}} x_{i_{1}} \otimes \ldots \otimes x_{i_{r}}
$$

we see by Theorem 2.4 that the element

$$
d=\sum_{r=1}^{n} \frac{(-1)^{r+1}}{r} \sum_{\substack{i_{1}+\ldots+i_{r}=n \\ i_{1}, \ldots, i_{r}>0}} x_{i_{1}} \ldots x_{i_{r}}
$$

is primitive. Hence

$$
\widetilde{d}_{h}=\sum_{r=1}^{n} \frac{(-1)^{r+1}}{r} \sum_{\substack{i_{1}+\ldots+i_{r}=n \\ i_{1}, \ldots, i_{r}>0}} D_{i_{1}} \ldots D_{i_{r}}: A \rightarrow A
$$

is a derivation of A. This is just Saymeh's result [2, Prop. 1].

REFERENCES

[1] S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Regional Conf. Ser. in Math. 82, Amer. Math. Soc., Providence, RI, 1993.
[2] S. A. Saymeh, On Hasse-Schmidt higher derivations, Osaka J. Math. 23 (1986), 503-508.
[3] M. E. Sweedler, Hopf Algebras, Benjamin, New York, 1969.
[4] N. Ya. Vilenkin, Combinatorics, Academic Press, New York, 1971.

Faculty of Mathematics and Informatics
Nicholas Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: pikonrad@mat.uni.torun.pl

[^0]: 2000 Mathematics Subject Classification: Primary 16W30.
 The paper is partially supported by the KBN Grant 2 PO3A 01716.

