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Abstract. We discuss the classification up to orbit equivalence of inclusions S ⊂ R
of measured ergodic discrete hyperfinite equivalence relations. In the case of type III
relations, the orbit equivalence classes of such inclusions of finite index are completely
classified in terms of triplets consisting of a transitive permutation group G on a finite
set (whose cardinality is the index of S ⊂ R), an ergodic nonsingular R-flow V and a
homomorphism of G to the centralizer of V .

0. Introduction. We consider nonsingular discrete ergodic hyperfinite
equivalence relations on a standard measure space. Our concern is to classify
pairs (R,S) where R is an ergodic equivalence relation and S ⊂ R is a
subrelation of finite index (which means that the R-equivalence class of a.e.
point consists of finitely many S-classes), up to orbit equivalence. This
problem is closely related to the classification of subfactors in von Neumann
algebras theory. For a single equivalence relation R the problem was solved
by H. Dye [Dy] and W. Krieger [Kr] in terms of the associated flows. Then, in
the case where R is of type II1, J. Feldman, C. Sutherland, and R. Zimmer
[FSZ] provided a simple classification of ergodic R-subrelations of finite
index and normal R-subrelations of arbitrary index. (We remark that in
an earlier paper [Ge] M. Gerber classified R-subrelations of finite index in a
different—but equivalent—context of finite extensions of ergodic probability
preserving transformations.) These results were further extended in [Da1,
§4] and [Da2], where quasinormal subrelations of type II1 were introduced
and studied.

Recently, T. Hamachi considered finite index subrelations of a type III0
equivalence relation R, introduced a system of invariants for orbit equiva-
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lence and claimed that it was complete [Ha]. However, in the present paper
we construct orbitally inequivalent subrelations of R which are not distin-
guishable by these invariants. Moreover, for an arbitrary type III equivalence
relation R, we provide another system of invariants for orbit equivalence of
R-subrelations of finite index and show that it is complete. It consists of
a transitive subgroup G of permutations on a finite set (whose cardinality
equals the index), an ergodic nonsingular R-flow V and a homomorphism l
of G to the centralizer of V such that the l(G)-quotient of V is conjugate to
the associated flow of R. Roughly speaking, Hamachi’s invariants “remem-
ber” only the range and kernel of l but not l itself and that is why they are
not complete. It should be noted that the argument of [Ha] uses a common
discrete decomposition for S and R, a lacunary measure, etc., i.e. modified
techniques from [Kr] (see also [HO]). Our approach is different. We apply
more recent advances in orbit theory ([FSZ], [GS1], [GS2]), which results in
a short argument.

The outline of the paper is as follows. Section 1 contains background
on orbit theory. Section 2 begins with the “measurable index theory” and
contains our main classification result—Theorem 6. In Section 3 we provide
a counterexample to [Ha, Theorem 6.1]. In the final Section 4, the case of
type IIIλ equivalence relations, 0 < λ ≤ 1, is considered in more detail. It
turns out that our classification invariants have simpler (more explicit) form
in this case.

1. Background on orbit theory. Let (X,B, µ) be a standard prob-
ability space. Denote by Aut(X,µ) the group of its automorphisms, i.e.
Borel one-to-one, onto, µ-nonsingular transformations. We do not distin-
guish between maps which agree on a µ-conull set. Given a Borel discrete
µ-nonsingular equivalence relationR ⊂ X×X, we endow it with the induced
Borel structure and a σ-finite measure µR, dµR(x, y) = dµ(x), (x, y) ∈ R.
Write also

[R] = {γ ∈ Aut(X,µ) | (γx, x) ∈ R for µ-a.e. x ∈ X},
N [R] = {θ ∈ Aut(X,µ) | (θx, θy) ∈ R iff (x, y) ∈ R µR-a.e.}

for the full group of R and the normalizer of [R] respectively. For a count-
able subgroup Γ of Aut(X,µ), we denote by RΓ the Γ -orbital equivalence
relation. It is known that each R is of the form RΓ (see [FM]). Recall that
R is hyperfinite if it can be generated by a single automorphism. We assume
from now on that R is ergodic, i.e. every R-saturated Borel subset is either
µ-null or µ-conull.

Let G be a locally compact second countable (l.c.s.c.) group, 1G the
identity of G and λG a right Haar measure on G. A Borel map α : R → G
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is a (1-)cocycle of R if

α(x, y)α(y, z) = α(x, z) for a.e. (x, y), (y, z) ∈ R.

Two cocycles, α, β : R → G, are cohomologous (α ≈ β) if

α(x, y) = φ(x)−1β(x, y)φ(y) for µR-a.e. (x, y),

where φ : X → G is a Borel function (we call it a transfer function). A
cocycle is a coboundary if it is cohomologous to a trivial one. The set of
all R-cocycles with values in G will be denoted by Z1(R, G). Let R = RΓ .
There is a cocycle % ∈ Z1(R, G) such that

%(x, γx) = log
dµ ◦ γ
dµ

(x)

for all γ ∈ Γ at a.e. x ∈ X. It is called the Radon–Nikodym cocycle of
R. Notice that it is independent of the particular choice of Γ . If % is a
coboundary then R is of type II . Otherwise R is of type III . Given α ∈
Z1(R, G), we denote by α0 the “double” cocycle α× % ∈ Z1(R, G× R).

Recall that α and β are weakly equivalent if α ≈ β◦θ for a transformation
θ ∈ N [R]. Clearly, α and β are weakly equivalent if and only if the double
cocycles α0 and β0 are. Given α ∈ Z1(R, G), we define an equivalence
relation R(α) on (X × G,µ × λG) by setting (x, g) ∼ (y, h) if (x, y) ∈ R
and h = gα(x, y). It is called the α-skew product extension of R. If the
R(α)-partition is measurable (i.e. admits a measurable cross-section) then
α is called transient. Otherwise α is recurrent. By [Sc], α is recurrent if and
only if α0 is. We say that α has dense range in G if R(α) is ergodic. It then
follows that α is recurrent.

Next, we define a Borel action Vα of G on (X × G,µ × λG) by setting
Vα(h)(x, g) = (x, hg). Since Vα ∈ N [R(α)], it induces an automorphism,
say Wα(h), on the measure space of R(α)-ergodic components. Moreover,
G 3 h 7→Wα(h) is an ergodic G-action on this space. It is called the Mackey
action of G associated to α. If two cocycles α and β are weakly equivalent,
then they are either both transient or both recurrent and the associated
Mackey G-actions Wα and Wβ are conjugate. We call R-actions flows.

Theorem 1 (Golodets–Sinel’shchikov, [GS1], [GS2]). (i) Let R be an
ergodic hyperfinite equivalence relation on (X,µ) and α, β ∈ Z1(R, G) re-
current cocycles. If the Mackey G× R-actions Wα0

and Wβ0
are conjugate

then α and β are weakly equivalent.

(ii) Given an ergodic G × R-action V , there exist a hyperfinite ergodic
equivalence relation R on (X,µ) and a recurrent cocycle α ∈ Z1(R, G) such
that V is conjugate to Wα0 .
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2. Subrelations of type III equivalence relations. Let S be an
ergodic subrelation of R. Then there exist N ∈ N∪{∞} and Borel functions
{φj : X → X | 0 ≤ j < N} such that {S[φj(x)] | 0 ≤ j < N} is a partition
ofR[x], whereR[x] (resp. S[x]) stands for theR- (resp. S-) class of x [FSZ].
The N is called the index of S in R and the {φj}j are choice functions for S.
From now on we assume that indS := N is finite. Denote by Σ(J) the full
permutation group on the set J := {0, 1, . . . , N − 1} and define a cocycle
σ ∈ Z1(R, Σ(J)) by setting σ(x, y)(i) = j if S[φi(y)] = S[φj(x)]. Notice
that although choice functions are nonunique, the cohomology class of σ is
independent of their particular choice and is an invariant of S. According
to [FSZ], σ (or its cohomology class) is called the index cocycle of S. Given
a cocycle α ∈ Z1(R, Σ(J)), we put

R×α J = {(x, j, y, k) ∈ X × J ×X × J | (x, y) ∈ R and k = σ(x, y)[j]}.
Clearly, R ×α J is a (µ × λJ)-nonsingular discrete equivalence relation on
X × J , where λJ is the “counting” measure on J . We set

Z1
ind = {α ∈ Z1(R, Σ(J)) | R ×α J is ergodic}.

Two subrelations S1,S2 of R are said to be R-conjugate if S1 = (θ × θ)S2
for a transformation θ ∈ N [R]. We recall some fundamental facts on subre-
lations from [FSZ]:

Theorem 2. Let R be a discrete ergodic hyperfinite equivalence relation
and S ⊂ R an ergodic subrelation with indS = N . Then every index cocycle
of S belongs to Z1

ind(R, Σ(J)). Conversely , for each σ ∈ Z1
ind(R, Σ(J)),

there is an ergodic subrelation S ⊂ R with indS = N such that σ is an
index cocycle of S. Two ergodic subrelations S1,S2 of finite index in R are
R-conjugate if and only if indS1 = indS2 and their index cocycles are
weakly equivalent.

Thus the classification of ergodicR-subrelations of index N up toR-con-
jugacy is equivalent to the classification of cocycles from Z1

ind(R, Σ(J)) up
to weak equivalence.

Theorem 3. Let σ ∈ Z1
ind(R, Σ(J). Then there exists a transitive sub-

group G ⊂ Σ(J) and a cocycle σ′ : R → G with dense range in G such that
σ′ ≈ σ. Two cocycles σ1 : R → G1 and σ2 : R → G2 with dense ranges in
transitive subgroups G1 and G2 of Σ(J) are weakly equivalent as elements
of Z1(R, Σ(J)) if and only if there is g ∈ Σ(J) such that G1 = gG2g

−1 and
the cocycles σ1 and Adg ◦σ2 are weakly equivalent as elements of Z1(R, G1),
where Adg is the inner automorphism of Σ(J) generated by g.

P r o o f. The existence of G and σ′ with the required properties follows
from [Zi, Corollary 3.8]. Note that G acts transitively on J because R×σ J
(and hence R ×σ′ J) is ergodic. The last statement of the theorem can
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be easily deduced from [Zi, the argument of Theorem 6.1], where it was
proved in a slightly weaker form: with “cohomologous” instead of “weakly
equivalent”. Observe also that although the theorems from [Zi] to which we
refer were stated there only in the type II, i.e. measure preserving, case they
also hold for the type III case with the same argument.

Note that every cocycle of R with values in a finite (or compact) group
is recurrent. From Theorems 1 and 3 we deduce

Corollary 4. Let σ1 : R → G1 and σ2 : R → G2 be two cocycles with
dense ranges in transitive subgroups G1 and G2 of Σ(J) respectively. Denote
by W(σ1)0 and W(σ2)0 the Mackey G1×R- and G2×R-actions associated to
the double cocycles (σ1)0 and (σ2)0 respectively. Then σ1 and σ2 are weakly
equivalent as elements of Z1(R, Σ(J)) if and only if there is g ∈ Σ(J) such
that G1 = gG2g

−1 and the G2 × R-actions W(σ2)0 and W(σ1)0 ◦ (Adg × Id)
are conjugate.

Every measured G×R-action W on a space (Ω, ν) determines a measured
flow V acting on the same measure space and a group homomorphism l from
G to the centralizer C(W ) of W as follows: V (t) = W (1G, t), l(g) = W (g, 0)
for all t ∈ R and g ∈ G. Recall that

C(W ) = {R ∈ Aut(Ω, ν) | RW (g, t) = W (g, t)R for all t ∈ R and g ∈ G}.
We call (V, l) the constituents of W .

Let an R-cocycle σ take values and have dense range in a transitive
subgroup G ⊂ Σ(J). Denote by (Vσ, lσ) the constituents of the Mackey
G × R-action Wσ0

associated to the double cocycle σ0. It is easy to verify
(and well known) that the lσ(G)-quotient of Vσ, i.e. the restriction of Vσ to
the subalgebra of l(G)-invariant measured subsets, is conjugate to Wσ. On
the other hand, the Vσ(R)-quotient of lσ is a singleton, since σ has dense
range in G and hence the associated Mackey action is trivial. It follows that
Vσ is ergodic. We illustrate these with the commutative diagram

X ×G X ×G× R X × R

{•} Ω0 Ω
��

oo

��

//

��
oo //

where {•}, Ω0, and Ω stand for the spaces of the Mackey actions associated
to σ, σ0, and the Radon–Nikodym cocycle of R respectively; the vertical ar-
rows represent the corresponding ergodic decompositions (see §1); the upper
horizontal arrows are natural projections, and the lower arrows are deter-
mined by the universality of the “middle” ergodic decomposition.

Definition 5. Let Vi be an ergodic nonsingular flow on a measure
space (Ωi, νi), Gi a transitive subgroup of Σ(J), and li : Gi → C(Vi) a
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group homomorphism, i = 1, 2. We say that the triplets (V1, G1, l1) and
(V2, G2, l2) are conjugate if there is a nonsingular isomorphism ξ : Ω2 → Ω1

and g ∈ Σ(J) such that G1 = gG2g
−1, V1(t) = ξV2(t)ξ−1 and l1(Adg(g2)) =

ξl2(g2)ξ−1 for all t ∈ R and g2 ∈ G2.

Now we are ready to record our main classification result.

Theorem 6. Let R be an ergodic type III hyperfinite equivalence relation
on (X,B, µ), and W% its associated flow (% stands for the Radon–Nikodym
cocycle).

(i) With every ergodic subrelation of index N , we can associate a triplet
(V,G, l) consisting of an ergodic flow V , a transitive subgroup G ⊂ Σ(J)
and a homomorphism l : G → C(V ) such that the l(G)-quotient flow of V
is conjugate to W%.

(ii) Conversely , given such a triplet , there exists an ergodic subrelation
S ⊂ R, indS = N , whose associated triplet is as given.

(iii) Two ergodic R-subrelations of index N are R-conjugate if and only
if their associated triplets are conjugate.

P r o o f. (i) follows from Theorems 2, 3 and the remark before Defini-
tion 5.

(ii) Given a triplet (V,G, l), we consider a G × R-action W whose con-
stituents are (V, l). By Theorem 1 there are an ergodic hyperfinite equiva-
lence relation R′ on (X,B, µ) and a cocycle σ′ : R′ → G such that W is
conjugate to the Mackey G×R-action associated to the double cocycle σ′0. It
is clear that the associated flow of R′ is conjugate to the l(G)-quotient flow
of V . By the assumptions on (V,G, l), this flow is conjugate to W%. It follows
from the Krieger theorem [Kr], [FM] that R and R′ are orbit equivalent and
hence we may identify them. Next, since V is ergodic, σ′ has dense range
in G. ButG is a transitive subgroup of J-permutations and this implies that
σ′ ∈ Z1

ind(R, Σ(J)). It remains to apply Theorem 2.
(iii) follows from Theorem 2 and Corollary 4.

3. On Hamachi’s invariants. Let an R-cocycle σ take values and
have dense range in a transitive subgroup G of Σ(J). Denote by H the G-
stability group of 0, i.e. H = {g ∈ G | g[0] = 0}. Then H ⊂ G is irreducible,
i.e. H contains no nontrivial G-normal subgroups. If a subgroup G1 ⊂ Σ(J)
is conjugate to G, then there exists k ∈ Σ(J) such that G1 = kGk−1 and
k[0] = 0 (recall that G is transitive). It follows that H1 = kHk−1, where
H1 is the G1-stability group of 0. Thus the conjugacy classes of transitive
subgroups of Σ(J) are in one-to-one correspondence with the isomorphism
classes of irreducible pairs of finite groups H ⊂ G such that the cardinality
of G/H is N . (We say that two pairs H ⊂ G and H ′ ⊂ G′ are isomorphic if
there is an isomorphism of G onto G′ taking H onto H ′.)
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Let (V,G, l) be a triplet as in Theorem 6. Denote by G0 the kernel of l
and by (Ω, ν) the measure space of W%. Then V is a G/G0-extension of W%,
i.e. we may assume without loss in generality that V is defined on the space
(Ω0, ν0) := (Ω ×G/G0, ν × λG/G0

) as follows:

(∗) V (t)(ω, h) = (W%(t)ω, hα(ω, t)),

where λG/G0
is Haar measure on G/G0 and α : Ω × R a measurable W -

cocycle, i.e.

α(ω, t1 + t2) = α(ω, t1)α(W%(t1)ω, t2)

at a.e. ω ∈ Ω for all t1, t2 ∈ R. (Do not confuse cocycles of group actions
with cocycles of equivalence relations.) Denote by π : Ω0 3 (ω, h) 7→ ω ∈
Ω the canonical projection. Then πV (t) = W%(t)π for all t ∈ R. It is

convenient to use the notation π : V
G/G0−−−→W%.

Recall that two group extensions π : V G→W and π′ : V G′
→W ′ are con-

jugate if there are nonsingular isomorphisms ψ : (Ω0, ν0) → (Ω′0, ν
′
0) and

φ : (Ω, ν)→ (Ω′, ν′) such that φW (t)φ−1 = W ′(t), ψV (t)ψ−1 = V ′(t), and
ψπψ−1 = π′. This implies that G and G′ are isomorphic.

Thus with a given triplet (V,G, l), we associate a system (G,H,G0, π :

V
G/G0−−−→W%) consisting of an irreducible pair of finite groups H ⊂ G, a

normal subgroup G0 ⊂ G and a G/G0-extension of W%. We shall call it an
H-system (see [Ha]).

Definition 7 (see [Ha, Definition 6.1]). Two H-systems

(G,H,G0, π : V
G/G0−−−→W%) and (G′, H ′, G′0, π

′ : V ′
G′/G′

0−−−→W%)

are equivalent if there is an isomorphism % : G→ G′ such that %(H) = H ′,
%(G0) = G′0 and the extensions π and π′ are conjugate.

It is easy to see that if two triplets are conjugate then the associated
H-invariants are equivalent. It is claimed in [Ha] that the converse also
holds, which implies that R-nonconjugate ergodic R-subrelations of finite
index have inequivalent H-invariants. We present a counterexample to this
statement.

Example 8. Let Σ3 be the permutation group of {0, 1, 2} and A5 the
group of even permutations of {0, 1, . . . , 5}. We put H := (Σ3)5 o A5 and
G := H2. It is easy to verify that Z(H), the center of H, is trivial but
OutH, the group of outer automorphisms of H, is nontrivial. Denote by
Σ(H) the permutation group of H and define a homomorphism b : G →
Σ(H) by setting b(h1, h2)[h] = h1hh

−1
2 , h ∈ H. Since the kernel of b is

isomorphic to Z(H), b is an embedding. It is obvious that G (or, more
precisely, b(G)) acts transitively on H. Denote by G0 the G-stability group



20 A. I. DANILENKO

of 1H . Clearly, G0 = {(h, h) | h ∈ H}. Define an automorphism κ of G by
setting κ(h1, h2) = (h1, τ(h2)), where τ is a noninner automorphism of H.

We claim that κ cannot be extended to an automorphism of Σ(H).
Suppose the contrary: there exists k ∈ Σ(H) such that κ(g) = kgk−1 for
all g ∈ G. (Recall that every automorphism of Σ(H) is inner.) Put h0 :=
k[1H ] ∈ H. Then κ(g)[h0] = h0 for all g ∈ G0. Since G acts transitively on
H, we deduce that κ(G0) = g0G0g

−1
0 for an element g0 ∈ G with g0[0] = h0.

Thus
⋃
h∈H(h, τ(h)) =

⋃
h∈H(h, h1hh

−1
1 ) for some h1 ∈ H. It follows that

τ is an inner automorphism of H, a contradiction.

Let W be an ergodic properly nontransitive R-flow on (Ω, ν) with trivial
centralizer, i.e. C(W ) = W (R). Take a cocycle α of W with values in G
such that the flow V determined by (∗) with G0 trivial is ergodic. Define a
one-to-one homomorphism l : G→ C(V ) by setting

l(g′)(ω, g) = (ω, g′g) for all (ω, g) ∈ Ω ×G,

and put l1 = l ◦ κ. We claim that the triplets (V,G, l) and (V,G, l1) are not
conjugate. Suppose the contrary: there exist ξ ∈ C(V ) and s ∈ Σ(H) such
that

(∗∗) l ◦Ads(g) = ξl(κ(g))ξ−1 for all g ∈ G.

Since ξ passes through the natural projection Ω ×G→ Ω, it is well known
(see for example [Da1, Theorem 5.3 and §6]) that ξ is of the form ξ(ω, g) =
(ζω, d(g)f(x)) for a transformation ζ ∈ C(W ), a G-automorphism d, and
a measurable map f : X → G. Hence ζ ∈ W (R). It follows from [Da1,
Lemma 5.2 and §6] that d is inner. On the other hand, it is easy to verify
that ξl(g)ξ−1 = l(d(g)) for all g ∈ G. We deduce from (∗∗) that l◦Ads(g) =
l ◦ d ◦ κ(g) and hence Ads = d ◦ κ. This contradicts the fact that κ cannot
be extended to a Σ(H)-automorphism.

Since W is nontransitive, it is the associated flow of a type III0 er-
godic hyperfinite equivalence relation R. By Theorem 6 there are ergodic
R-subrelations S and S1 of finite index whose associated triplets are (V,G, l)
and (V,G, l1) respectively. It follows that S and S1 are not R-conjugate. On
the other hand, the H-invariants associated with (V,G, l) and (V,G, l1) are
obviously identical.

4. Case of IIIλ equivalence relations, 0 < λ ≤ 1. If R is of type
IIIλ, 0 < λ ≤ 1, our invariants (see Theorem 6) can be described in a more
apparent way.

We first consider the case where R is of type III1. Then the associated
flow W% and any ergodic finite group extension V of W% are trivial. Thus
we deduce from Theorem 6
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Corollary 9. The R-conjugacy classes of ergodic R-subrelations of in-
dex N are in one-to-one correspondence with the conjugacy classes of tran-
sitive subgroups of Σ(J), J = {0, 1, . . . , N − 1}.

Now let R be of type IIIλ, 0 < λ < 1. Then W% is a transitive periodic
flow with period − log λ. If V is an ergodic finite group extension of W%,
then there is a nonnegative integer n such that V is a periodic flow with
period −n log λ and V is a Z/nZ-extension of W .

Definition 10. A collection (n,G, l) consisting of a positive integer n,
a transitive subgroup G ⊂ Σ(J) and an onto homomorphism l : G→ Z/nZ
will be called a λ-triplet. Two λ-triplets (n,G, l) and (n′, G′, l′) are conjugate
if n = n′ and there is s ∈ Σ(J) with G = sG′s−1 and l ◦Ads = l′.

It is easy to deduce from Theorem 6

Corollary 11. The R-conjugacy classes of ergodic R-subrelations of
index N are in one-to-one correspondence with the conjugacy classes of λ-
triplets.
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