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Abstract. Let H be a cocommutative connected Hopf algebra, where K is a field
of characteristic zero. Let H+ = Ker ε and h+ = h − ε(h) for h ∈ H. We prove that
dh =

∑∞
r=1((−1)r+1/r)

∑
h+

1 . . . h+
r is primitive, where

∑
h1 ⊗ . . .⊗ hr = ∆r−1(h).

1. Introduction. Let K be a field of characteristic 0. In [2] it is proved
that if D = (D0, D1, . . .) is a higher derivation of a commutative algebra A,
then the linear maps

dn =
n∑

r=1

(−1)r+1

r

∑
i1+...+ir=n
i1,...,ir>0

Di1 . . . Dir , n ≥ 1,

are derivations of A.
Inspired by this result we prove the following:

Theorem. Let H be a connected , cocommutative Hopf algebra over K
with comultiplication ∆ : H → H ⊗H and counity ε : H → K, let H+ =
Ker ε, and let h+ = h− ε(h) for h ∈ H. Then for any h ∈ H+ the element

dh =

∞∑
r=1

(−1)r+1

r

∑
h+1 . . . h

+
r

is primitive, where
∑
h1 ⊗ . . .⊗ hr = ∆r−1(h) (the infinite sum has only a

finite number of non-zero summands).

As consequences of this theorem one gets:

1.1. Corollary. Let H be as in the Theorem, and let A be an arbitrary
(not necessarily commutative) H-module algebra. Then for any h ∈ H+ the

linear map d̃h : A→ A, d̃h(a) = dha, is a derivation of A.

Corollary 1.1 gives us Saymeh’s above-mentioned result for the con-
nected and cocommutative Hopf algebra H = K〈x0, x1, . . .〉, x0 = 1, ∆(xn)
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=
∑

i+j=n xi⊗xj , ε(xi) = δi,0, where the antipode is given by the inductive
formula: S(x0) = x0, S(xn) = −

∑
i+j=n−1 xi+1S(xj) (dn = dh for h = xn,

n ≥ 1).

1.2. Corollary ([3, 13.0.1], [1, 5.6.5]). Every connected , cocommutative
Hopf algebra over a field of characteristic 0 is isomorphic to the universal
enveloping algebra U(L), where L is the Lie algebra of all primitive elements
in H.

Throughout the paper K is a fixed field of characteristic 0 and H denotes
a connected Hopf algebra over K with comultiplication ∆ : H → H ⊗ H
and counity ε : H→K. Connectedness of H means that K1H is the unique
simple subcoalgebra of H ([1], [3]). The ideal Ker ε will be denoted by H+.
We define the maps ∆n :H→H

⊗
n+1, n≥ 0, by induction: ∆0 = id, ∆n =

(∆⊗id⊗ . . .⊗id)∆n−1, n>0. Moreover, we write ∆n(h)=
∑
h1⊗. . .⊗hn+1.

In particular, ∆(h) =
∑
h1 ⊗ h2.

As usual, Z stands for the set of rational integers.

2. Results. Let H0 ⊂ H1 ⊂ . . . be the coradical filtration of H [3, 9.1],
and let H+

n = Hn∩H+. For every h ∈ H we have the unique decomposition
h = ε(h) + h+, where ε(h) ∈ H0, h+ ∈ H+.

If h ∈ H+, then we know that ∆(h) = h ⊗ 1 + 1 ⊗ h + f , where
f ∈ H+

n−1 ⊗H
+
n−1(this is a simple consequence of [3, Corollary 9.1.7]).

Let D : H → H⊗H denote the linear map defined by D(h) = 1⊗h+h⊗1.
Observe that D is not coassociative. Using D we define the map ∆+ : H →
H ⊗H via ∆+ = ∆−D. Observe that ∆+(h) =

∑
h+1 ⊗ h

+
2 for h ∈ H+.

2.1. Lemma. The map ∆+ is coassociative, i.e.,

(∆+ ⊗ id)∆+ = (id⊗∆+)∆+.

Moreover , if ∆ is cocommutative, then so is ∆+.

P r o o f. For the first part, observe that since ∆ is coassociative, it is
enough to show that L = R, where

L = (∆+ ⊗ id)∆+ − (∆⊗ id)∆ = (∆⊗ id)D + (D ⊗ id)∆− (D ⊗ id)D,

R = (id⊗∆+)∆+ − (id⊗∆)∆ = (id⊗∆)D + (id⊗D)∆− (id⊗D)D.

We have

L(h) = (∆⊗ id)(h⊗ 1 + 1⊗ h)

+ (D ⊗ id)
(∑

h1 ⊗ h2
)
− (D ⊗ id)(h⊗ 1 + 1⊗ h)

=
∑

h1 ⊗ h2 ⊗ 1 +
∑

h1 ⊗ 1⊗ h2

+
∑

1⊗ h1 ⊗ h2 − h⊗ 1⊗ 1− 1⊗ h⊗ 1− 1⊗ 1⊗ h
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=
(
h⊗ 1⊗ 1 +

∑
1⊗ h1 ⊗ h2

)
+
(∑

h1 ⊗ h2 ⊗ 1 +
∑

h1 ⊗ 1⊗ h2
)

− (h⊗ 2⊗ 1 + 1⊗ h⊗ 1 + 1⊗ 1⊗ h)

= (id⊗∆)(h⊗ 1 + 1⊗ h)

+ (id⊗D)
(∑

h1 ⊗ h2
)
− (id⊗D)(h⊗ 1 + 1⊗ h)

= R(h).

If ∆ is cocommutative, then cocommutativity of ∆+ is obtained directly
from the definition.

Now we define the linear maps ∆+
n : H → H⊗n+1 by the inductive

formula

∆+
0 = id, ∆+

n = (∆+ ⊗ id⊗ . . .⊗ id)∆+
n−1, n ≥ 1.

It is easy to see that if h ∈ H+, then ∆+
n (h) =

∑
h+1 ⊗ . . .⊗ h

+
n+1. Assume

that h ∈ H+
n . Then using the inclusions ∆(Hn) ⊂

∑
i+j=nHi⊗Hj [3, 9.1.7]

we have ∆r(h) ∈
∑

i1+...+ir+1=nHi1 ⊗ . . .⊗Hir+1
for every r ≥ 0. Hence

∆+
r (h) =

∑
h+1 ⊗ . . .⊗h

+
r+1 ∈

∑
i1+...+ir+1=n

H+
i1
⊗ . . .⊗H+

ir+1
for all r ≥ 0,

which implies that ∆+
r (h) = 0 for all r ≥ n, because H+

0 = 0.

From now on, we assume that H is cocommutative.

Definition. Let t, e, s be integers. We define the non-negative integers
Qt,e,s by

Qt,e,s =

(
t

e

)(
e

t− s

)
,

where
(
u
v

)
= 0 for u < 0 or v < 0 or u < v. It is obvious that Qt,e,s 6= 0 if

and only if t, e, s satisfy the conditions: t ≥ 0, 0 ≤ e ≤ t, 0 ≤ s ≤ t, t ≤ e+s.

2.2. Lemma. Let t, e, s be integers.

(1) If t > 0, then Qt,e,s = Qt−1,e−1,s +Qt−1,e,s−1 +Qt−1,e−1,s−1.

(2) If F : Z3 → Z is a function satisfying the conditions:

(a) F (x, y, z) = 0 for integers x, y, z which do not satisfy one of the
conditions: t ≥ 0, 0 ≤ e ≤ t, 0 ≤ s ≤ t, e+ s ≥ t,

(b) F (0, 0, 0) = 1, F (0, y, z) = 0, provided y 6= 0 or z 6= 0,

(c) F (x, y, z) = F (x− 1, y − 1, z + F (x− 1, y, z − 1))
+ F (x− 1, y − 1, z − 1),

then F (t, e, s) = Qt,e,s for all t, e, s ∈ Z.
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P r o o f. (1) First we notice that Q0,0,0 = 1. Now let t > 0. If e, s do not
satisfy one of the conditions: 0 ≤ e ≤ t, 0 ≤ s ≤ t, t ≤ e + s, then clearly
Qt,e,s = Qt−1,e−1,s = Qt−1,e,s−1 = Qt−1,e−1,s−1 = 0 and equality (1) is
obvious. Now, assume that 0 ≤ e ≤ t, 0 ≤ s ≤ t, t = e+ s. Then

Qt−1,e−1,s−1 = 0, Qt,e,s =

(
t

e

)
,

Qt−1,e−1,s =

(
t− 1

e− 1

)
, Qt−1,e,s−1 =

(
t− 1

e

)
and the equality Qt,e,s = Qt−1,e−1,s +Qt−1,e,s−1 +Qt−1,e−1,s−1 is the well
known property of the Newton symbols.

The second case is 0 ≤ e ≤ t, 0 ≤ s ≤ t, t < e+ s. In this situation

Qt−1,e−1,s +Qt−1,e,s−1 +Qt−1,e−1,s−1

=

(
t− 1

e− 1

)(
e− 1

t− 1− s

)
+

(
t− 1

e

)(
e

t− s

)
+

(
t− 1

e− 1

)(
e− 1

t− s

)
=

(t− 1)!

(t− e)!(t− 1− s)!(e− t+ s)!

+
(t− 1)!

(t− 1− e)!(t− s)!(e− t+ s)!
+

(t− 1)!

(t− e)!(t− s)!(e− 1− t+ s)!

=
(t− 1)!((t− s) + (t− e) + (e− t+ s))

(t− e)!(t− s)!(e+ s− t)!
=

t!

(t− e)!(t− s)!(e+ s− t)!

=

(
t

e

)(
e

t− s

)
= Qt,e,s.

(2) If x < 0, then F (x, y, z) = 0 = Qx,y,z. If x = 0 and y 6= 0 or
z 6= 0, then F (x, y, z) = 0 = Qx,y,z and F (0, 0, 0) = Q0,0,0. Now we show
the equality F (x, y, z) = Qx,y,z for x > 0. We proceed by induction on x.
Assume that F (x, y, z) = Qx,y,z for a fixed x ≥ 0 and all y, z. Then

F (x+ 1, y, z) = F (x, y − 1, z) + F (x, y, z − 1) + F (x, y − 1, z − 1)

= Qx,y−1,z +Qx,y,z−1 +Qx,y−1,z−1 = Qx+1,y,z,

by the inductive assumption and part (1) of the lemma.

2.3. Lemma. For all integers e, s > 0,

s∑
p=0

(−1)p
(
e+ p− 1

p

)(
e

s− p

)
= 0.

P r o o f. This is equality (35) in [4, Chap. 2].
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2.4. Theorem. If h ∈ H+, then

d =

∞∑
r=1

(−1)r+1

r

∑
h+1 . . . h

+
r

is a primitive element in H, where
∑
h+1 ⊗ . . .⊗ h+r = ∆+

r−1(h).

P r o o f. Obviously, h ∈ H+
n for some n ≥ 0. We have to show that

∆(d) = 1⊗ d+ d⊗ 1. We will use the following notation:

fi =
∑

h+1 . . . h
+
i ,

hk,l,m =
∑

∆(h+1 . . . h
+
k )(h+k+1 . . . h

+
k+l ⊗ h

+
k+l+1 . . . h

+
k+l+m),

gi,j =
∑

h+1 . . . h
+
i ⊗ h

+
i+1 . . . h

+
i+j .

Clearly, hk,0,0 = ∆(fk), h0,l,m = gl,m, and d =
∑n

r=1((−1)r+1/r)fr, because
∆+

r (h) = 0 for r ≥ n. Now we show the following equality:

(∗) hk,l,m = hk−1,l+1,m + hk−1,l,m+1 + hk−1,l+1,m+1.

One knows that ∆(h) = h⊗ 1 + 1⊗ h+
∑
h+1 ⊗ h

+
2 and that ∆+ is cocom-

mutative. Hence∑
∆(h+1 . . . h

+
k )(h+k+1 . . . h

+
k+l ⊗ h

+
k+l+1 . . . h

+
k+l+m)

=
∑

∆(h+1 . . . h
+
k−1)(h+k . . . h

+
k+l ⊗ h

+
k+l+1 . . . h

+
k+l+m)

+
∑

∆(h+1 . . . h
+
k−1)(h+k+1 . . . h

+
k+l ⊗ h

+
k h

+
k+l+1 . . . h

+
k+l+m)

+
∑

∆(h+1 . . . h
+
k−1)(h+k h

+
k+2 . . . h

+
k+l+1 ⊗ h

+
k+1h

+
k+l+2 . . . h

+
k+l+m+1)

=
∑

∆(h+1 . . . h
+
k−1)(h+k . . . h

+
k+l ⊗ h

+
k+l+1 . . . h

+
k+l+m)

+
∑

∆(h+1 . . . h
+
k−1)(h+k . . . h

+
k+l−1 ⊗ h

+
k+l . . . h

+
k+l+m)

+
∑

∆(h+1 . . . h
+
k−1)(h+k . . . h

+
k+l ⊗ h

+
k+l+1 . . . h

+
k+l+m+1),

which proves (∗).
Next we apply (∗) to prove by induction on t that

(∗∗) hk,l,m =
∑

0≤e,s≤t
e+s≥t

Qt,e,shk−t,l+e,m+s for all t ≤ k.

If t = 0, then it is obvious. Assume that (∗∗) is true for some t < k. From (∗)
it follows that
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hk,l,m

=
∑

0≤e,s≤t
e+s≥t

Qt,e,s(hk−t−1,l+e+1,m+s+hk−t−1,l+e,m+s+1+hk−t−1,l+e+1,m+s+1)

=
∑

0≤e,s≤t
e+s≥t

Qt,e,shk−t−1,l+e+1,m+s

+
∑

0≤e,s≤t
e+s≥t

Qt,e,shk−t−1,l+e,m+s+1 +
∑

0≤e,s≤t
e+s≥t

Qt,e,shk−t−1,l+e+1,m+s+1

=
∑

0≤s≤t
1≤e≤t+1
e+s≥t+1

Qt,e−1,shk−t−1,l+e,m+s

+
∑

0≤e≤t
1≤s≤t+1
e+s≥t+1

Qt,e,s−1hk−t−1,l+e,m+s +
∑
1≤e

s≤t+1
e+s≥t+2

Qt,e−1,s−1hk−t−1,l+e,m+s.

But ∑
0≤s≤t

1≤e≤t+1
e+s≥t+1

Qt,e−1,shk−t−1,l+e,m+s =
∑

0≤e,s≤t+1
e+s≥t+1

Qt,e−1,shk−t−1,l+e,m+s,

because Qt,−1,s = Qt,e−1,t+1 = 0. Further,∑
0≤e≤t

1≤s≤t+1
e+s≥t+1

Qt,e,s−1hk−t−1,l+e,m+s =
∑

0≤e,s≤t+1
e+s≥t+1

Qt,e,s−1hk−t−1,l+e,m+s,

because Qt,e,−1 = Qt,t+1,s−1 = 0, and∑
1≤e,s≤t+1
e+s≥t+2

Qt,e−1,s−1hk−t−1,l+e,m+s =
∑

0≤e,s≤t+1
e+s≥t+1

Qt,e−1,s−1hk−t−1,l+e,m+s,

because Qt,e−1,s−1 = 0 if e, s satisfy one of the conditions e = 0, s = 0,
e+ s = t+ 1.

Hence

hk,l,m =
∑

0≤e,s≤t+1
e+s≥t+1

(Qt,e−1,s +Qt,e,s−1 +Qt,e−1,s−1)hk−t−1,l+e,m+s.

By Lemma 2.2, Qt+1,e,s = Qt,e−1,s +Qt,e,s−1 +Qt,e−1,s−1, whence

hk,l,m =
∑

0≤e,s≤t+1
e+s≥t+1

Qt,e,shk−t−1,l+e,m+s,

which proves (∗∗).
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Now using (∗∗) for t = k, l = m = 0 and the definition of Qt,e,s, we have

hk,0,0 =
∑

0≤e,s≤k
e+s≥k

(
k

e

)(
e

k − s

)
h0,e,s,

whence

∆(fk) = hk,0,0 =
∑

0≤e,s≤k
e+s≥k

(
k

e

)(
e

k − s

)
ge,s,

because h0,e,s = ge,s. It follows that

∆(d) =

n∑
r=1

(−1)r+1

r
∆(fr) =

n∑
r=1

(−1)r+1

r

∑
0≤e,s≤r
e+s≥r

(
r

e

)(
e

r − s

)
ge,s.

Denote by we,s the coefficient at ge,s in the above sum. If e, s ≥ 1 and
e+ s ≤ n, then we have, for p = r − e,

we,s =

s∑
p=0

(−1)e+p+1

e+ p

(
e+ p

e

)(
e

e+ p− s

)

=

s∑
p=0

(−1)e+p+1

e+ p

(
e+ p

e

)(
e

s− p

)
.

Since
1

e+ p

(
e+ p

p

)
=

(e+ p− 1)!(e+ p)

(e+ p)e(e− 1)!p!
=

1

e

(
e+ p− 1

p

)
we get

we,s =
(−1)e+1

e

s∑
p=0

(−1)p
(
e+ p− 1

p

)(
e

s− p

)
= 0,

by Lemma 2.3. Thus we have shown that we,s = 0 for e, s ≥ 1, e + s ≤ n.
If e + s > n, then clearly ge,s = 0, as ∆+

n (h) = 0. The last case is e = 0
or s = 0, but then it is obvious that w0,s = (−1)s+1/s, we,0 = (−1)e+1/e.
Consequently we have

∆(d) =

n∑
r=1

(−1)r+1

r
(gr,0 + g0,r) = d⊗ 1 + 1⊗ d.

2.5. Corollary. If h ∈ H+
n , then

d =

∞∑
r=1

(−1)r+1

r

∑
h+1 . . . h

+
r =

n∑
r=1

(−1)r+1

r

∑
h+1 . . . h

+
r .

2.6. Corollary. The Hopf algebra H is generated , as an algebra, by
the set P (H) of all primitive elements in H.
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P r o o f. Let A ⊂ H be the subalgebra of H generated by P (H). We need
only show that H+

n ⊂ A for all n ≥ 1. This will be done by induction on n.
Clearly, H+

1 = P (H) ⊂ A. Assume that H+
n−1 ⊂ A and take an h ∈ H+

n .
From the theorem above we know that

d =

n∑
r=1

(−1)r+1

r

∑
h+1 . . . h

+
r ∈ P (H) ⊂ A.

Hence by the induction assumption,

e =
n∑

r=2

(−1)r+1

r

∑
h+1 . . . h

+
r ∈ A,

because
∑
h+1 ⊗ . . .⊗ h+r = ∆+

r−1(h) ∈
∑

i1+...+ir=nH
+
i1
⊗ . . .⊗+H+

ir
, and

H+
0 = 0. This implies that h = d− e ∈ A, and consequently A = H.

2.7. Corollary ([3, 13.0.1], [1, 5.6.5]). The Hopf algebra H is isomor-
phic to the universal enveloping Hopf algebra U(L), where L is the Lie
algebra of all primitive elements in H with [x, y] = xy − yx.

P r o o f. Let f : U(L) → H be the morphism of Hopf algebras induced
by the inclusion L ⊂ H (f(y) = y for y ∈ L). Since, as we showed above in
Corollary 2.6, H is generated by L, we see that f is surjective. Let P (U(L))
denote the set of all primitive elements in U(L). From the P–B–W theorem
it easily follows that the natural map L → U(L) induces an isomorphism
L ≈ P (U(L)). Hence, in view of [3, 11.0.1], f is injective.

Example. Let H be the Hopf algebra defined as follows:

H = K〈x0, x1, . . .〉, x0 = 1 (the free algebra on x1, x2, . . .),

∆(xn) =
∑

i+j=n

xi ⊗ xj , ε(xn) = δn,0.

The antipode S is given by the inductive formula

S(x0) = x0 = 1, S(xn+1) = −
∑

i+j=n

xi+1S(xj), n ≥ 0.

It is not difficult to show, using [3, 11.0.2, 11.0.6, 9.0.1, (b), Exercise (4),
p. 182], that H is connected.

Observe that an action of H on an algebra A is nothing else than a higher
derivation (D0, D1, . . .) of A (Di(a) = xia, i ≥ 0). Let us apply Theorem 2.4
to h = xn, n ≥ 1. Since

∆+
r−1(h) =

∑
i1+...+ir=n
i1,...,ir>0

xi1 ⊗ . . .⊗ xir ,
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we see by Theorem 2.4 that the element

d =

n∑
r=1

(−1)r+1

r

∑
i1+...+ir=n
i1,...,ir>0

xi1 . . . xir

is primitive. Hence

d̃h =

n∑
r=1

(−1)r+1

r

∑
i1+...+ir=n
i1,...,ir>0

Di1 . . . Dir : A→ A

is a derivation of A. This is just Saymeh’s result [2, Prop. 1].
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